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Abstract: miRNAs constitute a family of small RNA species that have been demonstrated 

to play a central role in regulating gene expression in many organisms. With the advent of 

next generation sequencing, new opportunities have arisen to identify and quantify miRNAs 

and elucidate their function. The unprecedented sequencing depth reached by next 

generation sequencing technologies makes it possible to get a comprehensive miRNA 

landscape but also poses new challenges for data analysis. We provide an overview of 

strategies used for miRNA sequencing, public miRNA resources, and useful methods and 

tools that are available for data analysis.  
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1. Introduction  

microRNAs (miRNAs) are small RNA molecules of 17 to 24 bp that play an important role in the 

regulation of gene expression by modulating translation and stability of mRNA. Next generation 

sequencing technologies have enabled sequencing of the complete set of miRNAs present in an RNA 

sample. The data obtained from such sequencing experiments can be used to characterize miRNA 

expression and function by expression profiling, identification of sequence isoforms, prediction of 
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novel miRNAs, and prediction of potential mRNA target molecules. In this review, we address the 

basic data processing steps that are involved in miRNA sequencing experiments and give an overview 

of available methods to perform the respective type of data analysis. Furthermore, we list public 

miRNA resources that provide useful information for the analysis of miRNA sequencing experiments. 

We restrict the description of the technical details of miRNA sequencing to the Illumina Genome 

Analyzer platform, but the data analysis strategies are similar for other available next generation 

sequencing technologies and will differ only in technical details of the initial data processing. 

2. The Biology of miRNAs 

miRNAs as well as short interfering RNAs (siRNAs) mediate RNA interference (RNAi) by binding 

to the 3’-UTR of target mRNAs either resulting in repressed translation or mRNA decay [1-3]. This 

endogenous regulation system is mediated by incomplete complementarity between the miRNA and 

the mRNA target sequence. miRNAs modulate cell function in all tissues and control development and 

differentiation. Furthermore they are part of a large variety of signaling cascades and can also alter the 

cell cycle (for review, see [2]).  

About 40% of all known miRNAs are encoded in intronic sequences [3]. The rest is either coded in 

intergenic regions or organized in clusters. The primary transcript of a miRNA gene (pri-miRNA) can 

be over 1kb long and has a 5’-Cap and a Poly-A-tail [1] (Figure 1). The pri-miRNA possesses one or 

more miRNA-containing stemloops. A microprocessor complex comprising a class II 

endoribonuclease III Drosha cuts the pri-miRNA into a shorter (60-70bp) precursor miRNA (pre-

miRNA) [4]. After the precursor is actively transported into the cytoplasm another endoribonuclease 

Dicer cuts off the loop region and produces a ~22 bp long double stranded RNA, which contains the 

mature miRNA and its complementary strand called miRNA* [5]. Although in most cases the 

miRNA* is degraded when the miRNA is incorporated in an effector complex, it has been suggested 

that the miRNA* can act as a miRNA as well [6]. Generally, miRNA* is found less frequently in the 

sequencing data than the mature miRNA [7]. The effector complex contains members of the Argonaute 

protein family and several other factors, which together build an isoform of the RNA-Induced 

Silencing Complex (RISC) (for review, see [2]). By binding of this ribonucleoprotein complex 

mediated by the miRNA to target sequences in the 3’-UTR of an mRNA, translation is repressed. It has 

been shown that a high complementarity between the 2
nd

 and 8
th

 base at the 5’-end of the miRNA and 

the binding site of the mRNA is crucial for the function of the miRNA [8]. This region of the miRNA 

is known as seed region and is conserved across species and within miRNA families. The conservation 

of the seed region is the basis for many target prediction algorithms. 

3. Next Generation Sequencing of miRNAs using the Illumina Genome Analyzer 

The “wet-lab” part of miRNA sequencing comprises several steps. First, the total RNA is extracted 

from the sample (Figure 2). For the preparation of the RNA either a spin column based kit like 

miRVana (Ambion) or miRNeasy (Qiagen), which allow also preparation of the small RNA fraction 

can be used, or TRIzol preparation following ethanol precipitation can be performed. Standard column 

based RNA preparation kits common for mRNA preparation should be avoided because this normally 

leads to the loss of smaller RNA molecules. Furthermore, it is useful to not only isolate the small 
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RNAs because in this case the rRNA fraction cannot be used for an RNA integrity analysis. It is 

essential to confirm the quality of the RNA before sequencing to make sure that biologically relevant 

oligonucleotides are sequenced and degradation products do not influence the results. To extract the 

miRNA fragments from the total RNA, a size selection is performed: the total RNA is run on an 

agarose gel and the band corresponding to the size of miRNAs is cut out for further processing. This 

procedure excludes all bigger fragments, including all mRNAs and also rRNAs from the samples. In 

the next step, the sequencing adapters are ligated to the size-selected RNA molecules, followed by 

reverse transcription to cDNA. The thus obtained cDNA library is run on an agarose gel again and the 

band containing the molecules corresponding to the miRNA fragments with ligated adapters is cut out 

for subsequent sequencing. To avoid contamination with adapter dimers in this step, an additional 

control sample, containing adapter dimers only and a size ladder allowing the isolation of cDNA 

species larger than adapter dimers is run in parallel to the cDNA library.  

Figure 1. miRNA maturation. The primary miRNA transcript is processed by the 

endoribonuclease Drosha. Thus generated precursor miRNAs are transported into the 

cytoplasm and cut into 24 bp fragments by Dicer. After the double stranded 

miRNA::miRNA* fragment is loaded into the RNA Induced Silencing Complex (RISC) 

the miRNA* is degraded. The RISC containing the mature miRNA binds a target mRNA 

to inhibit translation either by repression of translation or by mRNA degradation. 
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4. Basic Data Processing Steps 

The output of a next generation miRNA sequencing experiment will typically contain millions of 

short reads. Before specific research questions can be addressed, several basic data preprocessing steps 

have to be performed to extract the relevant information from these raw data. 

Figure 2. Schematic of the miRNA sequencing procedure on the Illumina Genome 

Analyzer. a) Extraction of total RNA, b) Size selection, c) Adapter ligation and reverse 

transcription, d) Size selection, e) Sequencing. 
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4.1. Quality Filtering and Alignment to a Reference Genome  

The reads from a next generation sequencing experiment are commonly provided as textfiles in 

FASTQ format. Such files contain four lines per read: the first line contains the “@” symbol followed 

by a (unique) read identifier; the second line contains the read's nucleotide sequence; the third line 

again contains the read identifier, this time preceded by the “+” symbol, or just a plain “+”, and the 

fourth line contains quality scores that specify the probability that the nucleotide call is wrong for each 

nucleotide in the read sequence [9]. Missing nucleotides in the sequence are usually denoted by the 

“N” character. Based on the quality scores, an initial filtering step can be performed to exclude reads 

of low quality as well as reads that contain too many missing nucleotides. However, most erroneous 

reads will be filtered out by one of the following data processing steps anyway, so that in many cases 

such initial quality filtering can be skipped. 

A minimum requirement for each sequence is that the read should originate from the genome of the 

sequenced organism. This is particularly relevant when for instance the experimental organism is co-

cultivated with a feeder organism. Therefore, as an initial step, all produced reads are aligned to the 

reference genome of the sequenced organism and all reads whose first part (15 to 17 bp to allow for 

sequence isoforms that show single-nucleotide 3' extensions [10]) perfectly matches the reference are 

kept as potential miRNA reads. The remaining reads are discarded from further analysis. For this 

alignment step it is convenient to use a short read aligner like maq [11], soap [12,13], eland (part of the 

Illumina Pipeline Software), or bwa [14] that readily identify perfect matches at much higher speed 

than the more versatile aligners like blast [15] or megablast [16]. Note that some of the short read 

aligners consider reads that match the reference at several positions to be repeats and do not report 

such alignments by default. This has to be prevented by adequate parameter settings in order to avoid 

the loss of relevant reads. Table 1 summarizes commonly used software and database tools for the 

various analysis steps described in this review. 

To directly identify known miRNAs, sequences can be aligned with those of annotated miRNAs. 

An up to date list, which is commonly used for miRNA experiments is provided by miRBase [17] for 

many different organisms.  

4.2. Removal of 3' Sequencing Adapter 

The sequence reads start at the first base after the 5' sequencing adapter (i.e., the first base of the 

original cDNA molecule) and in Illumina sequencing typically end after 36 bp. As mature miRNAs are 

normally only up to 24 bp in length, the reads will contain part of the 3' adapter sequence that has to be 

removed. Tools for this purpose include the trimLRPatterns function contained in the Bioconductor 

Biostrings package [18] for the R programming language [19] and a BioPerl script (available at 

http://www.bioperl.org/wiki/Removing_sequencing_adapters). The novoalign alignment software 

(http://novocraft.com) has an option to automatically trim adapter sequences from the reads. It is also 

convenient to align all reads against the adapter sequence using a flexible aligner like lastz or 

megablast [16] and use the alignment information to trim the adapter sequence off the reads. This 

strategy is preferable particularly if there are reads in the data that were sequenced through the 

complete 3' adapter and carry additional “tails” of unknown or highly error-prone sequence after the 
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adapter sequence (typically occurring when longer reads of 50 bp and more are produced). In this case, 

the available tools for adapter trimming frequently miss the adapter sequence whereas aligners will 

reliably detect it.  

Table 1. miRNA Online Resources and Tools. 

1. Alignment Tools 

lastz  http://www.bx.psu.edu/miller_lab/ Flexible alignment tool 

megablast [16] http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=

Web&PAGE_TYPE=BlastDocs 

&DOC_TYPE=Download 

Flexible alignment tool 

 

maq [11] http://maq.sourceforge.net/maq-man.shtml Short read aligner 

soap [12,13] http://soap.genomics.org.cn/ Short read aligner 

bwa [14] http://bio-bwa.sourceforge.net/ Short read aligner 

2. miRNA Analysis Tools 

miRExpress [20] http://mirexpress.mbc.nctu.edu.tw/index.php miRNA expression profiling 

miRDeep [21] http://www.mdc-

berlin.eu/en/research/research_teams/ 

systems_biology_of_ 

gene_regulatory_elements/ 

projects/miRDeep/index.html 

miRNA prediction tool from 

sequencing datasets 

miRTools http://centre.bioinformatics.zj.cn/mirtools/  miRNA profiling and discovery 

2. miRNA Target Prediction Tools 

TargetScan [22] http://www.targetscan.org/ Online software for microRNA 

target identification 

PicTar [23] http://www.mdc-

berlin.eu/en/research/research_teams/systems

_biology_of_ 

gene_regulatory_elements/projects/pictar/inde

x.html 

Algorithm for miRNA target 

prediction  

miRanda [24] http://www.microrna.org Algorithm for miRNA target 

prediction 

DIANA microT [25] http://diana.cslab.ece.ntua.gr/ Online software for microRNA 

target identification 

RNAHybrid [26] http://bibiserv.techfak.uni-

bielefeld.de/rnahybrid 

Algorithm for miRNA target 

prediction 

miTarget [27] http://cbit.snu.ac.kr/~miTarget Algorithm for miRNA target 

prediction 
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Table 1. Cont. 

2. miRNA Target Prediction Tools 

microRNA.org [28] http://www.microrna.org/microrna/home.do Prediction of targets and 

expression 

mirWIP [29] http://146.189.76.171/query.php Algorithm for miRNA target 

prediction 

MicroCosm Targets 

[17] 

http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/ 

miRNA target prediction 

(formerly miRBase Targets) 

miRecords [30] http://mirecords.biolead.org/ Database for validated and 

predicted miRNA targets 

3. Databases 

mirBase [17] http://www.mirbase.org/ Database for miRNA research 

deepBase [31] http://deepbase.sysu.edu.cn/ platform for next generation 

miRNA data analysis 

TarBase [32] http://diana.cslab.ece.ntua.gr/tarbase/ Database for known 

interactions between miRNA 

and target mRNAs 

miR2Disease [33] http://www.mir2disease.org/ Resource of miRNA 

deregulation in various human 

diseases 

PMRD [34] http://bioinformatics.cau.edu.cn/PMRD/ Plant miRNA database 

4. General Tools  

R [19] http://cran.r-project.org/ Free software environment for 

statistical computing and 

graphics 

Perl http://www.cpan.org/ Programming language 

Vienna Package [35] http://www.tbi.univie.ac.at/RNA/ RNA secondary structure 

prediction 

 

4.3. Filtering of Other RNA Species 

In addition to reads of mature miRNAs, the sequence data will most probably also contain reads 

from various other RNA species, including other non coding small RNA species and RNA degradation 

products. It is reasonable to filter out reads that align against such sequences prior to further 

downstream analysis in order to simplify the interpretation of the results. The sequences of such small 
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RNA species like rRNA, small cytoplasmic RNA, small nuclear RNA, small nucleolar RNA, tRNA 

and protein coding regions can be found on the University of Santa Cruz (UCSC) Genome Browser. 

5. Expression Profiling 

A topic that is frequently addressed by miRNA sequencing is the quantitative comparison of 

miRNA expression in two or more samples. For this purpose, expression levels are computed based on 

the read counts in each sequenced sample. For each unique sequence among the reads, the number of 

times it occurs among all the reads of the sample is computed and normalized against the total number 

of reads that were produced for the sample. A common way to do this is to compute the rpm (Reads 

Per Million) value of each sequence s occurring in the sample according to the following formula.  

 

In theory, these normalized read counts should be a direct measure for the amount of fragments of 

the respective sequence in the sample and therefore its expression level. However, it has been shown 

that the fragment composition of the sample is significantly altered depending on the methods used for 

RNA extraction and library preparation [36]. The absolute normalized read counts are therefore not 

representatives of expression levels. As in microarray analysis, the analysis is limited to relative 

comparisons of normalized read counts between samples to detect expression changes.  

Prior to performing expression analysis, sequencing errors have to be removed. On the Illumina 

Genome Analyzer platform, single base substitution errors are the main concern. Assuming that the 

errors occur at random positions of the sequence and the substituted nucleotide is also selected 

randomly, sequences containing errors are expected to have low read counts. Indeed it has been shown 

that when looking at the distribution of read counts of all reads there is a big proportion found less than 

1-10 times [37]. Filtering out all sequences with read counts less than a low threshold in each sample is 

therefore a common strategy to eliminate sequencing errors. Usually, the threshold that is used for this 

filtering step is chosen arbitrarily. In [37], the authors suggest a statistical method to determine the 

threshold automatically. They iteratively compare the cumulative distribution functions of read 

frequencies between replicate samples for different thresholds until the similarity between the 

distributions is satisfyingly high. To determine differentially expressed sequences, the established 

methods from the analysis of microarray data are then used on the filtered sequences. These include 

the computation of fold-changes if the experiment contains only two samples, the two-sample t-test if 

the experiment contains two groups of samples, or ANOVA if three or more groups of samples are 

involved. In order to approximate the normality assumption that underlies most of the statistical 

methods mentioned above, the logarithmized normalized read counts should be used for these 

analyses. A freely available tool that performs such kinds of expression analyses is miRExpress [20]. 

MirTools and deepBase [31] offer web-based platforms for next generation miRNA data analysis that 

also include expression analysis. 

The sequencing results can be verified performing quantitative real-time PCR. Since miRNAs are 

only about ~22 bp long they cannot be detected in a normal RT-qPCR, thus special approaches have 

been developed for this purpose. TaqMan® MicroRNA Assays from AppliedBiosystems are using 
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miRNA-specific stemloop primers for reverse transcription of the miRNAs followed by qPCR using 

primers and TaqMan® MGB probe specific for the respective small RNA. In this case a reverse 

transcription reaction for each miRNA to be detected in a sample needs to be performed. However, if 

several miRNAs are to be detected in one sample another technique, which elongates small RNAs 

during the reverse transcription, is recommendable. One example for such a product is miScript from 

Qiagen. During reverse transcription RNAs are polyadenylated and transcribed into cDNA using oligo-

dT primers and random primers. The oligo-dT primers have a universal tag sequence on the 5'-end, 

which allows amplification of the small RNAs during qPCR. miRNA specific forward primers (which 

are in most cases identical to the respective miRNA) and miScript universal reverse primers targeting 

the universal tag are used in a SYBR Green real-time PCR to quantify the respective miRNA in the 

samples. Furthermore, small RNAs that are not differentially regulated in all samples should be taken 

for normalization. Often the U6 RNA or the 6S rRNA are recommended for this purpose but unaltered 

expression of these molecules in the sequencing results should be verified and furthermore the CT of 

the control RNA in the different samples after qPCR should be compared. 

6. Identification of Isoforms 

Within the data obtained from a next generation miRNA sequencing experiment, many sequences 

will typically occur that are identical for all but a few nucleotides. Such sequences might represent 

different isoforms of the same miRNA. Different types of miRNA isoforms have been described 

before, including isoforms that may arise from variability of Dicer and Drosha cleavage positions 

within the pre-miRNA and isoforms showing single-nucleotide 3' extensions leading to mismatches 

with the reference genome [10]. The origin and function of such isoforms is poorly understood up to 

now but their presence suggests as yet unknown cellular mechanisms of miRNA processing. When 

analyzing miRNA sequencing experiments, isoforms can complicate the analysis process as well as the 

interpretation of the results. In expression analysis, for example, it is not immediately clear which of 

the different isoforms should be used in the expression comparison, especially if the expression 

changes of different isoforms show contrary behavior. Currently, it is common practice to consider 

only the isoform with the highest read count which seems to be a reasonable strategy for now but the 

handling of isoforms deserves greater attention in the future.  

7. Prediction of novel miRNAs 

A number of tools are available that aim at predicting novel miRNAs from next generation 

sequencing data. The predictions made by these tools are generally based on the current biological 

knowledge of the miRNA processing mechanism in living cells. One of the most commonly used 

prediction tools is mirDeep [21] that specifically looks for the pattern the miRNA processing 

mechanism leaves in the sequencing data. The most important pattern in this context that miRDeep 

considers are clusters of reads that align along the reference genome in a fashion that is compatible 

with the mature miRNA sequence – loop sequence – star sequence structure (Figure 1) of the miRNA 

precursor molecule as shown in Figure 3. If such a pattern is found, miRDeep cuts out the potential 

miRNA precursor sequence from the reference genome and utilizes an RNA folding algorithm from 

the Vienna Package [35] to judge whether the sequence can be folded into a hairpin structure. 
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Furthermore, the prediction software searches for potential cleavage sites of Drosha and Dicer. The 

phylogenetical conservation and filtering of other known small non-coding RNA species can be 

optionally used to improve the predictions. To confirm the presence of the predicted miRNA in the 

sample quantitative real-time PCR can be performed using the protocols described in 5. Expression 

Profiling.  

Figure 3. Alignment pattern expected from miRNA processing (Adapted from [38]). 

 

 

8. Prediction of miRNA Targets 

The prediction of the mRNAs that are targeted by known or novel miRNAs is based on 

comparisons between the sequences of mature miRNAs and sequences of mRNA candidate targets. 

miRNAs bind to the 3' UTR of their mRNA target which triggers the repression of translation or the 

degradation of the mRNA depending on the complementarity between the target and the miRNA [3]. 

High complementarity between the binding region of the target and the miRNA normally leads to the 

degradation of the target, whereas mismatches in the binding region lead to translational repression.  

The tools that are available for miRNA target prediction seek putative binding sites in the 3' UTRs 

of the candidate mRNAs taking into account the seed region of the miRNA and the conservation 

between species. Many of the algorithms, like microRNA.org [28] or TargetScan [22] also allow 

searching for putative binding miRNAs for given mRNA sequences. Additional algorithms for miRNA 

target predictions include PicTar [23], RNAHybrid [26], miTarget [27] or DIANAmicroT [25]. Since 

all these programs are slightly different each of them will predict a different group of target mRNAs 

and a different probability that an mRNA might be a target of a respective miRNA. These deviations in 

target predictions emphasize the importance of experimental target verification. 

For target prediction all known transcripts of the sequenced organism can be used as the set of 

candidate mRNAs. However, as a given miRNA might regulate different sets of target mRNAs 

depending on biological context, i.e., tissue specificity or in dependence on signaling events, it has 

proven useful to compare miRNA expression to mRNA expression analysis. As the target mRNA is 

typically degraded upon miRNA binding, an inverse correlation between miRNA and target mRNA 

abundance is expected. The limitation of this approach is that miRNAs often rather modulate the 

abundance of mRNAs or even inhibit translation as opposed to promoting mRNA degradation. 

Consequently, mRNA expression data might be insufficient or even misleading when used for the 

identification of miRNA targets.  

When predicting targets it is important to consider that one mRNA molecule might contain several 

binding sites for one or more miRNAs and, furthermore, a single miRNA might regulate several 
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targets. The complexity of mRNA-miRNA interactions thus poses challenges to target predictions 

from sequencing data.  

In addition to the available software for miRNA target prediction, there are also databases where 

both predicted and experimentally confirmed miRNA targets are collected. A useful tool to analyze 

known interactions between miRNA and target mRNAs is provided by TarBase [32]. This database 

allows searches based on miRNA, gene and organism. As output it shows whether the specific mRNA 

is cleaved or repressed by the binding of the miRNA under study. Furthermore, it offers information 

about the validity of the miRNA-mRNA interaction by classifying the interaction as TRUE when 

reduced protein levels have been shown, FALSE when the target gene expression remained unaffected, 

WEAK when only a low downregulation could be observed or pSILAC/MicroArray when the 

interaction has been concluded from high-throughput experiments only. In addition to the number of 

miRNA-mRNA interaction sites present in the respective 3’-UTR it provides further information about 

the miRNA and mRNA expression and outcomes of deregulation. 

The MicroCosm Targets database hosted by EBI contains predicted miRNA targets for the miRBase 

[17] miRNA sequences. It currently contains predicted miRNA targets for 22 species. Initial target 

predictions are obtained using the miRanda software [24] followed by inspection of folding properties 

(computed by the Vienna Package [35]) and conservation across species.  

Another database containing both predicted and validated targets for currently 9 species is 

miRecords [30]. It contains miRNA target predictions obtained from 11 different target prediction 

tools. A database especially dedicated to miRNAs in plants is PMRD [34]. It not only contains miRNA 

sequences and targets but also expression profiles from several published studies. Figure 4 summarizes 

the general data analysis workflow of a miRNA next generation sequencing experiment as described in 

this paper. 

Figure 4. General data analysis workflow of a miRNA next generation sequencing experiment. 
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9. Potential and Limitations of Next Generation Sequencing Compared to Microarray and pPCR 
Analysis 

Prior to the availability of deep sequencing technologies, microarrays were used for expression 

analyses of miRNAs. A study using artificial miRNA pools with known RNA fragment concentrations 

showed a high correlation between expression values derived from microarray and deep sequencing 

[39]. While microarrays were found to better reproduce the fragment concentrations in the artificial 

pools, deep sequencing technologies have the advantage that novel sequences can be detected while 

microarrays can only interrogate fragments of known sequence. The advantage of next generation 

sequencing platforms over microarray hybridization techniques is their enormous sensitivity and 

dynamic range gained by the high sequencing depth. Even fragments that occur only a few times in the 

library will be visible in the data and the read counts do not show the saturation effects common to 

microarray derived expression values.  

For the detection of differential expression between different samples, everything points to 

differences in sensitivity and reproducibility of data [40]. The comparison of deep sequencing-based 

expression analysis with different microarray platforms showed not only a higher sensitivity in the 

detection of transcripts with low expression but also higher expression changes are found by a 

sequencing approach. Furthermore, every cDNA fragment produces exactly one read so cross 

hybridization effects do not occur and even fragments that differ by a single nucleotide can be 

distinguished. Thus, highly similar sequences like miRNA family members can be distinguished by 

sequencing in contrast to microarray or qPCR experiments. Generally the discrimination of mature and 

unprocessed forms of miRNAs is a problem miRNA qPCR assays and microarrays are dealing with. 

By contrast miRNA family members, precursors as well as miRNA modifications can be easily 

identified by deep sequencing. Also the short length of miRNAs displays a problem for microarray and 

qPCR design. Often the entire miRNA sequence must be used as a probe for hybridization. Because of 

this there are variations in the melting temperature between the different probes. Next generation 

sequencing is independent of predesigned probes, thus making it very suitable for the discovery of new 

miRNAs. Nevertheless, deep sequencing is a relatively novel approach and the associated 

computational analysis tools are still in their infancy and need to be improved to standardize 

normalization, mapping and thresholding. 

10. Conclusions and Perspectives 

miRNAs have been shown to regulate a host of biological processes in plants, nematodes, insects 

and mammals (for review, see [2]). The advent of high throughput sequencing methodologies has 

provided unprecedented opportunities to generate comprehensive sequencing data for the identification 

and quantification of known and novel miRNAs. These technological leaps forward pose new 

challenges for the biological interpretation of large sequencing data sets. Further investigation of the 

molecular mechanisms through which miRNAs regulate gene expression will provide important 

parameters for target identification and thereby the prediction of biological outcomes of miRNA 

expression. 
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