The MAO inhibitor tranylcypromine alters LPS- and A\beta-mediated neuroinflammatory

responses in wild-type mice and a mouse model of AD

HyunHee Park^{1,†}, Kyung-Min Han^{1,2,†}, Hyongjun Jeon^{1,†}, Ji-Soo Lee^{1,†}, Hyunju Lee¹, Seong Gak Jeon¹, Jin-Hee Park¹, Yu Gyung Kim^{1,6}, Yuxi Lin³, Young-Ho Lee^{3,4,5}, Yun Ha Jeong ^{1,*}, Hyang-Sook Hoe^{1, 2,*}

¹Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, Korea, 41062; ²Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Korea 42988; ³Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Cheongju, Chungbuk, Korea, 28199; ⁴Neurovascular Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, Korea, 41062; ⁵Bio-Analytical Science, University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon, Korea, 34113; ⁶Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea, 41940; ⁺These authors contributed equally to this work.

*Corresponding authors:

Hyang-Sook Hoe, Ph.D., Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, Korea, 41062; E-mail: sookhoe72@kbri.re.kr

Yun Ha Jeong, Ph.D.: Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, Korea, 41062; E-mail: yunha.jeong@kbri.re.kr

Supplementary Figure S1. Post-treatment with 5 μ M tranylcypromine significantly decreases LPS-induced proinflammatory cytokine IL-1 β and IL-6 levels in BV2 microglial cells. **(A-E)** Proinflammatory cytokine mRNA levels in BV2 microglial cells pretreated with LPS (200 ng/ml) or PBS for 30 min and treated with vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 5.5 hr (n=5/group) (**F-J**) Proinflammatory cytokine mRNA levels in BV2 microglial cells pretreated with vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 5.5 hr (n=5/group) (**F-J**) Proinflammatory cytokine mRNA levels in BV2 microglial cells pretreated with vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 30 min and treated with vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 30 min and treated with vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 30 min and treated with vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 30 min and treated with vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 30 min and treated with vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 30 min and treated with Vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 30 min and treated with Vehicle (1% DMSO) or 1 μ M or 5 μ M tranylcypromine for 30 min and treated with LPS (200 ng/ml) or PBS for 5.5 h (COX-2, IL-6, and iNOS, n=5/group; IL-1 β , n=15/group). *p < 0.05, **p < 0.01, ***p < 0.001

BV2 microglial cells

Supplementary Figure S2. Pretreatment with 5 μ M tranylcypromine only significantly reduces LPS-mediated proinflammatory cytokine IL-1 β levels in BV2 microglial cells. (**A-B**) Cell viability of BV2 microglial cells pretreated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with LPS (1 μ g/mL) or PBS for 5.5 hr (n=24/group). (**C-F**) Proinflammatory cytokine mRNA levels in BV2 microglial cells pretreated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with LPS (1 μ g/mL) or PBS for 5.5 hr (n=24/group). (**C-F**) Proinflammatory cytokine mRNA levels in BV2 microglial cells pretreated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with LPS (1 μ g/mL) or PBS for 5.5 hr (COX-2, IL-1 β , and iNOS; n=11/group. IL-6; n=19/group). (**G-H**) Anti-inflammatory cytokine mRNA levels in BV2 microglial cells pretreated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with Vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with Vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 30 min and treated with LPS (1 μ g/mL) or PBS for 5.5 hr (n=8/group).

Supplementary Figure S3. Post-treatment with 5 μ M tranylcypromine does not alter LPSmediated proinflammatory cytokine levels in primary astrocytes. (**A-E**) Proinflammatory cytokine mRNA levels in primary astrocytes pretreated with LPS (200 ng/ml) or PBS for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 5.5 h using RT-PCR (COX-2, IL-1 β , IL-6, and iNOS; n=4/group). (**F-G**) Anti-inflammatory cytokine mRNA levels in primary astrocytes pretreated with LPS (200 ng/ml) or PBS for 30 min and treated with vehicle (1% DMSO) or tranylcypromine (5 μ M) for 5.5 hr using real-time PCR (IL-4 and IL-10: n=4/group). **p < 0.01, ***p < 0.001

Supplementary Figure S4. The proinflammatory cytokine IL-1 β colocalizes with the microglial cell marker CD11b in the cortex and hippocampus in LPS-treated wild-type mice. (**A-C**) After daily injection with tranylcypromine (3 mg/kg, i.p.) or PBS for 3 days, wild-type mice were injected with LPS (10 mg/kg, i.p.) or PBS. Perfused and fixed mice were then subjected to immunohistochemistry with anti-IL-1 β and anti-CD11b antibodies.

Supplementary Figure S5. The proinflammatory cytokine IL-1 β does not co-localize with the neuronal cell marker NeuN in the cortex and hippocampus in LPS-injected wild-type mice. (A-C) After daily injection with tranylcypromine (3 mg/kg, i.p.) or PBS for 3 days, wild-type mice were injected with LPS (10 mg/kg, i.p.) or PBS. Perfused and fixed mice were then subjected to immunohistochemistry with anti-IL-1 β and anti-NeuN antibodies.