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Abstract: Phylogenetic tree is essential to understand evolution and it is usually constructed
through multiple sequence alignment, which suffers from heavy computational burdens and requires
sophisticated parameter tuning. Recently, alignment free methods based on k-mer profiles or common
substrings provide alternative ways to construct phylogenetic trees. However, most of these methods
ignore the global similarities between sequences or some specific valuable features, e.g., frequent
patterns overall datasets. To make further improvement, we propose an alignment free algorithm
based on sequential pattern mining, where each sequence is converted into a binary representation
of sequential patterns among sequences. The phylogenetic tree is further constructed via clustering
distance matrix which is calculated from pattern vectors. To increase accuracy for highly divergent
sequences, we consider pattern weight and filtering redundancy sub-patterns. Both simulated and
real data demonstrates our method outperform other alignment free methods, especially for large
sequence set with low similarity.
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1. Introduction

Construction of a phylogenetic tree is one of the fundamentals in bioinformatics. It describes how
a protein (gene) family might have been evolved. In the past decades, pairwise and multiple sequence
alignment (MSA) [1-3] with maximum likelihood function are the trending methods used to build an
accurate phylogenetic tree [4,5]. However, alignment-based methods inherit five pitfalls. First, it is a
time consuming process to align hundreds or thousands of sequences [6]. Second, the alignment results
depend on various parameters such as gap opening and extension penalties and it might affect the final
phylogeny [7]. Third, these methods will be affected by the guild trees during alignment [8]. Fourth,
sequence distance emphasizes too much on the well-aligned regions while ignore small fragments
with valuable information to estimate phylogeny. Last but not least, sequences become much more
divergent as substitutions and indels accumulating thus makes it even harder to acquire qualified
alignment [9]. During species evolution, though sequences of species from the same origin divergent
differently under selection pressure, some fragments still conserved between species. For example,
homolog proteins that result from ancient whole genome duplications under high mutation rate, robust
cysteine-rich proteins that are highly tolerant of mutation. Therefore, it is important to analyze these
low similarity sequences.

Having all aforementioned issues in mind, efficient and accurate methods for phylogeny
reconstruction are demanding. Recently, lots of alignment free methods are proposed to address the
challenges from next-generation sequencing data [10]. Besides some approaches based on graphical
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representation and information theory, alignment free methods mainly include two types: first, k-mer
based methods like feature frequency profile (FFP) [11] and CVTree (CV) [12]. They use a sliding
window with a predefined length to extract features in sequence sets and convert each sequence
into a feature frequency vector, which is used to compute the distance matrix. Phylogenetic tree can
be further constructed by Neighbor joining [13] or UPGMA [14]. Different from above mentioned
methods that using exact word match, spaced word (SW) [15] discovers patterns with fuzzy matches
and skipped positions, that is spaced-k-mer. But for large divergent sequence set, fixed feature length
will result in redundant sequences features and thus greatly increase computational expenses. Second,
substring based methods, such as average common substring (ACS) [16] and underlying approach
(UA) [17]. They extract common substrings of each sequence pair for distance matrix calculation.
However, these method just consider the similarity or distance of pairwise sequence while ignore the
potential relationship of global sequences and thus lost differential information.

To overcome mentioned issues, we propose a sequential pattern mining based method to construct
phylogenetic tree, which is especially pronounced for highly divergent sequences. As shown in
Figure 1, we first extract frequent sequential patterns with position information and measure the
distance among all sequences based on the extracted patterns. Using the feature space formed by
these patterns, the sequence sets can be converted into a pattern vector sets. Then a phylogenetic
tree can be built based on these vectors. Our method cannot only mine exact match patterns but
also fuzzy matching, such as fuzzy pattern AxT contains a wildcard x [18]. Besides fuzzy matching,
we add weight to each pattern and filter redundant patterns to achieve a high-quality feature space.
Experiments on simulated and real data, our method is proved to be reliable and outperformed

towards other methods.

Sequential Pattern Mining

‘ Feature space ‘

Pattern filter and weight

‘ Pattern vectors ‘

NI method

‘ Phylogenetic tree

Figure 1. The flow chart for phylogeny reconstruction based on sequential pattern mining method. NJ:
Neighbor Joining

2. Materials and Methods

2.1. Simulated and Real Data

We generated simulated protein sequences via Rose [19], which implements a probabilistic model
of evolution to generate protein-like sequences. Using a simulated evolutionary tree generated by
Rose as a guide, a set of related sequence families is created from a common ancestor sequence by
inserting, deleting, and replacing characters. In this simulation, the “true” evolution history and
“correct” multiple sequence alignments are recorded for further algorithm evaluation. The average
evolutionary distance between generated sequences is determined by the relatedness parameter which
is associated with point accepted mutation (PAM).

We use BAIiIBASE3.0 [20] as the real data benchmark, a widely used and specifically designed
sequence alignment dataset. Particularly, the reference alignments result provided based on 3D
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structural superposition and manually refined. In addition, we construct a phylogenetic tree as
the evolution reference by using the Maximum Likelihood method [21] in MEGA?7 [22] based on
BALIBASE sequence alignments since reference tree is not provided by BALIBASE.

2.2. Sequential Pattern Mining from Unaligned Sequences

In this study, we adapt our previous method [18] on unaligned protein sequences for frequent
pattern discovery. Briefly, a pattern is the ordered combination of items from alphabet A associated
with wildcard character x. Specifically, in our study the alphabet indicates amino acids or nucleotides.
Support of a pattern is defined as the ratio of sequences that contains the pattern. In order to build
appropriate pattern vectors, each pattern is discovered with corresponding position information
(summarized in Algorithm 1).

For a given set of input sequences, the mining process begins with an empty pattern A and its
initial projected database (S5). A pattern’s projected database contains all sequences start with current
pattern, and we mark the occurrence of last item within a pattern. The pattern a grows by item that
satisfy the support threshold (b or x in Algorithm 1) and the projected database (S,) that marks all
occurrence of the new appended item (b or x) is updated at each growth iteration. The support of a is
denoted as |5, 1.

Algorithm 1 Mining Sequential Pattern (Note: min_support is the minimum support threshold, min_mon_wc is
the minimal non-wildcard threshold, and last () is the last amino acid or nucleotides)

1: Mining (a,S,)
2: if 1S;1 > min_support then
if non_wc (a) > min_mon_wc and last (a) # x then
if a is a closed pattern then
reporta, 15,1

for each residue b or x do

a’: = a with b or x appended to it

Mining (a’,S,")

Since sub-patterns of frequent patterns are also frequent [23]. Therefore, we just save closed
patterns to remove redundancy during pattern mining. The closed patterns X are defined as that there
exists no proper super-pattern Y such that Y has the same support as X in sequence set, that satisfy
two constraints: the support larger than or equal to the minimum support (min_support); the number
of non-wildcard items larger than or equal to minimal non-wildcard (min_non_wc).

2.3. Converting a Sequence to a Weighted and Non-Redundant Pattern Vector

After mining all the closed sequential patterns, we convert the input sequences to length-weighted
pattern vectors. Specifically, a weight (W) is calculated as follow, which is motivated by [24]:

W = PatLength x logZ% @

In Formula (1), PatLength is the length of the current pattern. DBSize is the size of the input
sequence set, and PatSup indicates the pattern absolute support (number of sequences contain such
pattern). Intuitively, a pattern is less discriminative if it appears in many sequences. Therefore, we use
a logarithm function to indicate the negative correlation between pattern support and its weight.
We also consider the effect of pattern length by adding a multiplex operator to the weighting function.
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2.4. Distance Matrix and Tree Construction

We apply the Jensen-Shannon (JS) distance metric [25] to measure distance between obtained
pattern vectors. The JS distance between two vectors P and Q is defined as

JS(P, Q) :%KL(P, M)+%KL(Q, M) (2)
where ,
M= E(P +Q) 3)

The KL(P, M) is the Kullback-Leibler divergence [26] between P and M defined as

P(i
KL(P,M) =) P(i)log2((li)) (4)
i
After calculating the distance between all pairs of sequences, we obtain a distance matrix. Then we
use the Neighbor joining method as implemented in the software package PHYLIP [27] to reconstruct
the phylogenetic tree.

2.5. Reference Tree and Tree Comparison

To quantitatively estimate the quality of phylogenetic trees reconstructed from the distance matrix
calculated from pattern vectors, we compare trees constructed by different method toward the reference
tree, a “true” history of simulated data or tree built by MEGA? for BALIBASE dataset. The treedist
implemented in PHYLIP was used to compute the distance between two trees. Additionally, we use
symmetric difference [28], which is based on Robinson-Foulds distance to measure the topological
differences between two trees. And intuitively the smaller the distance is, the more similar current tree
is to the reference tree.

2.6. Code Availability

The source code is public available at https://github.com/xjtu-omics/TreeDM.

3. Results

For large amount of divergent sequences, using feature space to construct informative pattern
vectors and build accurate phylogenetic tree from sequences is the focus of our study. In the pattern
mining process, there are three parameters have to be tuned according to the characteristics of
the input sequences. We test the effect of chosen different parameters on the results. The effects
of non-wildcard/max-wildcard and support are discussed in Sections 3.1 and 3.2, respectively.
In Sections 3.3 and 3.4, we compare the performance of various methods on simulated datasets
with different sequence similarity and size. Furthermore we test the performance of different methods
on the BALIBASE 3.0 dataset in Section 3.5. Finally, we compare the runtime of different methods.

3.1. Non-Wildcard and Max-Wildcard

In our specifically designed sequential pattern mining algorithm, we include two parameters,
non-wildcard and max-wildcard to specify the minimum number of non-wildcard matches and the
maximum number of consecutive wildcard allowed for each resulting pattern. As shown in Figure 2,
we explore various settings for non-wildcard and max-wildcard on sequences of different similarities
ranging from ~20% to ~5%, which are measured as relatedness from similar to divergent in Rose.
We infer the similarity between sequences is approximately 20%/15%/10%/7% /5% under relatedness
250/300/350/400/450. We run Rose with default parameters except for the relatedness values and
sequences selected from leaves. You can find examples of sequence sets (pamfilel-5) with different
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similarities in the Supplementary Data. Performance comparison is conducted on simulated sequences
with different similarity.
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Figure 2. Performance comparison with different non-wildcard and max-wildcard settings on
sequences of different similarities. Test results on 200 simulated protein sequences of length 350 amino
acid (aa). For different relatedness sequences, all support of the sequential pattern mining is 0.03. For a
fixed non-wildcard, we generated patterns of max-wildcard between 0 and 4, i.e., with 2 non-wildcard
and up to 4 max-wildcards. The vertical coordinate represents the distance of phylogenetic trees.

Generally, as shown in Figure 2, the result is improved when we fix the number of non-wildcard,
since patterns will contain more max-wildcards at such setting but result in more sequential patterns.
However, calculating the distance matrix using high-dimensional pattern vectors is time consuming,
especially for highly similarity sequences. For highly similarity sequences, we can construct
phylogenetic tree using small number of patterns. Redundant patterns do not improve the result,
and sometimes will lead to worse result. In order to get accurate result and faster speed, for divergent
sequences, we set both non-wildcard and max-wildcard to be 2. There is a little difference between the
quality of phylogenetic tree when non-wildcard is set to 2 or 3.

3.2. Support in Sequential Pattern Mining

In data mining, the term “Support” means the number of sequences contain a specific pattern.
In general, as the support increases, the number of patterns used to construct the feature space
decrease. As shown in Figure 3, for similar sequences (relatedness value is 250, similarity is about
20%), the distance between phylogenetic tree built by our approach and reference tree becomes smaller
as the minimal support value increases. For divergent sequences (relatedness value is 450, similarity is
about 5%), we observe opposite result. Thus, we recommend support should be set according to the
sequence similarity.
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Figure 3. Test results on 200 simulated protein sequences of length 350 aa (used in Section 3.1).
For different relatedness sequences, the values of non-wildcard and max-wildcard are 2 and

2, respectively.
3.3. Sequence Similarity and Performance

For highly similarity sequence sets, it is rather straightforward to obtain an accurate phylogenetic
tree by both MSA approach and alignment free methods. It is, however, difficult to construct a tree
when sequence is dissimilar. In order to examine the performance of different methods on different
similarity data sets. We choose a set of 200 protein sequences of different relatedness with a length of
about 350 aa that has been used in Section 3.1. An example of sequence sets (pamfilel) with different
relatedness can be found in the Supplementary Data. Because when the sequence similarity is low,
MSA fails to produce an accurate alignment. The existing methods we use for comparison are feature
frequency profile (FFP), CVTree (CV), spaced word (SW), average common substring (ACS) and
underlying approach (UA). For FFP, CV, SW methods, we use either 1 or k values for the best results
for different data sets, and recommended values for some other non-primary parameters if available.
We set the minimum length of substring in UA to 2 as recommended. In the sequential pattern mining
process, we consider the weight of the pattern and set support parameter as 0.03. The values of
non-wildcard and max-wildcard are 2 and 2, respectively. PVIree represents pattern vector and JS
distance based phylogenetic tree construction approach. As shown in Figure 4, when the sequences
become divergent, our method outperforms other methods.
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Figure 4. Performance of alignment free methods on different relatedness sequence sets. The methods
we use for comparison are average common substring (ACS), underlying approach (UA), feature
frequency profile (FFP), CVTree (CV), spaced word (SW).

3.4. Numbers of the Sequences and Performance

In addition to construct phylogenetic tree in low similarity sequences, we also examined our
approach on large-scale data sets. Here we generate 200, 400, 600, 800, 1000 simulated sequences with
450 relatedness value and 350 aa length. You can find example of sequence sets with different numbers
in the Supplementary Data. We set the parameters of methods for comparison in the same way as in
the Section 3.3. As shown in Figure 5, our method consistently outperforms competing methods with
various numbers of sequences for phylogeny construction.

7007 = aAcs =V
= UA " SW
600 | = FFP  ® PVTree

500
400
300

200

Robinson-Foulds Distance

100 -

0 —
200 400 600 800 1000

Number of Sequences

Figure 5. Tested on different number of sequence sets. The methods we use for comparison are average
common substring (ACS), underlying approach (UA), feature frequency profile (FFP), CVTree (CV),
spaced word (SW).
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3.5. BALIBASE Data Sets

To investigate performance of our method on real data, we compare with other methods using the
BALIBASE3.0 (RV911-BOX270) with sequence similarity below 20%. The data of RV911-BOX270 can be
found in the Supplementary Data. Since the similarity is not very low, we first construct phylogenetic
tree via ClustalW [29] and Neighbor Joining method both from MEGA?. We run ClustalW with default
parameters to obtain sequence alignment result. The protein weight matrix was set to BLOSUM.
Then we use the Neighbor Joining method with the default parameters to build the phylogenetic
tree. The reference tree was built by Maximum Likelihood method with the default parameters based
on aligned sequences provided by BALIBASE. The distance between MSA based tree and reference
tree is 64, which is the best. This suggests that the phylogenetic tree constructed based on MSA is
better than alignment free based method when the sequence similarity is not very low. As shown in
Figure 6, five alignment free methods for comparison, their parameters are selected in the same way as
in Section 3.3. We consider the weight of the pattern and support is 0.05. The values of non-wildcard
and max-wildcard are 2 and 1, respectively. Clearly, when the sequence similarity is below 20%,
our method (PVTree) can get an ideal result.

76
75
73
72 72
704
68
66
65 64
60
55
FFP cv S

MSA+N] ACS UA W PVTree

1

Robinson-Foulds Distance

1

Figure 6. Test results on BALIBASE; PVTree method used with non-wildcard and max-wildcard are 2
and 1, respectively. The spaced word (SW) approach was used with a pattern weight of k = 4, feature
frequency profile (FFP) was used with 1= 6, CVTree (CV) was used with k =9, and the minimum length
of substring in underlying approach (UA) is 2 recommended by the author. It is worth noting that in
order to clearly show the difference between the various methods, the starting value of the ordinate
is 55.

3.6. Runtime

In order to compare the run time of our method and other alignment free approaches, we test
on 200 simulated protein sequences of 350 aa used in Section 3.3. The relatedness is 450. As shown
in Table 1, our method is much faster than UA and FFP but comparable with ACS, CV and SW. It is
worth noting that the distance between phylogenetic tree built by our method and the reference tree
is minimum.
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Table 1. Run time on 200 simulated protein sequences of length 350 aa.

Method Runtimes (s)
ACS 1.459
UA 171.868

FFP (1=5) 133.908

CV (k=3) 3.455

SW (k=4) 1.403
PVTree (2-1) 5.571
PVTree (2-2) 12.782

4. Discussion

In this study, instead of using k-mer or substring based alignment free method, we propose
sequential pattern mining based approach to identify patterns shared among sequences and use them
to measure similarity between sequences for phylogeny reconstruction. Based on results obtained
from 200 simulated protein sequences, PVTree is able to build high quality phylogenetic tree for
sequences with similarity higher than relatedness score of 350. As for divergent sequences, we
found that our approach plus a weighted pattern vector yields accurate phylogenetic tree. We
have demonstrate our sequential pattern mining based phylogeny reconstruction is efficient and
reliable. However, for sequence sets with higher similarity, users may get a disappointing result if
they construct phylogenetic tree directly by using default pattern vectors which take into account the
weight information rather than using binary pattern vectors. The current version of PVTree has two
major limitations, on one hand users have to set parameters manually according to the characteristics
of input sequences. For example, for large-scale sequence sets with highly similarity, when users set
inappropriate small support and non-wildcard value, the constructed tree is not reliable because of
too many useless patterns. On the other hand, PVTree has not been well solved for low similarity
DNA /RNA sequence sets, thus restricting users to directly use low similarity DNA/RNA to build
phylogenetic tree. To further improve PVTree, we will consider situation of overlapping patterns and
the pattern length which could be used to prioritize longer patterns. Compare with methods based on
MSA, which can’t give a reliable alignment result for large scale low similarity sequence sets, and then
can’t construct a reasonable phylogenetic tree, as well as the shortcomings of the methods based on
k-mer or substring in pattern extraction or sequence similarity calculation. For low similarity sequence
sets, a reasonable phylogenetic tree can be constructed based on sequential pattern mining algorithm.

The most important parameter in our approach is the support value. For datasets with different
levels of similarity and number of sequences, the minimum support should be sufficient to identify
patterns shared by two or more sequences. Only patterns shared by two or more sequences contain
valuable information for phylogeny construction. However k-mer method does not select patterns
shared among sequences but only uses a sliding window to extract fixed-length patterns regardless
of their support in the dataset. Thus the resulting frequency vector is sparse and slow down
the calculation. When the number of input sequences is large, a small support input parameter
leads to large number of patterns shared by sequences and reduce the speed of the phylogenetic
tree construction. Support shall be adjusted for datasets with different similarities. For divergent
sequences, smaller support parameter yields more rare patterns, allowing construction of a high quality
phylogenetic tree. However for the highly similar datasets, low support value will lead to excessive
amount of patterns, slowing calculation as well as reducing the quality of the phylogenetic trees.

Currently we are using exact matches during the mining process. This means that the two patterns
DRY and ERY are treated as two distinct patterns. Since residues D and E are comparable, i.e., both are
negatively charged, one may combine them as one pattern (D/E)RY. One of the solutions to solve
this is to define similar residues as equivalent so that we can combine their instances during mining.
Another solution is to include a standard amino acid substitution matrix such as BLOSUMS62 into



Genes 2019, 10, 73 10 of 11

sequential pattern mining. Thus similar patterns will be combined if their scores to the center pattern
are above a given cutoff.

In future work, we can also mine patterns consider their order in the sequence, because if
we consider motifs as the words, the sequential order of these words may also carry essential
biological meaning. Sequences must also have their patterns in the correct order to fold correctly
and function properly. We need compare them with normal patterns in phylogeny reconstruction.
For larger sequence sets, inspired by the application of parallel computing in phylogenetic tree
construction [30,31], we will also try to use parallel computing platforms to speed up phylogenetic
tree construction.

In conclusion, alignment free method based on sequential pattern mining will be an alternative
solution of phylogeny construction for deviating sequences.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2073-4425/10/2/73/s1,
Supplementary Data S1: Low similarity sequence sets generated by Rose and BALIBASE data with less than 20%
residue identity. A simple example of feature space and sequential pattern vectors is included.
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