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Abstract: The integration of phenotypes and genotypes is at an unprecedented level and offers
new opportunities to establish deep phenotypes. There are a number of challenges to overcome,
specifically, accelerated growth of data, data silos, incompleteness, inaccuracies, and heterogeneity
within and across data sources. This perspective report discusses artificial intelligence (AI) approaches
that hold promise in addressing these challenges by automating computable phenotypes and
integrating them with genotypes. Collaborations between biomedical and AI researchers will be
highlighted in order to describe initial successes with an eye toward the future.
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1. Introduction

Genotypes and phenotypes expressed in genomic and phenomic data are related through the
processes that converts molecular-scale genotype information into a macroscale manifestation of a
particular phenotype of an organism. Integrated multi-omic processes drive this metamorphosis
of genomic information stored in the nucleus of the cell. The ability to identify the drivers of this
transformation is elusive among the plethora of interacting components that obfuscate our view.
Through integrating data into knowledge networks and reasoning over them with artificial intelligence
(AI), we can more vividly clarify this transformation.

Alan Turing, in his seminal 1950 paper in the journal Mind [1], laid the foundation for the field
of AI through framing the task of building and testing machine intelligence using an imitation game,
where the machine imitates the interactions of an individual communicating with two players: an
adversary and an interrogator. Moreover, he conjectured that discussions about intelligent machines
would become commonplace by the end of the millennium through improved computational speed,
memory and algorithms.

Viewing Figure 1, the cost of computing in gigaflops has gone from tens of billions of dollars in
the 1960s to pennies today, with a similar pattern for a gigabyte of random access memory. Combined
with such improvements in computing and memory, Turing suggested two avenues of research in
algorithms to advance intelligent machines: abstract activity modeling, such as the game of chess;
and sensory perception approaches. The timeline in the lower half of Figure 1 is based on algorithmic
advances in AI as described in Buchanan’s brief history of AI and is extended with deep learning [2,3].
The labeled events above the timeline in Figure 1 show milestones in abstract activity modeling using
predicate logic and knowledge representation approaches resulting in machines being able to imitate
and exceed human performance in the game of chess before the year 2000 [2,4,5]. Medical publications
related to AI, shown in Figure 1 (thin red dash-dot line) as cumulative counts of PubMed references,
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have increased following the development of biomedical expert systems such as Mycin [6]. The labeled
events below the timeline are those associated with perception approaches such as the perceptron, back
propagation, neural networks and deep learning [3,7,8]. Machines imitating and exceeding human
performance in the game of Go occurred in 2016 through a combination of both types of approaches:
deep learning and tree-based knowledge representation trained through reinforcement learning [9].
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Figure 1. The cost of technology in 2017 US dollars on a log10 scale is plotted in relation to the left
axis, and the cumulative number (n) of artificial intelligence (AI) publications in PubMed is plotted
in relation to the right axis across time up to and including 2017. The costs of three technologies
are compared: Compute, Memory and Megabase. Compute corresponds to the computing costs in
gigaflops (one billion floating point operations per second), memory corresponds to the cost of one
gigabyte of random access memory, and Megabase corresponds to the cost per megabase sequenced.
The cumulative number of PubMed AI-related publications was calculated from identical scripts run
for each year starting in 1950. The bottom timeline represents events in the history of AI beginning
with Turing’s 1950 publication of “Computing Machinery and Intelligence” and ending with deep
learning applied to biomedical phenomic data in 2018 (Supplementary File).

The concept of a learning machine was articulated by Turing in terms of evolution, with hereditary
material, mutations and natural selection being analogous to the structure of the machine, changes
to the machine and performance evaluation providing feedback to the machine at a faster rate than
natural selection [1]. In such a framework, machine learning constitutes performance improvement
on an evaluation task through the use of labeled data for supervised learning and unlabeled data in
unsupervised learning. The speed of reinforcing feedback using deep learning methods over large
memory representations of data has made the difference for improving performance on difficult tasks
such as object recognition, speech recognition, and playing the game of Go [3,9]. Learning algorithms
can miss the mark of the true target, due to the “curse of dimensionality” when too many features in
the data space result in overfitting of random variance in the data [10].

Deep learning approaches have managed to navigate the complex space of overfitting and
underfitting the data through the use of large amounts of sample and powerful learning algorithms [3].
Deep learning algorithms achieve this high performance through learning multiple layers of non-linear
features in the data. Different features are learned depending on initial conditions, making consistent
interpretation difficult [11]. The “black box” nature of deep learning approaches highlights differences
between the abstraction and perception approaches proposed by Turing to solve the imitation game [1].
The former has well formulated feature representations that are more easily interpreted, but can
underfit the data [10]. The latter is not biased to underfit the data, but lacks interpretability due
to highly complex features [3,11]. Biomedical research, with the need for biological interpretation,
will likely benefit from a hybrid of the two approaches in much the same way as AlphaGo identifies
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solutions to the game of Go [9]. As can be seen in Figure 1, the solid black line represents the cost
per megabase sequenced of genomic information, which went from thousands of dollars to pennies
at a faster rate than a gigabyte of random access memory dropped to a few dollars [12–14]. Having
inexpensive genomic data for building large repositories, that can be integrated and harnessed by these
data-hungry AI methods, will have a far-reaching impact on discovery in biomedical domains [15–17].
The expertise to integrate and analyze these data resides in both biomedical and AI researchers who
have an opportunity to drive a new wave of discovery through high-dimensional analysis of deep
genomes and deep phenomes [18–21].

An important emerging area is the field of Precision Medicine Informatics which takes on
the challenges of big data by integrating, in a knowledge network (i.e., a general high-level
conceptualization of knowledge represented as facts connected by relationships between facts),
multi-omic data on individuals to increase access and discover new knowledge based on a new
taxonomy of disease [22–24]. Biomedical layers of data at different scales are positioned to be integrated
in knowledge networks that can be computationally reasoned over to accelerate discoveries [22,24].
Ontologies can be used to formalize knowledge networks through the description of facts, concepts
and properties over which logical reasoning engines can be run to generate new facts or inconsistencies
implicit in the ontology [25]. Reasoning over knowledge networks can include AI approaches (e.g.,
Never Ending Learning) that go beyond function approximation methods to reason over a network of
documents through a set of AI modules and measure the consistency of the knowledge learned [26,27].

The gene ontology community has developed a knowledge network of molecular functions,
cellular components and biological processes [28]. Human phenotype ontology represents a knowledge
network of human disease phenotypes that provide a mechanism for connecting genomic and
phenomic medical data [29]. The community managing these ontologies is challenged by scalability
issues related to the manual curation of data given the exponential growth in genomic and medical
phenomic data. To mitigate these issues, AI methods are needed to automate deep phenotyping in
the electronic health record (EHR) by incorporating longitudinal data to improve predictive modeling
and integrate phenomic and genomic data [30]. The following will discuss specific examples of AI
applied to genomic and phenomic data and how they are making headway against the challenge of
exponentially expanding data sets and the goal of advancing scientific knowledge [20,21,31].

2. Genomics

The discovery of new treatments will be advanced through understanding the mechanisms by
which genomics drives the expression of disease. As indicated, the gene ontology community is
iteratively building a knowledge network that can inform biomedical research on the mechanisms
and processes that impact the expression of phenotypes [28,32]. The ontology is evaluated on how it
performs over time as the ontology is incrementally improved. This is achieved by adding sequences
that are annotated with protein function information. These sequences are being added to the system at
an exponential rate. However, the validation through experimental findings that confirm or invalidate
the protein function information in gene ontology is being added at a linear rate [32]. Thus, there is
a vast gap between the number of experimentally validated protein functions and the number of
sequences in gene ontology. To address this, there are community-wide evaluation approaches to assess
protein function predictions through competitions using a variety of approaches to predict protein
function, and to generate candidate predictions at a rate that matches sequence accumulation [28].
Findings on some of the challenges have shown that the use of AI methods, such as the multiple
data source k-nearest neighbor algorithm, combined with biological knowledge can give superior
results [32].

AI techniques have been used to extract information down to the level of binding properties
of genomic sequences that influence the transcriptional networks of cells. Specifically, deep
learning methodologies have been used to predict sequence specificity of DNA and RNA binding
proteins [20]. The AI approach scanned for motifs in DNA and RNA and identified binding protein
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promoter sites that would change their binding properties based on variance in single nucleotide
polymorphisms, deletions or insertions. The approach identified gain of function mutations or
loss of function mutations based on the changing binding affinity of the DNA sequence that the
mutations impacted. The deep learning approach is powerful in its ability to discover new knowledge
around regulatory processes and biological systems and identifying causal disease variants (i.e., those
disease variants that, when changed, change the binding affinities of key regulatory genes in disease
processes). The approach also worked on RNA-binding and integration of transcriptomic and genomic
analysis [20]. The scale and complexity of data and the techniques now available position AI to be
integral to the process of accelerating scientific discovery. The next step is to integrate genomic and
phenomic data at different scales.

3. Phenomics

AI combined with phenomics can improve disease state detection when the right criteria are used
to recognize the drivers. For example, deep learning has been used to identify histological markers
of metastatic breast cancer in lymph nodes that pathologists have difficulty identifying, particularly
under standard time constraints [31]. For this study, the deep learning algorithm was assessed via
an immunochemistry test that verifies whether metastatic cancer was in the tissue or not. The deep
learning algorithm performs at an area under the receiver operating characteristic (ROC) curve of
99% compared with 81% for the pathologists who were given about a minute per slide. A strength
of deep learning is the capacity to visually identify histopathology phenomics (i.e., phenotypes in
histology images) to improve classification of clinically relevant data. Since knowing that breast
cancer has metastasized to the lymph node is critical for treatment decisions, the adoption of such AI
technologies for decision support will enhance early detection and improve clinical decision making.
It also will improve automated phenotype identification from images that will make new genotype
and phenotype identification feasible.

Phenomics of EHR data can be developed from formal ontologies of the phenotype criteria.
They can also be developed using deep learning to automate phenotype construction for predictive
models that distinguish important categories of individuals [29,30]. Deep phenotyping with AI
approaches have demonstrated empirically that incorporating temporal information (e.g., lab values
over 24 h after hospital admission) into phenomic models improves accuracy of predicting mortality,
length of hospital stay and diagnosis at discharge [21]. In this example, deep learning technology
was applied to adult EHR data including both laboratory values and clinical notes on a timeline
of events prior to hospitalization and for at least 24 h after admission in order to predict their in
hospital mortality. The algorithm incorporated time stamped tokens of events in the EHR and used
them to improve predictions of mortality. The algorithms predicted in hospital mortality at 93 to 94%
area under the ROC curve compared with 91% for existing clinical predictive models [21]. Notably,
the analysis was undertaken without the need to harmonize data across multiple hospital centers.
The major strength of the AI deep learning approach is the incorporation of temporal information
while eliminating the need to curate the phenotype collection manually and harmonize the data
manually [21]. The work demonstrates the benefit of incorporate temporal information in patients’
phenotypes, through automated and efficient strategies that show utility in predicting the outcomes of
interest, and moves towards an individual focused knowledge network of precision medicine.

4. Conclusions

Over 60 years ago, Turing postulated that we would experience a change in perspective on
how learning machines are perceived. Breakthrough AI approaches have brought this to pass
and have expanded our ability to recognize drivers of phenotypes resulting from single nucleotide
variations, valid protein function mechanisms in biological systems, cancer disease states and deep
phenotypes automatically constructed from the EHR. Through combining and expanding on these
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approaches in a collaborative effort, the biomedical community will accelerate discovery and improve
our understanding of mechanisms in the genomic and phenomic expression of disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/1/18/s1.
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