
genes
G C A T

T A C G

G C A T

Article

Network Analyses of Integrated Differentially
Expressed Genes in Papillary Thyroid Carcinoma to
Identify Characteristic Genes

Junliang Shang 1,2 , Qian Ding 2, Shasha Yuan 2, Jin-Xing Liu 2, Feng Li 3 and
Honghai Zhang 4,*

1 School of Statistics, Qufu Normal University, Qufu 273165, China; shangjunliang110@163.com
2 School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China;

dingqian19@126.com (Q.D.); jiayouyss@126.com (S.Y.); sdcavell@126.com (J.-X.L.)
3 School of Computer Science and Technology, Xidian University, Xi’an 710071, China; lifeng_10_28@163.com
4 College of Life Science, Qufu Normal University, Qufu 273165, China
* Correspondence: zhanghonghai67@126.com; Tel.: +86-63-3398-1244

Received: 8 November 2018; Accepted: 9 January 2019; Published: 14 January 2019
����������
�������

Abstract: Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Identifying
characteristic genes of PTC are of great importance to reveal its potential genetic mechanisms. In this
paper, we proposed a framework, as well as a measure named Normalized Centrality Measure
(NCM), to identify characteristic genes of PTC. The framework consisted of four steps. First, both
up-regulated genes and down-regulated genes, collectively called differentially expressed genes
(DEGs), were screened and integrated together from four datasets, that is, GSE3467, GSE3678,
GSE33630, and GSE58545; second, an interaction network of DEGs was constructed, where each
node represented a gene and each edge represented an interaction between linking nodes; third, both
traditional measures and the NCM measure were used to analyze the topological properties of each
node in the network. Compared with traditional measures, more genes related to PTC were identified
by the NCM measure; fourth, by mining the high-density subgraphs of this network and performing
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis,
several meaningful results were captured, most of which were demonstrated to be associated with
PTC. The experimental results proved that this network framework and the NCM measure are useful
for identifying more characteristic genes of PTC.

Keywords: differentially expressed genes (DEGs); interaction network; papillary thyroid cancer
(PTC); Normalized Centrality Measure (NCM)

1. Introduction

The morbidity rate of papillary thyroid carcinoma (PTC) ranks the highest among thyroid
cancer. Exploring the cause and underlying molecular events of PTC has become a hot topic [1],
and various methods for analyzing characteristic genes of PTC have emerged. There are many
methods for exploring the characteristic genes of PTC. Kim et al. [2] proposed to select differentially
expressed genes (DEGs) by using paired t-test, linear models for microarray data, and significance
analysis of microarrays. Chevillard et al. [3] used microarrays containing probes to hybridize with
RNA, which came from normal and tumor thyroid samples labeled with Cy3-dUTP and Cy5-dUTP,
respectively. Jarzab et al. [4] proposed a potent molecular classifier able to discriminate between PTC
and nonmalignant thyroid, which used a support vector machines-based technique. However, most of
the existing methods focus on analyzing differences between genes in two experimental conditions
or using statistical methods to analyze interactions between functionally similar genes. It becomes
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increasingly difficult to identify the characteristic genes from analysis results with the diversity and
high dimensionality of biosequencing data, which makes the advantages of network mining methods
more obvious.

The methods of network mining can systematically reflect the interactions between biomolecules;
thus, it is beneficial for researchers to fully understand how various biomolecules in biological cells
interacting and performing biological function processes. He et al. [5] proposed a method to identify
molecular markers related to the clinicopathological features of renal cell carcinoma through a weighted
gene co-expression network, but multiple thresholds need to be set through the hub gene of the
Weighted Gene Co-expression Network Analysis (WGCNA) calculation module. Zhang et al. [6]
proposed a method for analyzing gene interaction enrichment, which combines the knowledge of
gene pathways to identify interaction effects on enriched genes. This method ignores genes that have
no direct effect on expression, but interact with other genes to affect expression. Kamran et al. [7]
proposed a new measure of the topology properties of the network; however, this measure ignores the
relationship between the various factors of the nodes in the formula and the importance of the nodes.
Wei et al. [8] proposed the Length-Net-Driver (LNDriver) method to construct a gene-gene interaction
network, which integrates mutation data and expression data into the network, and finally uses the
greedy algorithm to select driver genes. The genes obtained by this method only considering the local
features and do not consider the role in the global network. In addition, existing network methods to
mine characteristic genes are mostly limited to considering only local features or global features.

In this paper, we propose a framework to identify the characteristic genes of PTC. First, DEGs
identified from multiple datasets were integrated and used to build an interaction network. The nodes
in the network represent genes, the edges between two nodes indicating that these two nodes interact
with each other. The weight of an edge was quantified by a comprehensive scoring mechanism,
which was formed by comprehensive data, data mined from PubMed abstract text, database data,
and results predicted using bioinformatics methods. Next, in order to identify the characteristic genes,
a new measure Normalized Centrality Measure (NCM) is proposed in this paper, which takes into
account both local and global features of nodes. Compared with the existing measures, characteristic
genes identified by NCM were more biologically significant. Moreover, we used the previously
proposed Hypergraph Construction and High-Density Subgraph Detection (HC-HDSD) method
and performed Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis to supplement the experimental results. Our research framework and
experimental results provide reliable molecular markers for early detection and prognosis.

2. Methods

2.1. Datasets

Four profile datasets, i.e., GSE3467 [9], GSE3678 [10], GSE33630 [11], and GSE58545 [12], were
downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/) for this study. Platforms,
sample numbers, and citations of these four datasets are shown in Table 1.

Table 1. Samples distribution of papillary thyroid carcinoma (PTC) dataset.

GEO Platform Normal Tumor Reference

GSE3467 GPL570 9 9 He et al. [9]
GSE3678 GPL570 7 7 He et al. [10]

GSE33630 GPL570 49 45 Tomás et al. [11]
GSE58545 GPL96 27 18 Rusinek et al. [12]

2.2. Identification of Differentially Expressed Genes

Raw data were converted into an expression matrix and the t-test method in limma package [13]
was subsequently used to identify DEGs between PTC tissue samples and normal thyroids [14]. In the

http://www.ncbi.nlm.nih.gov/geo/
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expression matrix, one row represents one sample and one column represents one gene. A gene which
satisfied the conditions of p-value (adjusted by Benjamini & Hochberg) < 0.05 and logFC > 2 (FC,
fold change) was identified as an up-regulated gene. A gene which satisfied conditions of p-value
(adjusted by Benjamini & Hochberg) < 0.05 and logFC < −2 was identified as a down-regulated gene.
All identified up-regulated genes and down-regulated genes were integrated into DEGs. Description
of p-value and logFC can be seen in [13].

2.3. Construction of Interaction Network of Differentially Expressed Genes

The identified DGEs were utilized to construct a gene-gene interaction network. The nodes
represented genes, the tag names of nodes correspond to gene names, and the edges between nodes
indicate interactions between the two nodes. Sources of network edges contain experimental data,
data mined from PubMed abstract text, database data, and results predicted using gene contiguous,
gene fusion, phylogenetic profile, and gene co-expression based on chip data and other bioinformatics
methods, which were based on the STRING database (http://string-db.org) [15]. The composite score,
which was systematically calculated by different methods described above, were used as weights of
edges in the constructed network. Isolated nodes that were not connected to other nodes were deleted.
In addition, the size of a node indicated the number of neighbors the node had, that is, the larger the
node, the more edges that were connected to this node.

2.4. Analyses of Differentially Expressed Genes Interaction Network

2.4.1. Traditional Topological Properties

There were many measures to quantify the topology properties, currently. The following
traditional five measures, which we selected, are most widely used to quantify the topological
properties of a network. The definitions of them are as follows.

The Degree Centrality (DC) of node v represents the number of nodes which are directly connected
to v in the network. It is defined as:

DC(v) = ∑
j∈G

avj

n− 1
(1)

where n is the total nodes in the network and avj represents that node v and node j are directly
connected. DC is the most basic topological property to reflect local features of the node in the network.

Betweenness Centrality (BC) is a measure to quantify the number of times the node v appearing
in the shortest path between other nodes, which is defined as:

BC(v) = ∑
i 6=j 6=v∈V

σivj

σij
(2)

where σi,j represents the number of the shortest paths from node i to node j, σivj represents the number
of paths through node v. BC reflects the global features of the node. The higher the value of BC,
the more important the node is in keeping the network tightly connected.

Closeness Centrality (CC) is a measure to quantify the average shortest distance from one node to
all other nodes in the network. The CC of node v is defined as follows:

CC(v) =
1

n− 1 ∑
j 6=v∈V

dvj (3)

where n is the number of nodes, dvj represents the shortest distance from node v to node j. The CC
measure reflects the extent of node v closing to the “center” of the network. The smaller the value of
CC, the closer the node is to the center, which represents the global features of the node.

Clustering Coefficient (CLC) embodies the dense connection nature between some nodes, which
is defined as:

http://string-db.org
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CLC(v) =
2n

k(k− 1)
(4)

where k represents the number of neighbors of node v, and n represents the number of sides connected
between k neighbors of node v. A higher value of CLC indicates that the node is more closely connected
to its neighbors.

The Eccentricity Centrality (EC) is the maximum of the distance from one node to others in the
network. The eccentricity of node v in the network G is defined as:

ECG(v) =
1

maxV∈G{(dist(v, u))} (5)

where u is a node in the network G. dist(v, u) is the largest geodesic distance between the node v and
other nodes. The smaller the value of EC, the more important the node is in the network.

2.4.2. Normalized Centrality Measure

Considering that almost all the existing measures consider only one of the local features and
the global features, the results obtained may be relatively one-sided. Therefore, in this paper, we
propose a new measure, Normalized Centrality Measure (NCM), by combining the three traditional
measures: degree centrality, betweenness centrality, and closeness centrality to identify important
genes by calculating the value of NCM for node v:

NCM(v) = (
BC(v)
BCmax

+
DC(v)
DCmax

)/
CC(v)
CCmax

(6)

where DC(v) is the degree centrality of node v and DCmax is the maximum value of degree centrality in
the network CC(v) is the closeness centrality of node v and CCmax is the maximum value of closeness
centrality in the network; BC(v) is the betweenness centrality of node v and BCmax is the maximum
value of betweenness centrality in the network. NCM comprehensively reflects both the global and
local features of nodes. The larger the value of the NCM(v) of the node v, the more important the
node is. From a theoretical analysis, this measure is meaningful.

2.4.3. Detection of High-Density Subgraphs

In addition to calculating the topological properties of each node, this paper also introduces the
HC-HDSD method to extract high-density subgraphs, which was proposed in our previous work.
The high-density subgraph was actually the interactions between several genes that may cause PTC,
which is in the form of cluster.

First, the Maximal Clique Centrality (MCC) method [16] to detect the hub nodes and their
subgraphs:

MCC(v) = ∑
C∈S(v)

(|C|−1)! (7)

where S(v) is the set contains the maximal clique group of v, C is a subset of S(v), (|C|−1 )! is the
product of all positive integers, which were less than the number of nodes in the maximal clique C.

Then, based on the subgraphs obtained by the above method, the NCMine method [17] is used
to further detect meaningful high-density subgraphs. The threshold cliqueness used to determine
whether to extract the high-density subgraph is defined as follows:

cliqueness(G) =
E(G)

C2
V(G)

(8)

where G is the new module after adding a node, E(G) is the number of edges of the new module,
and V(G) is the number of nodes of the new module.
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2.5. Gene Ontology and Pathway Enrichment Analysis

Gene ontology analysis is used to annotate genes as well as gene products, and identify biological
characteristic for DEGs. GO annotations are performed on the DEGs by using a DAVID online tool
(https://david.ncifcrf.gov/) [18], which was an essential foundation for the success of high-throughput
gene function analysis. In addition, KEGG pathway analysis of DEGs is performed using the KOBAS
online analysis database (version 3.0) (http://kobas.cbi.pku.edu.cn/) [19]. In this paper, we analyzed
the DEGs, which were derived from the integrated up-regulated and down-regulated genes from four
different microarray datasets; p-value < 0.05 was set as the cut-off criterion.

3. Results and Discussions

3.1. Identification of Differentially Expressed Genes

There are 77, 53, 123, 238 DEGs obtained by the limma package from the above four
datasets, among which there were 30, 28, 90, and 127 up-regulated genes, as well as 47, 25, 43,
and 111 down-regulated genes, respectively. The distribution of DEGs is shown in the following
volcano map. The red circles represent up-regulated genes, the green circles represent down-regulated
genes, and the gray circles represent non-DEGs. Figure 1a–d show DEGs identified from datasets
GSE3467, GSE3678, GSE33630, GSE58545, respectively.
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Figure 1. Volcano map showing differentially expressed genes (DEGs). (a–d) show DEGs of dataset
GSE3467, GSE3678, GSE33630, and GSE58545, respectively.

3.2. Analyses of Differentially Expressed Genes Interaction Network

A complex interaction network is obtained from the STRING database to describe interactions
between genes, with a total of 501 DEGs including 275 up-regulated genes and 226 down-regulated
genes. The nodes in the network represent genes. After removing the duplicate values and the
individual nodes that do not connect to other nodes, there were a total of 261 nodes in this network.
Otherwise, edges between two nodes represent that these two nodes are interacted; the tags on nodes
represent the gene names. The size of the node represents the number of neighbors directly connected
to the node. The larger the node, the more neighbors connected to this node. A gene-gene interaction
network is established for all identified DEGs, which is shown in the Figure 2.

https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/
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Figure 2. Interaction network of DEGs. The size and color of the node represent the importance of the
node. The larger the node and the redder the color, the more neighbors are connected to the node.

3.3. Analyses of Characteristic Genes

The topological properties DC, CC, BC, CLC, EC, and NCM of each node in the above network
were calculated. The larger the values of DC, BC CLC and NCM, the more important the node was;
the smaller the values of CC and EC, the more important the role that this node played in the network.
The values of DC, BC, CLC and NCM were sorted from large to small; the values of CC and EC were
sorted from small to large. The relationship between the top 40 values of these topological properties
and their corresponding genes is shown in Figure 3. Figure 3a–e show the values of traditional
topological property we calculated and their corresponding genes. Figure 3f shows the top 40 genes
calculated using our newly proposed measure NCM; among them, there are 34 genes that have been
confirmed in the existing literature to be related to the production of PTC. The accuracy was 85%.
The values of the logFC and p-value of these 40 genes are shown in the tables in the attached file, and 31,
30, 20, 18, and 22 genes were found by calculating the traditional measure of topological properties
DC, BC, CC, CLC, and EC. The accuracies were 77.5%, 75%, 50%, 45%, and 55%, respectively. Table 2
shows genes that have been confirmed to be involved in the production of PTC. These genes belong
to the top 40 gene calculated by using DC, BC, CC, CLC, EC, and NCM measures. In Table 2, genes
with bold font have been recorded in GeneCard database (http://www.genecards.org/), of which
was confirmed that they are associated with PTC. In addition, other genes have been confirmed to be
related to PTC by referring to the existing literature.

http://www.genecards.org/
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Figure 3. Histograms of topological property values of genes. The genes represented by the histograms
of orange have been confirmed to be related to papillary thyroid carcinoma (PTC); the genes represented
by the histograms of blue have not been confirmed to be related to PTC.

Analyses of top 40 genes calculating by the newly proposed topological property NCM measure
were as follows. Qiu et al. [20] suggested that FN1, ICAM1 and TIMP1 play an important roles in the
progression of PTC; COL1A1 [21], COL5A1 [21], and PLAU [21] were confirmed to provide therapeutic
biomarkers of PTC. MET [22], and SERPINA1 [22] were screened as common DEGs, which may be
related to PTC. LCN2 [23] transcript levels in tumor tissues were significantly higher in PTC compared
with normal tissues. SDC4 [2] and LRRK2 [2] were validated that they have a significant genetic
difference with normal tissue. ECM1 [24] and KIT [24] were identified as DEGs that contain valuable
candidate genes to differentiate related tumor types on the molecular level. Hyun Sook et al. [25]
confirmed that the expression of SLC34A2 and COMP increase in PTC compared with normal tissue.
CXCL12 and IRS1 were identified as central genes in [26], they may be key genes for PTC. CFD [27]
may be helpful for the development of gene panel for PTC diagnosis. PCSK2 [28] could be used
to identify the benign and malignant follicular thyroid neoplasia. MUC1 [29] was demonstrated
to be an important oncogene in PTC and make an important role in therapeutic cancer vaccine
development. ALDHIA1 [30] was down-regulated in PTC tissues. SLC26A4 [30] and other genes
revealed follicular variant of PTC CD36 [31] was reported to correlate with neovascularization of PTC
DCN [32] could help for thyroid tumors to better define a tumor signature and be useful for thyroid
tumor treatment. LRP2 [33] makes effects for thyroid through expressing retained intracellularly.
AGTR1 [34] methylation signatures which involved in the logistic regression model, may related to
thyroid cancer. APOE [35] was identified as hub gene which may be the predictive risk marker of PTC
in the process of progression and prognosis. NMU and LPAR5 may be the targets for thyroid cancer
treatment, which are abnormally expressed in thyroid cancer tissues [36]. ADH1B [37] could be the
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target autoantigens in thyroid cancer and play potential clinical role. Kai-Chun et al. [37] demonstrated
that GNA14 involves in the regulation of the thyroid function and autoimmunity. ALDH1A3 [37] may
be the factor of mediating cancer stemness in thyroid cancer. EGR1 [38] may have a marked effect on
thyroid cancer. Stein [39] identified that ANK2 gene shows a high expression level in PTC.

Table 2. References of PTC-related genes in top 40 captured genes.

Measures Count 1 Genes 2

Degree
Centrality 32

AGTR1 [34] ALDH1A1 [30] COL1A1 [21] COMP [25] CXCL12 [26] DCN [32] ECM1 [24] FN1 [20]
ICAM1 [20] IRS1 [26] KIT [24] LCN2 [23] LRP2 [33] LRRK2 [2] MET [21] MUC1 [29] PLAU [20]
SDC4 [2] SERPINA1 [21] TIMP1 [20] CD36 [31] EGR1 [38] ALDH1A3 [37] NMU [36] ANK2 [39]
APOE [35] CFD [27] COL5A1 [20] LPAR5 [36] PCSK2 [28] PROS1 [2] MMRN1 [27]

Closeness
Centrality 20

AGR2 [40] CITED1 [2] CRABP1 [41] KLK10 [42] KLK7 [25] S100A2 [43] SFTPB [44] SLC26A4 [30]
SLC34A2 [25] TFF3 [28] TMPRSS4 [45] TPO [41] DIO1 [32] ID4 [45] PAPSS2 [39] SLC4A4 [25]
ABCC3 [46] FHL1 [38] HEY2 [46] SLC26A7 [47]

Betweenness
Centrality 30

ALDH1A1 [30] COL1A1 [21] CTSC [48] CXCL12 [26] DCN [32] FN1 [20] ICAM1 [20] IRS1 [26]
KIT [24] LCN2 [23] LRP2 [33] LRRK2 [2] MET [22] MUC1 [29] PLAU [21] SDC4 [2]
SERPINA1 [22] SLC26A4 [30] TGFA [41] TIMP1 [19] DIO2 [32] CD36 [31] ANK2 [39] APOE [35]
GABBR2 [24] PCSK2 [28] SLC4A4 [25] TESC [39] EGR1 [38] NMU [36]

Clustering
Coefficient 18

CCL21 [49] CLDN1 [20] CLDN10 [50] ECM1 [24] DIO1 [32] MT1G [51] CFD [27] COL13A1 [22]
COL5A1 [21] CXCR7 [52] GABBR2 [24] MMRN1 [27] PROS1 [2] COL8A2 [53] LPAR5 [36]
MT1F [54] MT1M [54] NMU [36]

Eccentricity
Centrality 22

CLDN1 [20] CLDN10 [50] MT1G [51] COL1A1 [20] CXCL12 [26] DCN [32] ECM1 [24] FN1 [20]
MET [22] PLAU [20] SDC4 [2] TIMP1 [20] SERPINA1 [22] TGFA [41] TNFRSF11B [22]
ELMO1 [55] IGSF1 [55] MT1F [54] SORBS2 [39,48] COL5A1 [21] CXCR7 [52] PROS1 [2]

Normalized
Centrality
Measure

34

ALDH1A1 [30] CD36 [31] COL1A1 [20] COMP [25] CXCL12 [26] DCN [32] ECM1 [24] FN1 [20]
ICAM1 [20] IRS1 [26] KIT [24] LCN2 [23] LRP2 [33] LRRK2 [2] MET [22] MUC1 [29] PLAU [21]
SDC4 [2] SERPINA1 [22] SLC26A4 [30] TIMP1 [20] AGTR1 [34] ANK2 [39] APOE [35] CFD [27]
COL5A1 [21] LPAR5 [36] PCSK2 [28] SLC4A4 [25] ADH1B [37] GNA14 [37] NMU [36]
ALDH1A3 [37] EGR1 [38]

1 Count: The number of genes that have been confirmed to be related to PTC from top 40 genes obtained by six
measures. 2 Genes: Details of existing literature that described these genes to be involved in the production of PTC.
DC: Degree Centrality; CC: Closeness Centrality; BC: Betweenness Centrality; CLC: Clustering Coefficient; EC:
Eccentricity Centrality; NCM: Normalized Centrality Measure.

3.4. Analyses of High-Density Subgraphs

At present, most methods for identifying DEGs are focused on single gene. We propose a new
idea to find the combination of genes, that is, extracting the high-density subgraphs. The high-density
subgraphs are closely connected internally, and the connections with other nodes are sparse.
High-density subgraphs extracted from the constructed network are shown as Figure 4. The first
high-density subgraph is composed of MUC1 [29], LGALS3 [22], ICAM1 [20], TIMP1 [20], CXCL12 [26],
MET [22], and FN1 [20], which are shown in Figure 4a. Consistent with what we described before, all
these genes have been reported to be related to PTC. We hypothesize that MUC1, LGALS3, ICAM1,
TIMP1, CXCL12, MET, and FN1 may contribute to PTC in the form of a high-density subgraph that
interact with each other. The second high-density subgraph is composed of GABBR2 [24], CXCR7 [52],
CCL21 [49], CXCL12 [26], LAPR5 [36], NMU [36], GNA14 [37], AGTR1 [34], EDN3, and AVPR1A, which
are shown as Figure 4b. Among them, GABBR2, CXCR7, CCL21, CXCL12, LAPR5, NMU, GNA14,
and AGTR1 have been reported that they are related to PTC, and other two genes EDN3 and AVPR1A
have not been reported to directly lead to PTC. Therefore, the interaction of these genes in the form of a
high-density subgraph may lead to PTC. The third high-density subgraph is composed of ICAM1 [20],
EGR1 [38], KIT [24], NCAM1, CXCL12 [26], PROM1, PGF, and MET [22], which are shown as Figure 4c.
Among them, ICAM1, EGR1, KIT, CXCL12, and MET have been reported that they are related to PTC;
however, PROM1, PGF and NCAM1 have not been reported to directly lead to PTC. We hypothesize
that the interaction between them in the form of high-density subgraph may lead to PTC.
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3.5. GO Term and KEGG Pathway Enrichment Analysis

The results of DEGs-related GO annotation in PTC are shown in Figures 5 and 6. The GO can
be divided into three functional groups: molecular function, which indicates molecular activities of
gene products; biological process, whose pathways and larger processes made up of the activities of
multiple gene products; and cellular component, where gene products are active.

Genes 2019, 10, x FOR PEER REVIEW  9 of 15 

 

 
Figure 4. High-density subgraphs of DEGs interaction network. (a-c) show the high-density 

subgraphs 

3.5. GO Term and KEGG Pathway Enrichment Analysis 

The results of DEGs-related GO annotation in PTC are shown in Figures 5 and 6. The GO can be 
divided into three functional groups: molecular function, which indicates molecular activities of 
gene products; biological process, whose pathways and larger processes made up of the activities of 
multiple gene products; and cellular component, where gene products are active. 

 
Figure 5. Up-regulated genes Gene Ontology (GO) enrichment analysis. 

 
Figure 6. Down-regulated genes GO enrichment analysis. 

We put the DEGs into the DAVID online tool. As is shown in Figure 5, in the biological 
procession, the up-regulated genes are mainly enriched in GO:0070062, GO:0005886, GO:0005615, 
and GO:0005576, which correspond to extracellular exosome, plasma membrane, extracellular space, 

Figure 5. Up-regulated genes Gene Ontology (GO) enrichment analysis.

Genes 2019, 10, x FOR PEER REVIEW  9 of 15 

 

 
Figure 4. High-density subgraphs of DEGs interaction network. (a-c) show the high-density 

subgraphs 

3.5. GO Term and KEGG Pathway Enrichment Analysis 

The results of DEGs-related GO annotation in PTC are shown in Figures 5 and 6. The GO can be 
divided into three functional groups: molecular function, which indicates molecular activities of 
gene products; biological process, whose pathways and larger processes made up of the activities of 
multiple gene products; and cellular component, where gene products are active. 

 
Figure 5. Up-regulated genes Gene Ontology (GO) enrichment analysis. 

 
Figure 6. Down-regulated genes GO enrichment analysis. 

We put the DEGs into the DAVID online tool. As is shown in Figure 5, in the biological 
procession, the up-regulated genes are mainly enriched in GO:0070062, GO:0005886, GO:0005615, 
and GO:0005576, which correspond to extracellular exosome, plasma membrane, extracellular space, 

Figure 6. Down-regulated genes GO enrichment analysis.

We put the DEGs into the DAVID online tool. As is shown in Figure 5, in the biological procession,
the up-regulated genes are mainly enriched in GO:0070062, GO:0005886, GO:0005615, and GO:0005576,
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which correspond to extracellular exosome, plasma membrane, extracellular space, and extracellular
region, respectively. As is shown in Figure 6, the down-regulated genes are mainly enriched on
GO:0005515, GO:0070062, GO:0005886, GO:0005615, and GO:0005576, which correspond to protein
binding, extracellular exosome, plasma membrane, extracellular space, and extracellular region,
respectively. Table 3 shows the number of genes enriched on each GO term, and this table only lists
the genes from each GO term that are the same as the results calculated using the new measure NCM.
From the results we can see that the top 40 genes identified using the NCM measure enrich in these
terms described above.

Table 3. Gene Ontology (GO) enrichment analysis of DEGs.

DEGs ID Term Count 1 Genes 2

Up-regulated

GO:0070062 extracellular exosome 53 TIMP1 FN1 APOE COMP SERPINA1 NMU ECM1
COL5A1 LCN2 COL1A1 PLAU MET

GO:0005886 plasma membrane 50 GNA14 AGTR1 SLC4A4 IRS1 CD36 KIT LRP2
SLC26A4 ANK2

GO:0005615 extracellular space 34 FMOD KIT DCN CXCL12 OGN CFD CD36
GO:0005576 extracellular region 34 FMOD DCN CXCL12 OGN COL9A3 CFD MFAP4

Down-regulated

GO:0005515 protein binding 78 APOE COL1A1 COMP ECM1 FN1 ICAM1 LRRK2 MUC1
NMU PCSK2 PLAU SDC4 SERPINA1 TIMP1 MET

GO:0070062 extracellular exosome 44 SDC4 TIMP1 APOE COMP ALDH1A3 SERPINA1 FN1
MUC1 ICAM1 ECM1 COL5A1 LCN2 LRRK2 PLAU

GO:0005886 plasma membrane 42 SDC4 APOE ICAM1 MET LPAR5 LRRK2 PLAU

GO:0005615 extracellular space 40 TIMP1 PCSK2 APOE COMP SERPINA1 FN1 MUC1
ICAM1 ECM1 LCN2 COL1A1 LRRK2 PLAU

GO:0005576 extracellular region 39 TIMP1 APOE COMP SERPINA1 NMU FN1 MET ECM1
COL5A1 LCN2 COL1A1 PLAU

1 Count: the number of genes involved in the term. 2 Genes: genes in this term correspond to the top40 genes
calculated using NCM.

By using the KOBAS online analysis database to analyze the pathway enrichment, we found
that DEGs were mainly involved in 41 KEGG classical pathways, especially in cytokine-cytokine
receptor interaction (12 genes), PI3K-Akt signaling pathway (12 genes) and metabolic pathways
(24 genes). The three pathways with the largest number of genes connected to them are listed in
Table 4. p-value < 0.05 is selected as the cut-off criterion to identify the enrichment pathway. These
three pathways have been proven to participate in PTC. Zhang et al. [52] revealed DEGs of PTC are
mainly involved in cytokine-cytokine receptor interaction pathway, which may regulate PTC growth
and metastasis. Agrawal et al. [56] demonstrated that aberrant activation of the PI3K-Akt pathway
plays a role in thyroid tumorigenesis. Metabolites such as neuroactive ligandreceptor interactions [57]
in metabolic pathways vary widely between normal and diseased samples of PTC.

Table 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs associated
with PTC.

Term ID Input Number p-Value Input Genes

Cytokine-cytokine
receptor interaction hsa04060 12 0.0002

KIT MET CXCL12 LIFR CXCL14 ACKR3
TNFRSF11B TNFRSF12A CCL18 CCL21
GHR INHBA

PI3K-Akt signaling
pathway hsa04151 12 0.0017 MET FN1 RELN KIT FGFR2 LPAR5 COMP

COL1A1 PGF IRS1 GHR COL9A3

Metabolic
pathways hsa01100 24 0.0267

AKR1C3 TYMS GALNT7 TPO ADH1B LIPG
ALDH1A1 GALE OGDHL TUSC30
PLA2G73 SORD CSGALNACT1 PAPSS2
GATM CYP26B1 DGKI ALDH1A3 ALOX15B
HGD TDO2 AOX1 HSD17B6 IMPA2

4. Conclusions

In conclusion, a research framework was proposed to identify the important characteristic genes
which may be involved in PTC progression through the integrated analysis of multiple original
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microarray datasets. Based on the existing measures to quantify the topological properties of nodes,
this paper proposed a new measure to comprehensively consider both local and global features of nodes.
Experiments have demonstrated that this measure has important biological significance. Moreover,
the availability of gene ontology and pathway enrichment analysis may provide evidence for cancer
research. The results obtained in this paper may help to better understand the molecular mechanisms
underlying PTC and provide a range of potential biomarkers. However, further experiments are
needed to verify the results.

Our method has several advantages. First, the new measure we proposed is not simply to
analyze one side of the local or global characteristics of each node, but to comprehensively analyze the
topological properties of each node and the role it plays in the entire network. Second, the majority of
existing studies focused on how a single characteristic gene contributes to the development of tumors
in PTC, with limited research concerning the interaction of multi-genes. Herein, we analyzed the
high-density subgraphs of the network constructed by DEGs to find interactions between multiple
genes. Third, using network analysis methods makes the display of interactions between DEGs more
intuitive and clear, and can significantly reduce the time of analysis and the difficulty of calculation.

Though our method is a beneficial exploration in detecting the DEGs, it still has several limitations,
and needs further improvement and development. First, there are several parameters that need to be
manually set, and no definitive standard to regulate the setting of logFC and p-value. Second, there are
many studies to choose the DEGs at present, and no reasonable description to explain that the limma
software is the best. These limitations motivate us to continue exploring in the future.
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