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Abstract: It is estimated that the genus Synechococcus is responsible for about 17% of net primary
production in the Global Ocean. Blooms of these organisms are observed in tropical, subtropical
and even temperate zones, and they have been recorded recently even beyond the polar circle.
The long-term scenarios forecast a growing expansion of Synechococcus sp. and its area of dominance.
This is, among others, due to their high physiological plasticity in relation to changing environmental
conditions. Three phenotypes of the genus Synechococcus sp. (Type 1, Type 2, and Type 3a) were tested
in controlled laboratory conditions in order to identify their response to various irradiance (10, 55,
100 and 145 µmol photons m−2 s−1) and temperature (15, 22.5 and 30 ◦C) conditions. The highest total
pigment content per cell was recorded at 10 µmol photons m−2 s−1 at all temperature variants with the
clear dominance of phycobilins among all the pigments. In almost every variant the highest growth
rate was recorded for the Type 1. The lowest growth rates were observed, in general, for the Type 3a.
However, it was recognized to be less temperature sensitive in comparison to the other two types
and rather light-driven with the highest plasticity and adaptation potential. The highest amounts
of carotenoids were produced by Type 2 which also showed signs of the cell stress even around
55 µmol photons m−2 s−1 at 15 ◦C and 22.5 ◦C. This may imply that the Type 2 is the most susceptible
to higher irradiances. Picocyanobacteria Synechococcus sp. require less light intensity to achieve the
maximum rate of photosynthesis than larger algae. They also tolerate a wide range of temperatures
which combined together make them gain a powerful competitive advantage. Our results will
provide key information for the ecohydrodynamical model development. Thus, this work would be
an important link in forecasting future changes in the occurrence of these organisms in the context of
global warming.

Keywords: abiotic stressors; environmental stress; growth; light intensity; photosynthetic pigments;
picocyanobacteria; plant physiology

1. Introduction

The discovery of autotrophic picoplankton in the late 1970s [1,2] has contributed to numerous
scientific studies on these organisms and demonstrated their significant role as a missing link in the
carbon cycle and a major producer in oceanic waters [3]. Many researchers proved that picoplankton
also plays an important role in more productive waters, often exceeding the abundance and biomass of
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other phytoplankton species [4]. The genus Synechococcus is a polyphyletic group of picoplanktonic
cyanobacteria that constitutes one of the major contributors to oceanic primary production [5,6] and
is a key worldwide distributed component of marine planktonic communities [7]. It is estimated
that for about 17% of net primary production in the Global Ocean is responsible solely the genus
Synechococcus [8]. Blooms of these organisms are observed in tropical, subtropical and even temperate
zones [9]. The present global warming causes temperature rise which was recognized as a main cause
of the massive shift of species northwards [10]. Furthermore, Synechococcus has been recorded far
beyond the polar circle, e.g., dragged with a strong Atlantic inflow in 2014, as far as 82.5◦ N [11].
In the future ocean scenarios, a growing expansion of Synechococcus sp. and its area of dominance is
forecasted [8,12]. A significant increase in the frequency of their blooms has already been detected [9].
This is, among others, due to their high physiological plasticity in relation to changing environmental
conditions [13]. Organisms from the genus Synechococcus are represented by three phenotypes that
complement each other and fill tightly the ecological niche due to varying photosynthetic pigment
profiles and high chromatic adaptation potential.

The photosynthetic pigment observed in cells of picoplanktonic cyanobacteria is chlorophyll a
(Chl a), carotenoid (Car) pigments, and phycobiliproteins (Phyco) [14]. Chl a is the most important
pigment because it controls photosynthesis and this transformation of the absorbed energy from sunlight
into chemical compounds determines the biomass growth rates [14]. The most dominant Car pigment is
zeaxanthin (Zea), representing 40% to 80%. The presence of cell-specific Zea content in Synechococcus sp.
and high Zea/Chl a ratios may be regarded as a diagnostic feature [15]. Besides Zea, β-carotene (β-Car)
is also present among Car pigments [16]. Car pigments play an important photoprotective role against
damage to the photosystem [17]. Furthermore, cells of picocyanobacteria contain accessory phycobilin
pigments instead of the additional chlorophylls that are common among other phytoplankton organisms.
There are three types of Phyco containing: phycoerythrin (PE), phycocyanin (PC), and allophycocyanin
(APC), which absorb green, yellow-orange, and red light, respectively [18]. In cyanobacterial cells,
Phyco are organized into aggregates consisting of many subunits called phycobilisomes, which are
connected in regular rows to the surface of thylakoid membranes. The main component of the core
complex is APC while PE is located in the peripheral parts of these formations [19]. Phyco absorb light
in the 500−650 nm range and provide additional energy to photosynthetic centers. The transfer process
is highly efficient and reaches 80−90% of the energy absorbed by phycobilin pigments. Their role is
vital, especially in case of any light shortages to maintain high photosynthesis rate which guarantees
cyanobacteria competitive advantage in low-light conditions. The red PE absorbs the blue-green light
that penetrates the deepest into the water column. It enables conducting photosynthesis even at the
bottom of the euphotic zone. The deeper live an organism, the more PE it contains and the higher is
the PE to Chl a pigment ratio. In the cells of cyanobacteria living in the upper layers of the ocean the
dominant pigments are the blue PC and APC [19].

The distinction between the three main identified phenotypes of the genus Synechococcus is
based on the phycobilin pigments composition [20,21]. Six et al. [22] in their research presented a
classification that divides marine Synechococcus to Type 1, Type 2, and Type 3. Organisms with the
dominance of PC were classified as Type 1. Type 2 incorporates phenotypes with a dominance of
PE, more specifically PEI, while Type 3 consists of organisms in which PC, as well as PEI and PEII,
dominates in phycobilisomes. Furthermore, Six et al., [22] divided Type 3 into four subcategories from a
to d, according to the increasing phycoerythrobilin (PEB) and phycocyanobilin (PCB) ratios. Organisms
with high levels of PE are found mainly in oligotrophic oceans, while green (PC-rich) phenotypes
prefer turbid freshwater [23,24]. In general, picocyanobacteria prefer lower irradiance intensity to
reach the maximum rate of photosynthesis than larger algae [25]. Furthermore, studies have shown
that the reduction of radiation intensity does not change the efficiency of carbon incorporation during
photosynthesis, as is the case with larger plant organisms that exceed 3 µm. Marine Synechococcus sp. is
able to saturate photosynthesis and growth rates at very low radiation [26]. Under culture conditions,
some strains of picoplankton have shown the ability to survive and grow again after periods of total
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darkness [27,28]. Platt et al. [29] observed photosynthetic picoplankton at a depth of 1000 m in the
depths of the eastern Pacific Ocean and Cai et al. [30] confirmed the presence of small populations
of Synechococcus sp. in the Chesapeake Bay during winter months. Furthermore, Ernst [31] isolated
Synechocystis sp. (Maple BO 8402) from the Lake Constance with a different type of pigmentation
than any described so far. This strain contained Phyco similar to the PC, characterized by very strong
red fluorescence occurring after stimulation of the cells with wavelengths of 600 nm but also with
wavelengths of 436 and 546 nm [32]. Most cyanobacteria, especially those living all year round in
coastal ocean waters, contain PE [23,33,34].

The main aim of this study was to determine the acclimatization capacity of three Baltic phenotypes
of Synechococcus sp.: Type 1, Type 2, Type 3a. Furthermore, the study focused on the effect of
irradiance, temperature, and their mutual interactions on the content and proportions of cell-specific
photosynthetic pigments of the examined cyanobacterial phenotypes. The cell-specific Chl a and
Car content was determined by the HPLC method, whereas the content of Phyco was determined
by the spectrophotometric method. The detailed characterization of the quantitative and qualitative
composition of pigments is important to determine the level of acclimatization of the examined
phenotypes of cyanobacteria to specific environmental conditions. The knowledge of biology and
especially the physiology of these organisms by capturing their reactions to various environmental
factors is important for forecasting the possible expansion of these organisms.

2. Results

2.1. The Cell Concentration and the Growth Rate of Three Synechococcus sp. Phenotypes under Different
Culture Conditions

In this study, the concentration of picocyanobacterial cells as well as the growth rate under
different irradiance and temperature conditions were determined for the three studied phenotypes of
Synechococcus sp. (Type 1, Type 2, and Type 3a). In general, factorial tests showed that both irradiance
and temperature significantly affected the number of cells of three Synechococcus sp. phenotypes
(ANOVA, p < 0.001, p < 0.01, p < 0.01, for Type 1, Type 2, and Type 3a, respectively; Table S1). Moreover,
ANOVA results indicated that for each picocyanobacteria phenotype the effect of temperature on the
culture concentration was higher than the influence of irradiance and the interaction of both factors
(Table S1). The highest picocyanobacterial cell numbers (59.5 × 107 and 60.2 × 107 cell mL−1) was noted
for Synechococcus sp. Type 1 at 10 µmol photons m−2 s−1 and 55 µmol photons m−2 s−1, respectively
and 30 ◦C (Figure 1Aa), and it was about 4-fold higher that the minimum values observed in 15 ◦C and
145 µmol photons m−2 s−1 (15.2 × 107 cell mL−1). For Synechococcus sp. Type 2 (Figure 1Ba) and Type 3a
(Figure 1Ca) the maximum cell concentration were recorded at the temperature of 22.5 ◦C and 30 ◦C,
respectively. Moreover, the highest picocyanobacterial cell numbers for Type 2 was found at irradiance
55 µmol photons m−2 s−1 (49.4 × 107 cell mL−1), whereas for Type 3a at 10 µmol photons m−2 s−1

(25.8 × 107 cell mL−1). For both phenotypes, similar to Type 1, the minimum number of cells were
obtained at 15 ◦C and 145 µmol photons m−2 s−1 (about 9.7 × 107 and 6.5 × 107 cell mL−1, respectively).

It was found that analyzed phenotypes of Synechococcus sp. showed different growth rates (µ)
under different temperature and light conditions. For Synechococcus sp. Type 1, Type 2, and Type 3a
the highest growth rate was recorded at the highest temperature (30 ◦C). Moreover, the highest growth
rate for Type 1 (Figure 1Ab) and Type 2 (Figure 1Bb) was noted at 55 µmol photons m−2 s−1 (0.457,
0.443, respectively) whereas for Type 3a at 10 µmol photons m−2 s−1 (0.396; Figure 1Cb). On the other
hand, for Type 1, Type 2, and Type 3a, the shortest growth rate (0.359, 0.327, 0.298, respectively) was
obtained at 15 ◦C and 145 µmol photons m−2 s−1.



Cells 2020, 9, 2030 4 of 19

Cells 2020, 9, x FOR PEER REVIEW  4 of 19 

 

 

Figure 1. Changes in the number of cells (N × 107 mL−1; a) and the growth rate (μ; b) obtained after 

14 days of experiment for three phenotypes of Synechococcus sp.: Type 1 (A), Type 2 (B), Type 3a (C) 

under different irradiance (μmol photons m−2 s−1) and temperature (°C) conditions. 

2.2. The Total Pigments Content for Three Phenotypes of the Genus Synechococcus 

The acclimation mechanisms of  three Synechococcus sp. phenotypes was characterized by  the 

concentration  of  changes  in  composition  and  proportion  of  photosynthetic  pigments  i.e., 

chlorophyll a  (Chl a), zeaxanthin  (Zea), β‐carotene  (β‐Car), phycoerythrin  (PE), phycocyanin  (PC), 

and  allophycocyanin  (APC)  under  different  light  (μmol  photons m−2  s−1)  and  temperature  (°C) 

conditions.  In  this work,  the  composition  and proportions  of Chl  a  and Car pigments  (Zea  and 

β‐Car) of three Synechococcus sp. phenotypes were determined by HPLC method, while the content 

of phycobilins (Phyco) were determined by spectrophotometric method. 

Both light and temperature significantly affected the cell‐specific Chl a content of Synechococcus 

sp. Type 1, Type 2, and Type 3a (ANOVA, p < 0.001, for all) and Phyco content (ANOVA, p < 0.001, 

p  <  0.001,  and  p  <  0.001,  for Type  1, Type  2,  and Type  3a,  respectively). Moreover,  these  factors 

significantly  affected  the  cell‐specific Car  content  of  Synechococcus  sp. phenotypes  (ANOVA,  p  < 

0.001,  p  <  0.001,  p  <  0.001  for  Type  1,  Type  2,  and  Type  3a,  respectively;  Table  S2). Generally, 

ANOVA  results  indicated  that  the  effect of  irradiance on  the Chl  a  and Phyco  concentration  for 

picocyanobacteria phenotypes was higher than the influence of temperature and the interaction of 

the two factors (Table S2). In contrast, the cell‐specific Car content of Synechococcus sp. Type 1, Type 

2, and Type 3a was more affected by  temperature and  the  interaction of  the  two  factors  than by 

irradiance (Table S2). 

The  maximum  cell‐specific  concentration  of  Chl  a  (about  8.11  pg∙cell−1)  was  noted  for 

Synechococcus sp. Type 3a at 10 μmol photons m−2 s−1 light intensity and 15 °C, and it was about 5.5 

times  higher  than  the  minimum  at  145  μmol  photons  m−2  s−1  and  30  °C  (Figure  2Ca).  For 

Synechococcus sp. Type 1 and Type 2 the maximum cell‐specific Chl a concentrations (4.51 pg∙cell−1 

and 4.82 pg∙cell−1, respectively) were recorded at 10 μmol photons m−2 s−1 and 15 °C for Type 1 and 

30 °C for Type 2. On the other hand, the minimum values for these phenotypes were obtained at 

145 μmol photons m−2 s−1 and 30 °C (0.68 pg∙cell−1 and 0.67 pg∙cell−1, respectively; Figure 2Aa−Ba). 

On the basis of the results obtained in this study, it was found that the analyzed phenotypes 

were  characterized  by  a  similar  maximum  cell‐specific  Car  content.  It  was  also  shown  that 

cell‐specific Car content was the lowest among all analyzed photosynthetic pigments. The total Car 

content for Synechococcus sp. Type 1, Type 2, and Type 3a constituted approximately 7%, 11%, and 

12% of the sum of Chl a and Phyco, respectively. It was also found that for Type 2 (Figure 2Bb) and 

Type  3a  (Figure  2Cb)  the  maximum  cell‐specific  Car  content  (2.01  pg∙cell−1  and  2.25  pg∙cell−1, 

respectively) were recorded at 190 μmol photons m−2 s−1 and 30 °C. By contrast, the minimum values 

of cell‐specific Car content were obtained at 100 μmol photons m−2 s−1 and 22.5 °C (1.20 pg∙cell−1, for 

Figure 1. Changes in the number of cells (N × 107 mL−1; a) and the growth rate (µ; b) obtained after
14 days of experiment for three phenotypes of Synechococcus sp.: Type 1 (A), Type 2 (B), Type 3a (C)
under different irradiance (µmol photons m−2 s−1) and temperature (◦C) conditions.

2.2. The Total Pigments Content for Three Phenotypes of the Genus Synechococcus

The acclimation mechanisms of three Synechococcus sp. phenotypes was characterized
by the concentration of changes in composition and proportion of photosynthetic pigments
i.e., chlorophyll a (Chl a), zeaxanthin (Zea), β-carotene (β-Car), phycoerythrin (PE), phycocyanin
(PC), and allophycocyanin (APC) under different light (µmol photons m−2 s−1) and temperature
(◦C) conditions. In this work, the composition and proportions of Chl a and Car pigments (Zea and
β-Car) of three Synechococcus sp. phenotypes were determined by HPLC method, while the content of
phycobilins (Phyco) were determined by spectrophotometric method.

Both light and temperature significantly affected the cell-specific Chl a content of Synechococcus sp.
Type 1, Type 2, and Type 3a (ANOVA, p < 0.001, for all) and Phyco content (ANOVA, p < 0.001, p < 0.001,
and p < 0.001, for Type 1, Type 2, and Type 3a, respectively). Moreover, these factors significantly
affected the cell-specific Car content of Synechococcus sp. phenotypes (ANOVA, p < 0.001, p < 0.001,
p < 0.001 for Type 1, Type 2, and Type 3a, respectively; Table S2). Generally, ANOVA results indicated
that the effect of irradiance on the Chl a and Phyco concentration for picocyanobacteria phenotypes was
higher than the influence of temperature and the interaction of the two factors (Table S2). In contrast,
the cell-specific Car content of Synechococcus sp. Type 1, Type 2, and Type 3a was more affected by
temperature and the interaction of the two factors than by irradiance (Table S2).

The maximum cell-specific concentration of Chl a (about 8.11 pg·cell−1) was noted for Synechococcus
sp. Type 3a at 10 µmol photons m−2 s−1 light intensity and 15 ◦C, and it was about 5.5 times higher than
the minimum at 145 µmol photons m−2 s−1 and 30 ◦C (Figure 2Ca). For Synechococcus sp. Type 1 and
Type 2 the maximum cell-specific Chl a concentrations (4.51 pg·cell−1 and 4.82 pg·cell−1, respectively)
were recorded at 10 µmol photons m−2 s−1 and 15 ◦C for Type 1 and 30 ◦C for Type 2. On the other
hand, the minimum values for these phenotypes were obtained at 145 µmol photons m−2 s−1 and 30 ◦C
(0.68 pg·cell−1 and 0.67 pg·cell−1, respectively; Figure 2Aa−Ba).

On the basis of the results obtained in this study, it was found that the analyzed phenotypes were
characterized by a similar maximum cell-specific Car content. It was also shown that cell-specific
Car content was the lowest among all analyzed photosynthetic pigments. The total Car content for
Synechococcus sp. Type 1, Type 2, and Type 3a constituted approximately 7%, 11%, and 12% of the sum
of Chl a and Phyco, respectively. It was also found that for Type 2 (Figure 2Bb) and Type 3a (Figure 2Cb)
the maximum cell-specific Car content (2.01 pg·cell−1 and 2.25 pg·cell−1, respectively) were recorded at
190 µmol photons m−2 s−1 and 30 ◦C. By contrast, the minimum values of cell-specific Car content
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were obtained at 100 µmol photons m−2 s−1 and 22.5 ◦C (1.20 pg·cell−1, for Type 2 and 0.60 pg·cell−1,
for Type 3a). On the other hand, for Synechococcus sp. Type 1, the reported maximum value of
cell-specific Car content (1.74 pg·cell−1) at 100 µmol photons m−2 s−1 and 15 ◦C was approximately
4-fold higher compared to the recorded minimum values at 10 µmol photons m−2 s−1 and 30 ◦C
(Figure 2Ab).

It was noted that the total Phyco pigments were always greater than cell-specific Chl a and Car
content of the three examined Synechococcus sp. phenotypes. The study found that the total Phyco
content for Synechococcus sp. Type 1, Type 2, and Type 3a constituted about 80%, 75%, and 65% of the sum
of Chl a and Car, respectively. The highest cell-specific Phyco content was measured in Synechococcus sp.
Type 2 (45.90 pg·cell−1) at 10 µmol photons m−2 s−1 and 30 ◦C (Figure 2Bc) while the minimum values
of these pigments was noted at 55 µmol photons m−2 s−1 and 15 ◦C (2.70 pg·cell−1). The greatest
decrease in the cell-specific Phyco content was noted for Synechococcus sp. Type 1 (Figure 2Ac),
which under minimal conditions (100 µmol photons m−2 s−1 and 15 ◦C) was about 30 times lower than
the recorded under maximum values at 10 µmol photons m−2 s−1 and 30 ◦C (33.56 pg·cell−1). In turn,
Synechococcus sp. Type 3a showed the highest resistance to light and temperature, and its decrease in the
cell-specific Phyco content under minimal conditions (145 µmol photons m−2 s−1 and 15 ◦C) was about
12.7 times lower (2.25 pg·cell−1) than the recorded under maximum values (10 µmol photons m−2 s−1

and 22.5 ◦C; Figure 2Cc).
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Figure 2. Changes in content (pg·cell−1) of Chl a (a), sum of total Car (b), and sum of total Phyco (c)
obtained after 14 days of experiment for three phenotypes of Synechococcus sp.: Type 1 (A), Type 2 (B),
Type 3a (C) under different irradiance (µmol photons m−2 s−1) and temperature (◦C) conditions.

2.3. Effect of Irradiance and Temperature on Phycocyanin, Phycoerythrin, and Allophycocyanin Content

The presence of phycoerythrin (PE), phycocyanin (PC), and allophycocyanin (APC) was
demonstrated for all picocyanobacterial phenotypes by spectrophotometric analysis. It was found
that irradiance and temperature as well as their interaction significantly affected the cell-specific PE
content of Synechococcus sp. (ANOVA, p < 0.001, for Type 1, Type 2, and Type 3a), PC content (ANOVA,
p < 0.001, fot Type 1, p < 0.001, for Type 2, and p < 0.001, for Type 3a) and APC content (ANOVA,
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p < 0.001, p < 0.01, and p < 0.05, for Type 1, Type 2, and Type 3a, respectively; Table S3). ANOVA
indicated that for most of Synechococcus sp. phenotypes, the effect of irradiance on PE was higher
than the effect of temperature. In contrast, the PC and APC content of analyzed phenotypes was more
affected by temperature than by irradiance and by the interaction of both factors (Table S3).

In all the phenotypes, the cell-specific (pg·cell−1) PE, PC, and APC pigment contents were
environmentally driven (Figure 3). The cell-specific PE content increased with decrease of irradiance
and increase of the temperature, reaching the highest values at the intensity of 10 µmol photons m−2 s−1

and temperature 22.5 ◦C (21.16 pg·cell−1 for Type 3a; Figure 3Ca) and 30 ◦C (8.59 pg·cell−1 for
Type 1 and 40.35 pg·cell−1 for Type 2; Figure 3Aa,Ba). Under these conditions, the PE in the
cells of the tested picocyanobacteria increased approximately 20.0-fold, 19.7-fold, and 13.6-fold,
for Type 1, Type 2, and Type 3a, respectively, compared with the observed minimum values at
100–145 µmol photons m−2 s−1 and 15 ◦C.
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Figure 3. Changes in content (pg·cell−1) of PE (a), PC (b), and APC (c) obtained after 14 days of
experiment for three phenotypes of Synechococcus sp.: Type 1 (A), Type 2 (B), Type 3a (C) under different
irradiance (µmol photons m−2 s−1) and temperature (◦C) conditions.

On the basis of the conducted analyzes, it was found that the conditions under which the
Synechococcus sp. Type 1 and Type 2 achieved the highest concentrations of the cell-specific PC were
the low light intensity of 10 µmol photons m−2 s−1 and a high temperature of 30 ◦C. On the other
hand, for Type 3a the maximal value of this pigment was noted at 10 µmol photons m−2 s−1 and
15 ◦C. The highest concentration value of PC pigments under optimal conditions was observed for
Synechococcus Type 1 (20.95 pg·cell−1; Figure 3Ab), and the lowest for Synechococcus Type 2 (4.64 pg·cell−1;
Figure 3Bb). The greatest decrease in cell-specific PC (about 64-fold) was noted for Synechococcus
Type 1. However, the least susceptible to analyzed factors was Synechococcus Type 3a, with a 10-fold
decrease in PC pigments (Figure 3Cb).

The highest cell-specific APC content (4.34 pg·cell−1) was recorded for Synechococcus sp. Type 1
in the 55 µmol photons m−2 s−1 and 30 ◦C (Figure 3Ac). For these light and temperature conditions,
over 18-fold increase was observed in relation to the lowest recorded values at 10 µmol photons m−2 s−1
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and 15 ◦C. For Synechococcus sp. Type 2 and Type 3a the maximum cell-specific APC concentrations
(1.09 pg·cell−1 and 1.98 pg·cell−1, respectively) were recorded at 55−100 µmol photons m−2 s−1 and
22.5−30 ◦C. On the other hand, the minimum values for these phenotypes were obtained at 145 µmol
photons m−2 s−1 and 15 ◦C (0.28 pg·cell−1 for Type 2 and 0.44 pg·cell−1, for Type 3a; Figure 3Bc,Cc).

2.4. Effect of Irradiance and Temperature on Zeaxanthin and β-carotene

On the basis of the results, the effect of irradiance and temperature on changes in individual Car
pigments in the cells of the picocyanobacterial phenotypes was determined. In all the Synechococcus
sp. phenotypes, the cell-specific (pg·cell−1) pigment contents were environmentally driven (Figure 4).
In the most of three tested phenotypes, the cell-specific concentrations of Zea (ANOVA, p < 0.001,
p < 0.001, p < 0.001 for Type 1, Type 2, and Type 3a, respectively) and β-Car (ANOVA, p < 0.001, p < 0.01,
p > 0.05 for Type 1, Type 2, and Type 3a, respectively) were affected by irradiance and temperature
(Table S4). ANOVA indicated that in Type 1 and Type 3a, the effect of temperature on Zea was higher
than the effect of irradiance. In contrast, the Zea content of Type 2 was more affected by irradiance than
by temperature and by the interaction of both factors. It was also noted that for all tested phenotypes,
effect of irradiance on β-Car was not statistically significant (Table S4).
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Figure 4. Changes in content (pg·cell−1) of Zea (a) and β-Car (b) obtained after 14 days of experiment
for three phenotypes of Synechococcus sp.: Type 1 (A), Type 2 (B), Type 3a (C) under different irradiance
(µmol photons m−2 s−1) and temperature (◦C) conditions.

The highest Zea content for Synechococcus sp. Type 2 and Type 3a (1.85 pg·cell−1 and 2.11 pg·cell−1,
respectively) was noted at 100 µmol photons m−2 s−1 and 30 ◦C while the lowest value of this pigment
were 1.02 pg·cell−1 for Type 2 and 0.53 pg·cell−1 for Type 3a at 55 µmol photons m−2 s−1 and 22.5 ◦C
(Figure 4Ba,Ca). Moreover, the highest value of Zea content for Type 1 was found at irradiance 55 µmol
photons m−2 s−1 and 15 ◦C (1.68 pg cell−1) while the minimum Zea content was obtained at 30 ◦C
and 10 µmol photons m−2 s−1 (0.37 pg·cell−1; Figure 4Aa). The highest values of β-Car in Type 2 and
Type 3a were noted at 55 µmol photons m−2 s−1 and 15 ◦C and 30 ◦C (0.32 pg·cell−1 and 0.40 pg·cell−1,
respectively; Figure 4Bb,Cb). In turn, the lowest content of β-Car being found in Type 1 (0.12 pg·cell−1)
at 145 µmol photons m−2 s−1 and 15 ◦C (Figure 4Ab).

2.5. Effect of Irradiance and Temperature on Pigments Ratios

Light and temperature as well as their interaction were found to significantly affect the Zea/Chl a
ratio only in Synechococcus sp. Type 2 (ANOVA, p < 0.001) and the effect of light was higher than
the effect of temperature and the interaction of both factors (Table S5). On the other hand, irradiance
and temperature as well as their interaction significantly affected the β-Car/Chl a ratio in three
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Synechococcus sp. phenotypes (ANOVA, p < 0.001, p < 0.01, and p < 0.001, for Type 1, Type 2, and Type 3,
respectively). ANOVA indicated that in Type 1 and Type 2, the effect of light on β-Car/Chl a ratio was
higher than the effect of temperature. In contrast, the β-Car/Chl a ratio of Type 3a was more affected by
temperature than by irradiance and by the interaction of both factors (Table S5). The highest values of
Zea/Chl a ratio in Synechococcus sp. Type 2, at the 145 µmol photons m−2 s−1 and the temperature of
30 ◦C (2.3; Figure 5Ba) was about 11 times higher than the lowest values observed at the light intensity
of 10 µmol photons m−2 s−1 and 30 ◦C. In turn, the lowest value of Zea/Chl a ratio was noted in Type 3a
under the same light and temperature conditions (0.8; Figure 5Ca). Besides, the highest β-Car/Chl a ratio
was also observed for Synechococcus sp. Type 2, which at the irradiance of 145 µmol photons m−2 s−1,
and the temperature of 15 ◦C was 0.19 (Figure 5Bb). On the other hand, the lowest pigments ratio was
recorded for Synechococcus sp. Type 3a, which under the same light and temperature conditions was
0.14 (Figure 5Cb).
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Figure 5. Changes in Zea/Chl a ratio (a) and β-Car/Chl a ratio (b) obtained after 14 days of experiment
for three phenotypes of Synechococcus sp.: Type 1 (A), Type 2 (B), Type 3a (C) under different irradiance
(µmol photons m−2 s−1) and temperature (◦C) conditions.

Since Phyco pigments participate in the transfer of excitation energy to Chl a in photosystems,
the analysis of changes in these pigments in relation to Chl a and Car was also performed (Table S6).
It was found that irradiance and temperature as well as their interaction significantly affected the
Phyco/Chl a ratio in Synechococcus sp. Type 1, Type 2, and Type 3 (ANOVA, p < 0.001, p < 0.001,
and p < 0.01, respectively) and Phyco/Car ratio (ANOVA, p < 0.001, p < 0.001, and p < 0.001 for
Type 1, Type 2, and Type 3a, respectively). ANOVA indicated that in Type 1 and Type 2, the effect of
temperature on Phyco/Chl a ratio was higher than the effect of irradiance and the interaction of both
factors. In turn, the Phyco/Chl a ratio of Type 3a was more affected by irradiance than by temperature.
For Phyco/Car ratio the effect of temperature for three analyzed phenotypes was higher than the effect
of irradiance and the interaction of both factors (Table S7).

The highest Phyco/Chl a ratio and Phyco/Car ratio were observed for Synechococcus sp. Type 1,
which at the light intensity of 55 µmol photons m−2 s−1 and 10 µmol photons m−2 s−1 and the
temperature of 30 ◦C was 16.5 and 62.5, respectively. Moreover, the highest values of these pigment
ratio in Type 1 was about 33 times and 125 times, respectively higher than the lowest values observed at
the light intensity of 100 µmol photons m−2 s−1 and 15 ◦C. Conversely, for Synechococcus sp. Type 3a the
lowest values of Phyco/Chl a ratio as well as Phyco/Car ratio were found at 10 µmol photons m−2 s−1

and 22.5 ◦C (5.0 and 21.1, respectively) and were about 7 and 21 times higher, respectively, than the
minimums obtained at PAR 100 µmol photons m−2 s−1 and 15 ◦C (Table S6).
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3. Discussion

3.1. Occurrence and Abundance of Picocyanobacteria under Changing Irradiance and Temperature Conditions

Changes in the number of cells of photoautotrophic organisms inhabiting surface waters are
the result of the interaction of several physical and chemical environmental factors [35]. Light and
temperature play a key role in the occurrence of autotrophic picoplankton [32] and are the main
factors causing the appearance of cyanobacteria both at depths and in coastal waters [36,37].
Additionally, light and temperature may be more important abiotic factors influencing the occurrence
of picocyanobacteria than the availability of nutrients [36]. In spring, the number of autotrophic
picoplankton cells begin to increase which is triggered by the temperature increase due to more
intensive insolation of the surface water layers. Their growth reaches its maximum values during
summer [36]. Gławdel et al. [38] showed that in the coastal waters of the southern Baltic Sea during the
summer period, the autotrophic picoplankton, composed mainly of cyanobacteria in the total biomass
exceeded even bacterioplankton. Three phenotypes of picocyanobacteria of the genus Synechococcus
(Type 1, Type 2, and Type 3a) were isolated from the southern Baltic Sea. This area is characterized by
large changes of environmental conditions. Autotrophic organisms living in such a variable ecosystem
show the ability to quickly adapt which is essential for their survival. In this work, the influence of
temperature and PAR irradiance on the autecology of the investigated phenotypes of Synechococcus:
Type 1, Type 2, and Type 3a were demonstrated.

It was found that the increasing intensity of light had a negative effect on the cell concentration of
the three studied phenotypes of Synechococcus sp. The number of picocyanobacteria cells increased as
the PAR irradiance decreased, reaching the maximum value in the range of 10–55 µmol photons m−2 s−1

and the minimum value at 145 µmol photons m−2 s−1. Besides, it was shown that Synechococcus sp.
Type 2 was the most susceptible to high light intensity. Its number of cells was more than 5-fold lower
in high light compared to low light. On the other hand, the cell number decreased about 4-fold in the
high light compared to low light for both Synechococcus sp. Type 1 and Type 3a. Literature data also
indicated that picocyanobacteria of the genus Synechococcus in natural aquatic communities are adapted
to low light and show maximum growth in the deeper layers of the euphotic zone [26,29,33,39,40].
The high abundance of autotrophic picoplankton was recorded even at a depth of 90 m [33]. This may
indicate the ability of these organisms to survive seasonal changes and their fall into the aphotic
zone. Besides, it is considered that Synechococcus sp. found in natural surface water layers may show
photoinhibition of growth under high light [29,39,41] as well as the low rate of photosynthesis in the
surface layer compared to greater depths [33,39]. On the other hand, Śliwińska-Wilczewska et al. [13]
showed that the number of cells of green and brown phenotypes of Synechococcus sp. increased
with the increase in light and was the highest in 280 µmol photons m−2 s−1. Furthermore, Kana and
Glibert [42,43] showed that Synechococcus sp. could occur and grow in the irradiance reaching even
2000 µmol photons m−2 s−1. These studies confirmed that Synechococcus sp. can grow in maximally
coastal waters due to their adaptation to high light intensities. Thus, picocyanobacteria of the genus
Synechococcus can occur both at the near-surface layers and deeper waters. Furthermore, the ability
of Synechococcus to grow in low light intensities and their low photoinhibition in exposure to high
irradiance could give picocyanobacteria an advantage in changeable light-limited waters.

Temperature is also a very important factor controlling picocyanobacteria abundance in aquatic
ecosystems [7,8,37]. Based on the conducted experiments, the influence of increasing temperature
on the number of cells of the studied Synechococcus sp. phenotypes was found. The most favorable
temperature conditions for the growth of Synechococcus sp. Type 1 and Type 2 were at 30 ◦C, while the
highest number of cells for Type 3a was recorded at 22.5 ◦C. The most susceptible to high temperature
was Synechococcus sp. Type 2. Its abundance was more than 5 times higher at 30 ◦C compared to
the abundance recorded at 15 ◦C. On the other hand, for both Synechococcus sp. Type 1 and Type 3a,
the increase in cell numbers along with the increase in temperature was about 4 times greater than that
recorded at the lowest temperature. In laboratory studies, Jodłowska and Śliwińska [44] also found



Cells 2020, 9, 2030 10 of 19

that increasing temperatures from 15 ◦C to 30 ◦C increased picocyanobacterial abundances. Similar
observations were made by Śliwińska-Wilczewska et al. [13] who showed that with an increase in
temperature from 10 ◦C to 25 ◦C, the number of cells of the green, red and brown Synechococcus sp.
phenotype. was increased. Picocyanobacteria prefer high temperature for growth and their temperature
optimum is higher than for eukaryotic phytoplankton organisms [37]. Furthermore, Paerl and
Huisman [45] explained that the global temperature rise would stabilize or even inhibit the eukaryotic
phytoplankton while the number of cyanobacteria would increase. Many cyanobacteria species
demonstrate the highest increase in growth at 30−35 ◦C [46]. Noaman et al. [47] also demonstrated that
the optimum temperature for growth of Synechococcus leopoliensis was 35 ◦C. An increase in temperature
causes an increase in the number of picocyanobacteria cells, and their maximum occurrence was in the
summer period when the water temperature is the highest [48]. This relationship is also apparent for
the entire autotrophic picoplankton [49] and was confirmed by numerous studies [36,50,51]. Regarding
climate change, picocyanobacteria of the genus Synechococcus achieves maximal growth rates at high
temperatures and thus can be promoted by future global warming [7,8].

This study also showed that the analyzed phenotypes of Synechococcus sp.: Type 1, Type 2,
and Type 3a has different growth rates. The highest growth rate was recorded for Synechococcus sp.
Type 1. It was related to the smallest size obtained by these picocyanobacteria [44]. On the other hand,
the lowest growth rate was observed for Synechococcus sp. Type 3a. Additionally, it was shown that
this phenotype reached the largest cell size in cultures [44]. The research conducted by Stal et al. [52]
on PE-rich and PC-rich phenotypes of Synechococcus also showed differences in the rate of cell growth
depending on their size and picocyanobacteria with a larger cell size grew slower. Small cell size of
Synechococcus Type 1 resulting in faster nutrient uptake allows picocyanobacteria to compete effectively
with larger phytoplankton organisms in surface waters. On the other hand, increasing the cell volume
of Synechococcus Type 3a may result in better light absorption at greater depths.

3.2. Changes in Pigments Content and Pigment Ratios under Different Irradiance and Temperature Conditions

Cyanobacteria living in coastal waters are often exposed to changes in light and temperature
conditions. These factors influence the content of cyanobacterial photosynthetic pigments in aquatic
ecosystems [53–57]. The factorial experiments performed in this study showed a negative effect of
the increasing intensity of light on the cell-specific Chl a content for the three examined phenotypes
of picocyanobacteria, obtaining the highest content at 10 µmol photons m−2 s−1 and the lowest for
145 µmol photons m−2 s−1. The conducted factorial experiments also showed a statistically significant
influence of temperature on the cell-specific Chl a content for the examined phenotypes. The highest
concentration of this pigment was observed at 30 ◦C for Synechococcus sp. Type 2 and at 15 ◦C for
Synechococcus sp. Type 1 and Type 3a. The greatest decrease in the cell-specific Chl a content was
noted for Synechococcus sp. Type 2, which under minimal conditions was about 7 times lower than the
recorded under maximum values. On the other hand, Synechococcus sp. Type 3a showed the highest
resistance to high values of irradiance, and its decrease in the content of Chl a in cells under minimal
conditions was about 5.5 times higher than the recorded maximum values. Kana and Glibert [43] also
showed that the concentration of this pigment was the highest for Synechococcus cells adapted to low
light. On the other hand, the greatest decrease in Chl a content was recorded in the light greater than
700 µmol photons m−2 s−1 [42]. High content of Chl a in low light may indicate that picocyanobacteria
of the genus Synechococcus may occur in highly shaded waters [52] and even under conditions of
extreme radiation deficiency [58].

High light intensity is an unfavorable environmental factor for many photoautotrophic
organisms [59]. However, cyanobacteria living in an environment with a high light intensity developed
a defense strategy consisting of special pigmentation of the cells [39,60,61]. Convergence between the
accumulation of Car pigments under the influence of high light intensity allows them to be assigned a
protective role. The highest content of Zea and β-Car was recorded for Synechococcus sp. Type 3a. Zea is
an accessory pigment at low light intensities but becomes dominant for cells growing under higher
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ones [16]. Our research showed that for the examined cyanobacteria cells the amount of Zea was much
higher than that of β-Car. The study found that the Zea content for Synechococcus sp. Type 1, Type 2,
and Type 3a was 93%, 89%, and 87% of the sum of Car pigments, respectively. Guillard et al. [62]
observed that Zea may constitute as much as 50−81% of Car pigments for cyanobacteria of the genus
Synechococcus. The high cell-specific Zea content in the Synechococcus sp. is related to the existence of
these organisms in surface sea waters and places of exposure to high levels of solar radiation [62,63].
The cell-specific Car content of the tested picocyanobacteria phenotypes changed significantly in
response to irradiance increase, which suggests that these organisms reorganize their pigments in
order to protect against the unfavorable environmental conditions.

In this study, the factorial experiments carried out showed a negative effect of irradiance on the
cell-specific PE, PC, and APC as well as the total sum of Phyco pigments content for the three studied
phenotypes of the genus Synechococcus. Moreover, it was shown that the cell-specific content of these
pigments increased with increasing temperature for Type 1 and Type 2. In turn, for Type 3a, a negative
effect of increasing temperature on Phyco content was noted. On the basis of the conducted analyzes,
it was found that the conditions under which the examined phenotypes of picocyanobacteria achieved
the highest concentrations of the total sum of cell-specific Phyco content were at low light intensity
of 10 µmol photons m−2 s−1 and high temperatures ranging between 22.5 and 30 ◦C. The greatest
decrease in Phyco pigments (about 30-fold) in cyanobacteria cells under the influence of increasing light
intensity was noted for Synechococcus Type 1. However, the least susceptible to high irradiance was
Synechococcus Type 3a, with a 13-fold decrease in Phyco pigments. Among all Phyco pigments present
in picocyanobacteria cells, the highest content of PE was observed for Synechococcus Type 2, whereas for
Synechococcus Type 1 PC was the dominant pigment. A study by Kana and Glibert [42,43] also showed
that the concentration of PE and PC were dependent on the intensity of light. The concentration of PC
is related to the number of phycobilisomes [42]. The greatest increase of PC in cells was observed in low
light, suggesting a change in phycobilisome numbers in growth-limiting light [42]. Cyanobacteria of
the genus Synechococcus, depending on the light, can change their number and size of phycobilisomes
and this may be associated with acclimatization to different light levels [42]. Photoaclimatization
is visible when there is a reduction in photosynthetic pigments with increasing irradiance [64–66].
Hence, it may be concluded that the studied Synechococcus sp. phenotypes have a high ability to
photoacclimatize to changing environmental conditions.

Based on conducted experiments, the highest Zea/Chl a ratio and β-Car/Chl a ratio was noted for
Synechococcus sp. Type 2. On the other hand, the lowest ratios of the discussed pigments were recorded
for Synechococcus sp. Type 3a. Tang and Vincent [67] showed that the content of Car and Chl a increases
with increasing temperature. However, carotenoids grow more slowly with temperature, therefore
the Car/Chl a ratio decreases with temperature [67]. Most cyanobacteria show photoinhibition at low
temperatures [68], and an increase in the Car/Chl a ratio at low temperature may result in an increase
in photoprotective pigments such as carotenoids [69,70]. Studies have shown that a high Car/Chl a
ratio is characteristic for surface water populations [16]. In addition, Paerl et al. [71] and Paerl [72]
suggested that a high Car/Chl a ratio has a dual role in cells as it maintains high photosynthetic light
absorption capacity and protects cells from photooxidation which may explain why the deeper-living
PE-rich Synechococcus sp. Type 2 had the highest Zea/Chl a ratio and β-Car/Chl a ratio of all studied
phenotypes. This study also showed an increase in the Phyco/Chl a ratio and Phyco/Car ratio in the
cells of the investigated cyanobacterial phenotypes with a decrease of irradiance and an increase of
temperature. It is related to the advantage of Phyco pigments over Chl a and Car pigments for the
tested picocyanobacteria phenotypes at low light intensity. Furthermore, a change in color from green,
red and brown at low irradiances to bright yellow at high light levels was also observed for three
phenotypes of cyanobacteria of the genus Synechococcus (Type 1, Type 2, and type 3a, respectively).
A clear difference in the color of picocyanobacteria was associated with a change of the proportions
between the pigments. At low light intensity, picocyanobacteria phenotypes showed the maximum
content of Phyco and Chl a pigments. At the highest irradiance, the share of the Car pigments,
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mainly Zea, increased significantly in picocyanobacterial cells. Similar tendencies were observed by
Kana and Glibert [16,42] for picocyanobacteria of the genus Synechococcus. Picocyanobacteria can
acclimate to different light intensities by changing the content of pigments, especially Phyco and
Chl a [73–75]. In this work, we observed the effect of light intensity and temperature on the cell-specific
pigment content of all studied picocyanobacterial phenotypes. The concentration of Phyco and Chl a
was the highest for picocyanobacteria cells acclimated to low light and decreased with increasing
irradiance. Inverse relationships were noted for the cell-specific Car content. The high content of Phyco
pigments and Chl a observed in our work indicated that the tested picocyanobacteria phenotypes are
well adapted to low light conditions and high temperatures. Besides, the highest differences in the
Phyco/Chl a ratio and Phyco/Car ratio were observed in Synechococcus sp. Type 1, which may confirm
that this phenotype showed the best photoaclimatization abilities of all analyzed organisms. Because
this PC-rich phenotype occurs in more productive waters [18,34,76], this observation may be important
in the era of climate change and the associated mass occurrence of Synechococcus sp. in many places
around the world [8,9]. It should be emphasized that Flombaum et al. [8] predicted that the number of
Synechococcus sp. cells would increase by 14% at the end of the 21st century.

4. Materials and Methods

4.1. Culture Conditions

Three different phenotypes of picocyanobacteria from the genus Synechococcus were examined:
BA-120 (Type 2), BA-124 (Type 1), and BA-132 (Type 3a). The strains were isolated from the coastal
zone of the Gulf of Gdansk (the southern Baltic Sea) and maintained as unialgal cultures in the Culture
Collection of Baltic Algae (CCBA) at the Institute of Oceanography, University of Gdańsk, Poland.
Cyanobacteria were cultured on the BG-11 mineral medium [77], which was prepared with water from
the Baltic Sea (salinity 8), which was filtered using 0.45 µm filters (Macherey-Nagel MN GF-5, Dueren,
Germany) and autoclaved.

The cultures of cyanobacteria were acclimatized to the new conditions corresponding to the
incubation conditions of the proper culture. After a week, the culture, which was in the logarithmic
growth phase, was used to establish the proper, experimental culture. After the acclimatization time,
proper cultures with known initial cell numbers were prepared. For this purpose, a specific volume
of inoculum was taken from the actively growing acclimatization culture and added to the sterile
media. The optimal number of the initial proper culture was set at 107 cells in 1 mL of the medium.
The inoculum selected in this way allowed for a constant increase in the number of cyanobacterial
cells without inhibiting logarithmic population growth. The incubation of cultures lasted 14 days.
After that time, for three phenotypes of cyanobacteria of the genus Synechococcus the cell concentration,
the growth rate and photosynthetic pigments were determined. Each variant of the experiment was
conducted in three repetitions and the results of the experiments were presented as an average of
three measurements.

The cultures of the examined cyanobacterial strains were carried out in thermostat under the
following temperature conditions (◦C): 15, 22.5, and 30. The effect of PAR irradiance was tested in
photoperiod (16 h of light and 8 h of darkness) at the following values (µmol photons m−2 s−1): 10, 55,
100, and 145. 36 W Philips fluorescent lamps (Philips Lighting, Amsterdam, The Netherlands) were
used as light sources and two additional 120 W halogen lamps by OSRAM (Osram Licht AG, Berlin,
Germany) were used for the highest irradiance (145 µmol photons m−2 s−1). Measurements of PAR
irradiance were made with Li-Cor (Lincoln, NE, USA), model LI-189 with cosine collector.

It is worth mentioning here that a change in the color of the cultures of three phenotypes of
picocyanobacteria Synechococcus sp. under different light was observed. The phenotypes were shown to
be dark green, red and brown at low irradiance (for Type 1, Type 2, and type 3a, respectively), while in
the high light their color turned to bright yellow. It was also shown that the examined phenotypes
showed differences in PAR absorption spectra when exposed to low and high light (Figure 6).



Cells 2020, 9, 2030 13 of 19
Cells 2020, 9, x FOR PEER REVIEW  13 of 19 

 

 

Figure  6.  Left‐side  panel―photographs  of  the  picocyanobacterial  phenotypes  in  100  mL  glass 

Erlenmeyer flasks: Type 1 (A), Type 2 (B), and type 3a (C), obtained from low (left) and high (right) 

light;  right‐side  panel―Absorbance  spectra  measured  in  the  PAR  range  determined  for  the 

picocyanobacterial phenotypes at an optical density (OD750) = 0.1, obtained from low light (LL) and 

high light (HL). 

4.2. Calculation of Cell Density and Growth Rates 

Cell  density was  calculated  using  linear  regression models  based  on  cell  concentration  (N 

mL−1) and optical density (OD) at 750 nm [44]. Calculation of the cell number was conducted using 

the procedure described by Guillard and Sieracki [78], with a light microscope (Nikon Eclipse 80i, 

Nikon,  Tokyo,  Japan)  and  the  Bürker  counting  chamber.  To  determine  the  growth  rate  of 

cyanobacteria, cell counts were conducted in cultures at two‐day intervals from inoculation to the 

14th day of culture. Based on these data the parameters characterizing the growth of cyanobacterial 

cells in the logarithmic phase: growth rate coefficient and cell doubling time were determined [78]. 

4.3. Determination of the Chlorophyll and Carotenoids Content 

The concentration of photosynthetic pigments of analyzed picocyanobacteria was measured by 

the HPLC method. After 14 days of incubation, 40 mL of culture was filtered using 0.45 μm filters 

(Macherey‐Nagel MN GF‐5)  to  separate  the picocyanobacteria  cells  from  the medium. Chl  a and 

Car were extracted from the picocyanobacteria cells with 90% acetone (V = 5 mL) and sonicated for 

2 min. Then,  the  test‐tube with  the extract was held  in  the dark  for 2 h at  −80  °C. After 2 h,  the 

pigment extract was  centrifuged at 10,000  rpm  for 5 min  to  remove  filter particles  (Sigma 2‐16P, 

Osterode am Harz, Germany). 

Chromatographic  analyses  were  carried  out  using  HPLC  equipment  of  Waters  company 

(Waters Chromatography Europe BV, Etten‐Leur, The Netherlands) equipped with: Spectro Vision 

FD‐300  fluorescence detector, Waters  486 absorption detector, Pharmacia  autosampler LKB  2157, 

Waters Millennium Chromatography software. Measurements of pigment absorption were taken at 

Figure 6. Left-side panel—photographs of the picocyanobacterial phenotypes in 100 mL glass
Erlenmeyer flasks: Type 1 (A), Type 2 (B), and type 3a (C), obtained from low (left) and high (right) light;
right-side panel—Absorbance spectra measured in the PAR range determined for the picocyanobacterial
phenotypes at an optical density (OD750) = 0.1, obtained from low light (LL) and high light (HL).

4.2. Calculation of Cell Density and Growth Rates

Cell density was calculated using linear regression models based on cell concentration (N mL−1)
and optical density (OD) at 750 nm [44]. Calculation of the cell number was conducted using the
procedure described by Guillard and Sieracki [78], with a light microscope (Nikon Eclipse 80i, Nikon,
Tokyo, Japan) and the Bürker counting chamber. To determine the growth rate of cyanobacteria,
cell counts were conducted in cultures at two-day intervals from inoculation to the 14th day of culture.
Based on these data the parameters characterizing the growth of cyanobacterial cells in the logarithmic
phase: growth rate coefficient and cell doubling time were determined [78].

4.3. Determination of the Chlorophyll and Carotenoids Content

The concentration of photosynthetic pigments of analyzed picocyanobacteria was measured by
the HPLC method. After 14 days of incubation, 40 mL of culture was filtered using 0.45 µm filters
(Macherey-Nagel MN GF-5) to separate the picocyanobacteria cells from the medium. Chl a and Car
were extracted from the picocyanobacteria cells with 90% acetone (V = 5 mL) and sonicated for 2 min.
Then, the test-tube with the extract was held in the dark for 2 h at −80 ◦C. After 2 h, the pigment extract
was centrifuged at 10,000 rpm for 5 min to remove filter particles (Sigma 2-16P, Osterode am Harz,
Germany).

Chromatographic analyses were carried out using HPLC equipment of Waters company (Waters
Chromatography Europe BV, Etten-Leur, The Netherlands) equipped with: Spectro Vision FD-300
fluorescence detector, Waters 486 absorption detector, Pharmacia autosampler LKB 2157, Waters
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Millennium Chromatography software. Measurements of pigment absorption were taken at 440 nm.
Pigment separation was carried out according to a method proposed by Llewellyn and Mantour [79],
with modifications [80] at room temperature on Vydac 201TP (C18) column 250 mm long. As an eluent
A; 0.5 M ammonium acetate/methanol (20/80) was used and as eluent B; acetone/methanol (20/80) was
used. Before injection of pigments extract (40 µL) the column was conditioned using an isocratic flow of
eluents (40% A and 60% B) for 15 min. The analysis was performed at a flow rate of 1.0 mL min−1. Chl a,
Zea, and β-Car standards were used for the qualitative and quantitative determination of pigments
(The International Agency for 14C Determination, VKI, Hørsholm, Denmark). The pigments present in
the cells of cyanobacteria strains of the genus Synechococcus were identified based on retention times
and absorbance spectrum, which were compared with the standards. Calibration curves were plotted
for each standard used to quantify assimilation pigments.

4.4. Determination of the Phycobiliproteins Content

The 40 mL of the test material was filtered through a 0.45 µm filter (Macherey-Nagel MN GF-5)
and stored in −80 ◦C. Reagent for phycobiliprotein extraction contained 0.25 M Trizma Base, 10 mM
binary EDTA and 2 mg mL−1 lysozyme. A pH of 5.5 was obtained by acidifying with concentrated
HCl. The filters were homogenized in 5 mL of reagent, sonicated for 5 min and incubated first in the
dark at 37 ◦C for about 2 h, then at 1.5 ◦C for about 20 h. After this time the pigment extract was
centrifuged in experimental flasks for 10 min, at 10,000 rpm. Absorption measurements in 1 cm glass
cuvettes on Beckman spectrophotometer (Indianapolis, IN, USA), model DU 530, at wavelengths (nm):
565, 620, 650 and 750, were conducted. The pigment contents: PE, PC, and APC were calculated based
on Bennett and Bogorad [81] and Bryant et al. [82].

4.5. Statistical Analyses

To test the influence of a single factor as well as an interplay of factors on studied parameters the
two-way ANOVA was used. Moreover, to determine the significance of treatment levels a post hoc test
(Tukey’s HSD) was conducted. The impact of every environmental agent, as well as an interplay of
factors on studied parameters, were measured using the method of orthogonal polynomial tables as
described by Fisher and Yates [83]. Furthermore, to describe the connection of the factors and studied
parameters regression equations were generated. Data are described as the mean ± standard deviation
(SD). Levels of significance were * p < 0.05, ** p < 0.01, and *** p < 0.001. The statistical analyses were
executed using the Statistica® 13.1 software (StatSoft Polska, Cracow, Poland).

5. Conclusions

In this work, we found that the three analyzed phenotypes of the genus Synechococcus have
diverse irradiance and temperature preferences. This, coupled with their high photoacclimation
capabilities give them powerful tools to win the competition for the marine resources and provide
them opportunity to dominate the area, at least as long as sufficient nutrient amounts are available.
In almost all conditions the highest rate of growth was recorded for the Synechococcus sp. Type 1 which
is the most competitive type. It prefers warmer waters −22.5 ◦C and above, but it produces the least
nominal amounts of Car which is a probable cause of equalisation of the growth rates between the
Type 1 and Type 2 at the highest irradiances and at the mentioned temperatures over 22 ◦C. The lowest
growth rates were observed for the Type 3a for all variants. However, Type 3a was recognized to be less
temperature sensitive and rather light-driven. Moreover, at low light and low temperature the highest
pigment content was observed within the cells Type 3a which may suggest higher tolerance for colder
waters such as tested here 15 ◦C or even below. The highest total pigment content per cell was recorded
at 10 µmol photons m−2 s−1 at all temperature variants with the clear dominance of phycobilins among
all the pigments. The high pigment content observed in picocyanobacteria cells proves that they may
adapt and live in the deeper layers of the euphotic zone. The highest amounts of carotenoids were
produced by Type 2. This may imply lower tolerance of this type to higher irradiance. Our results
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showed that the best photoaclimation abilities of all analyzed Synechococcus sp. types is Type 1 with
the highest differences in the Phyco/Chl a and Phyco/Car ratios. One of our striking observations is a
significant difference between the physiological responses of different Synechococcus sp. phenotypes
to changeable environmental conditions. Thus, this work would be an important link in forecasting
future changes in the occurrence of these organisms in the context of global warming.
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Table S1: Two-way factorial ANOVA of cells concentration measured in Synechococcus sp. Type 1, Type 2,
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freedom; F—Fisher’s F-test statistic; Mss—mean sum of squares; Ss—sum of squares. Levels of significance
were: * p < 0.05; ** p < 0.01; *** p < 0.001, Table S2: Two-way factorial ANOVA of cell-specific Chl a, Phyco,
and Car content measured in Synechococcus sp. Type 1, Type 2, and Type 3a growing at different temperatures
(◦C) and irradiance (µmol photons m−2 s−1): df—degrees of freedom; F—Fisher’s F-test statistic; Mss—mean
sum of squares; Ss—sum of squares. Levels of significance were: * p < 0.05; ** p < 0.01; *** p < 0.001, Table S3:
Two-way factorial ANOVA of cell-specific PE, PC, and APC content measured in Synechococcus sp. Type 1, Type
2, and Type 3a growing at different temperatures (◦C) and irradiance (µmol photons m−2 s−1): df—degrees of
freedom; F—Fisher’s F-test statistic; Mss—mean sum of squares; Ss—sum of squares. Levels of significance were:
* p < 0.05; ** p < 0.01; *** p < 0.001, Table S4: Two-way factorial ANOVA of cell-specific Zea and β-Car content
measured in Synechococcus sp. Type 1, Type 2, and Type 3a growing at different temperatures (◦C) and irradiance
(µmol photons m−2 s−1): df—degrees of freedom; F—Fisher’s F-test statistic; Mss—mean sum of squares; Ss—sum
of squares. Levels of significance were: * p < 0.05; ** p < 0.01; *** p < 0.001. Table S5: Two-way factorial ANOVA
of Zea/Chl a ratio and β-Car/Chl a ratio measured in Synechococcus sp. Type 1, Type 2, and Type 3a growing at
different temperatures (◦C) and irradiance (µmol photons m−2 s−1): df—degrees of freedom; F—Fisher’s F-test
statistic; Mss—mean sum of squares; Ss—sum of squares. Levels of significance were: * p < 0.05; ** p < 0.01;
*** p < 0.001, Table S6: The Phyco/Chl a ratios and Phyco/Car ratios obtained after 14 days of experiment for three
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(µmol photons m−2 s−1) conditions, Table S7: Two-way factorial ANOVA of Phyco/Chl a ratio and Phyco/Car ratio
measured in Synechococcus sp. Type 1, Type 2, and Type 3a growing at different temperatures (◦C) and irradiance
(µmol photons m−2 s−1): df—degrees of freedom; F—Fisher’s F-test statistic; Mss—mean sum of squares; Ss—sum
of squares. Levels of significance were: * p < 0.05; ** p < 0.01; *** p < 0.001.
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