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Abstract: Single-cell RNA sequencing (scRNA-seq) has recently brought new insight into cell
differentiation processes and functional variation in cell subtypes from homogeneous cell populations.
A lack of prior knowledge makes unsupervised machine learning methods, such as clustering,
suitable for analyzing scRNA-seq. However, there are several limitations to overcome, including
high dimensionality, clustering result instability, and parameter adjustment complexity. In this
study, we propose a method by combining structure entropy and k nearest neighbor to identify
cell subpopulations in scRNA-seq data. In contrast to existing clustering methods for identifying
cell subtypes, minimized structure entropy results in natural communities without specifying the
number of clusters. To investigate the performance of our model, we applied it to eight scRNA-seq
datasets and compared our method with three existing methods (nonnegative matrix factorization,
single-cell interpretation via multikernel learning, and structural entropy minimization principle).
The experimental results showed that our approach achieves, on average, better performance in these
datasets compared to the benchmark methods.

Keywords: single-cell RNA-seq; unsupervised learning; clustering; multikernel learning; k nearest
neighbor; structure entropy

1. Introduction

Gene expression profiles can represent the development stage of cells and the differentiation
state of cells. For example, based on gene expression profiles, the classification of colorectal cancer
can find subtypes to display resistance to therapy [1–3]. Gene expression across tissues has been
described, which can be used to build complex networks and understand the heterogeneity of human
tissues [4–6]. Traditional gene expression of bulk cells is obtained by sequencing a large number of
cells that are commonly a mixture of different cell types or tissues [7,8]. Single-cell RNA sequencing
(scRNA-seq) [9–11] is able to address the limitation of conventional bulk sequencing approaches.
For example, bulk sequencing technology measures the mean gene expression of multiple cells and
discards the difference of cells [12,13]. Single-cell RNA sequencing has attracted a great amount of
attention for the following characteristics: (1) It can sequence more samples than traditional bulk
methods and obtain more raw material for downstream analysis [14]; (2) it can be clearly observed
that scRNA-seq data is sparse. The average sparsity may reach 50% [15]. The number of samples is
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usually from tens to hundreds of thousands, which is relatively smaller than other types of datasets,
such as image datasets. The gene dimension of scRNA-seq data is usually tens of thousands, which
is relatively very high. Meanwhile, the high dimension of datasets makes it difficult to measure
the difference of gene expression patterns between cell types; (3) it has greater capability to explore
cell type differentiation, resulting in rare cell populations and new cell subtypes. Based on the
characteristics mentioned above, scRNA-seq data can be used to study embryonic development,
population lineages and cancer treatment [16–20]. Thus, to analyze scRNA-seq data, we would face
the following computational challenges: Sparsity, small sample size, high dimensionality, and lack of
prior knowledge.

Clustering is a very effective method to analyze scRNA-seq data, which commonly includes
two types of methods according to whether prior knowledge is needed or not [21–23]. Some existing
methods train the labeled scRNA-seq data and tested data to predict cell types, in which prior
knowledge is needed. For example, Shekhar et al. [24] identified cell types based on retinal bipolar
neuronal scRNA-seq data from 455 mice. They used principal component analysis to reduce dimension;
the k nearest neighbor [25,26] and Louvain community detection method [27–29] were used to identify
cell types. It is well known that the k nearest neighbor algorithm is a classical classification method,
in which the k nearest neighbors of a node are selected by computation the distance between the
node and the k neighbors. Louvain community detection is a well-established graph algorithm,
which can find the community modules from complex networks using the greedy optimization
method and modularity maximization. Another type of method clusters the unlabeled scRNA-seq
data to predict cell types without prior knowledge about cell types. One commonly used method is
hierarchical clustering (Llorens et al. [30], Darmains et al. [31]). Llorens et al. found the principles
underlying quiescent neural stem cells and lineage priming. They identified a dormant neural stem
cells subpopulation, in which distinct combinations of lineage-specific transcription factors were
expressed. Darmains et al. calculated the similarity matrix using the Pearson correlation coefficient
to generate minimum spanning tree, constructed a cell network through random walk methods,
and identified the subgroup by hierarchical clustering [32]. They identified gene sets that were
significantly differentially expressed between fetal and adult neurons. The gene sets showed a
difference expression gradient, reflecting the transition state between replicating and quiescent fetal
neuronal populations. Another commonly used method is K-means (Shin et al. [33]). Shin et al.
improved Waterfall, which was a pipeline that used K-means [34,35] clustering to build a trajectory and
assign an individual cell a pseudotime based on each cell’s proximity to the cluster-derived trajectory.
By researching the subgranular zone, they determined the trajectory. In addition to these methods,
Xu et al. [36] automatically calculated the cluster number and effectively clustered cell types using
the shared nearest neighbor to measure similarity and construct graph, and the quasi-clique-based
algorithm to determine the number of clusters and find a clique, named SNN-clique, which can
identify different dense clusters. The clustering results reflected the cell types or origins with high
accuracy. Shao et al. [37] used nonnegative matrix factorization in a cell-centered direction to cluster cell
subtypes based on three mouse scRNA-seq datasets. Nonnegative matrix factorization can decompose
the gene expression matrix into two nonnegative matrices: The basis matrix (contribute to find
sample clusters) and the coefficient matrix (contribute to find feature genes), to find natural subgroups.
They used sparseness and entropy to determine the rank and the meaningful number of subpopulations.
Without prior dimension reduction, they revealed the signature genes about cell subtypes. Kiselev
et al. [38] constructed a consensus matrix using the cluster-based similarity partitioning algorithm and
clustered six public gold standard scRNA-seq datasets and six silver standard scRNA-seq datasets.
They calculated the Euclidean, Pearson, and Spearman metrics between the cell pairs to construct
distance matrices, whose dimension was reduced using either principal component analysis or the
eigenvectors of the associated graph Laplacian matrix. Wang et al. [39] proposed a novel similarity
measurement method, single-cell interpretation via multikernel learning, using kernel function and
spectral clustering, which achieved a high clustering performance. In the previous approaches, a lot of
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efforts have been focused on obtaining robust and significant clustering results, and complex similarity
measurement methods or clustering algorithms were designed. Specially, some methods represented
instability in different datasets and obviously depended on adjusting parameters.

To address the aforementioned issue in unsupervised learning methods based on scRNA-seq
datasets, we explored an effective and robust clustering method in this study using graph theory and
structure entropy theory. Our proposed method included three steps: Firstly, the similarity matrix of
cell samples was constructed by learning different weights for multiple kernels to measure cell-to-cell
distances. Secondly, the weighted cell network was constructed with the k nearest neighbor algorithm;
the weight of edges was determined by the similarity matrix. Thirdly, clustering was performed using
the two-dimensional structure entropy minimum principle. On eight public scRNA-seq datasets,
the performance of the presented method was investigated in terms of two evaluation metrics:
Normalized mutual information and adjusted rand index. From the experiment results, we found that
our approach achieved the best average performance in these datasets compared to other methods.

2. Materials and Methods

A framework of our proposed method (single-cell structure entropy minimization principle, SSE)
is presented in Figure 1. This is a hybrid clustering algorithm based on multikernel learning, k nearest
neighbor (KNN), and structure entropy. It is well known that there are various methods to cluster
high dimensional data into interpretable subparts, among which we applied and combined two novel
methods, multikernel learning and structure entropy, and KNN. Firstly, single-cell interpretation via
multikernel learning (SIMLR) is a novel similarity measurement method, which is insensitive to the
parameter pairs (k,σ) and the number of kernels. Moreover, we tested our method with different
values of parameter k (k = 5, 10, 15, 20, 25, the default value is 10) based on two datasets with a
typically accurate label and found that our algorithm was also insensitive to the value of parameter k.
Multikernel learning can best fit the data structure and enforce block structures in similarity calculation
by integrating multiple kernels [39,40]. Secondly, KNN is a classical and very popular method in
clustering for its easy-to-understand implementation and significant classification performance [41,42],
and it has been voted as one of the top ten data mining algorithms. KNN can represent the sample
network by constructing a KNN graph and detect the community quickly [43–46]. The KNN method
has only one parameter k to adjust. Thirdly, entropy can be used to measure the complexity of
networks and represent the stability of a system in which the lower the entropy, the more stable the
system is. Thus, the principle of structure entropy minimization can detect the natural communities in
networks [47,48]. In this study, we tried to use their advantages to do the research on identification of
cell types and SSE inherits three main advantages over these compared methods. First, it does not
need to decide the parameter k in the KNN algorithm by combining multikernel similarity learning.
Second, SSE can apply to cluster scRNA-seq data without prior knowledge about the true number of
clusters. Third, SSE does not need to adjust model parameters using the default values of parameters
from SIMLR.
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Figure 1. The mechanism of the SSE (single-cell structure entropy minimization principle) algorithm.
The input is a gene expression matrix. The SSE algorithm includes three steps: (1) The similarity is
calculated by multikernel learning; (2) the cell network is constructed by KNN (k nearest neighbor);
(3) clustering is implemented using the structure entropy minimized principle. Lastly, gene priority
ranking results as an output.

2.1. Cell-to-Cell Similarity Measurement

Cell-to-cell similarity measurement plays an important role in cell sample clustering. The common
similarity calculation methods are as follows: Euclidean distance, Spearman correlation, Pearson
correlation coefficient, Jaccard similarity, Minkowski distance, and so on. Beyond that, some researchers
proposed novel methods for distance or similarity calculation, such as Kiselev et al. [38] and Wang
et al. [39]. We calculated the cell-to-cell similarity by kernel-based learning method, proposed by
Wang et al. [39], which would overcome the problem that some distance calculation methods were
affected by data distribution, such as Minkowski distance. We chose this similarity measurement
method mainly for the following reasons: First, SIMLR was recently referenced and considered as an
efficient similarity measurement method [49–51]. Second, SIMLR had the following main advantages
for similarity measurement: (1) It provided a distance metric by combining multiple kernels; (2) it
employed a rank constraint to address the dropout events, in which it enforced a block structure
and obtained a more accurate similarity matrix for downstream steps; (3) the parameters of SIMLR
were (k,σ) and the number of kernels, and the empirically results showed that it was insensitive to
the parameters.

Here, given a gene expression matrix as an input, rows correspond to cells, while columns
correspond to genes. Multikernel learning was used to calculate the distance between the cells and
construct a similarity matrix in the following two steps [39]:

(1) To compute the distance between a pair of cells, the distance formula was detailed in the
literature, in which each weight value described the importance of each kernel. Gaussian kernels were
used here, and each kernel was decided by a parameter pair (k,σ). The experiments showed that the
method was insensitive to the parameter pair. The parameter pair was set to default values.

(2) To construct a similarity matrix based on an optimization framework over S, L, and w,
where S is a similarity matrix, L is an N×C rank-enforcing matrix, and w is the weight of kernels,
the optimization algorithm was detailed in the literature.
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2.2. Cell Network Construction

KNN is a popular method for its significant ability to present network structure and simple
implementation. Here, we used the popular KNN algorithm [52]. Because the result matrix of
multikernel similarity learning was a sparse matrix, which had reserved the nodes with larger similarity,
we did not need to test a special value of k, and kept all the edges to construct a graph. We constructed a
weighted undirected cell network G = (V, E). Suppose that c1, c2, . . . , cn were n cells, and g1, g2, . . . , gm

were m genes. We denoted the input gene expression matrix X = [xij], with rows representing cells and
columns representing genes. Thus, its ith row and jth column were denoted as ci and gj, respectively.

The algorithm for constructing cell network is as follows:
(1) For each i from 1 to n, a vector (x(i, 1), x(i, 2), . . . , x(i, m)) represented the genes expression of

cell ci, and the gene number j is from 1 to m. The sample x(i, :) was one node of network G.
(2) Distance between x(i, :) and x(i’, :) was calculated, denoted w (i, i’), which was the weight of

edge between x(i, :) and x(i’, :).
(3) For each i from 1 to n, all edges adjacent to the x(i, :) were reserved.
In the traditional KNN method, the choice of the value of k is a challenge. Wang et al. chose

k = 3 based on experimental experience. Li et al. [53] used the one-dimension structure entropy
minimization principle to determine the value of k, but this method would not sometimes find k in a
few scRNA-seq data. In our method, the value of k would not be specified through testing an empirical
value from the above analysis. The details were described later in the article.

The pseudocode for the used Algorithm 1 is as follows:

Algorithm 1 Hybrid clustering algorithm pseudocode

Input: Gene expression matrix X = [xij], row is cells, column is genes;
Process:
1: n = the number of cells, m = the number of genes;
2: for i = 1, 2, . . . n
3: for i’ = 1, 2, . . . n
4: calculate distance between x(i,:) and x(i’,:) using SIMLR algorithm;
5: here, we get similar matrix for each cells, denoted w(i,i’);
6: for s = 1, 2, . . . n
7: reserve all values in w(s,:), and set 0 for other values;
8: here, we get sparse matrix, denoted S(i,i’);
9: Output: S(i,i’) will be used to construct graph in SSE algorithm

2.3. Cell Types Identification

Entropy can be used as a metric for representing object uncertainty, as well as the information
needed to determine the event. The smaller the entropy is, the more orderly the system is. According
to Shannon’s entropy function, entropy is defined as follows:

H(p1, · · · , pn) = −
n

∑
i=1

pi log2 pi (1)

where pi is a probability that event i occurs with ∑ pi = 1. − log2 pi bits needed to represent a variable
that can take one of 1/pi values if 1/pi is a power of 2.

In a cell network, communities can be detected when entropy is minimized. However, entropy
does not have enough information to measure the complexity of a network, so additional information
needs to be added. In order to address this issue, we employed the structure entropy minimization
principle proposed by Li et al. [53]. The principle of graph structure entropy and the criteria used for
partitioning the overall network into cell subpopulations are described as following. The detail of
structure entropy definition and minimization can be found in [53].
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The graph structure entropy can provide a matrix of the dynamical complexity of the network.
For a graph G, the k-dimensional structural entropy is defined as the fewest bits needed to describe the
k-dimensional space information of the node, which is obtained from random walk in G. To detect the
natural communities, two-dimensional graph structural entropy is defined as the average number of
bits required to determine the code (i,j) of the node.

Suppose that Z = {X1, X2, · · · , XL} was a sub region of node set V, and each of X1, X2, · · · , Xn

was defined as a community in graph G. Then, X (i, j) encoded node v, in which i was the code of v
in local community Xn, and j was the code of community Xn in global V. From the abovementioned,
the structure entropy was defined as Equation (2):

HP(G) = −
L

∑
l=1

Voll
2e

nl

∑
i=1

dl
i

Voll
log2

dl
i

Voll
−

L

∑
l=1

ej

2e
log2

Voll
2e

(2)

where L was the number of community Xl in Z, nl was the number of node in community Xl, di
l was

the degree of the i-th node of Xl, Voll was the sum of the degrees of the nodes in community Xl, and ej
was the number of edges with just one endpoint in community Xl. The structure entropy of graph G
was defined as Equation (3), and minimizing the structure entropy of the graph would achieve the
natural community structure of the network:

H(G) = min
P
{HP(G)} (3)

where Z run over the subregion of G.

2.4. Feature Gene Selection

In the gene expression matrix, each gene is an attribute of a cell. The gene expression value
contributes to cluster cells and affects the result significantly due to its high dimensionality. Some
methods implemented dimension reduction, which is gene feature extraction, to get better clustering
results. Nevertheless, bias would be introduced and relevant genes may be dropped. The technique
and biological noise would lead to a poor result, such as only the first few components of principal
component analysis (PCA) not being able to distinguish the subpopulation unambiguously [54,55].
Our approach differed from those methods, whereas the feature genes were selected to get the marker
genes after clustering. We computed the average of certain gene expression values in every community
to determine which community a gene belongs to. Then, genes in a community were sorted in
descending order by the gene expression value. The top k genes were selected to be the marker genes
relevant to subpopulation.

2.5. Time Complexity Analysis

The most time-consuming step of SSE is to cluster using two-dimension structure entropy
minimization, which requires O (n2) time. Here, n is the number of cells. Since the number of
cells is usually far less than the number of genes, this step is still fast. In addition, the time complexity
to construct a cell network is O (n) using a KNN graph. For optimization framework solutions for S,
L and w iteratively in the similarity measurement step, the time complexity is O (Tkn), where T is the
number of iterations and k is the number of neighbors.

2.6. Datasets Description

Single-cell RNA-seq data based on cell type differentiation are crucial for understanding cell linage
relationships and predicting the relationship between diseases and treatments. Thus, we executed
SSE on eight test datasets, which are summarized in Table 1. These datasets were downloaded
from EMBL-EBI (https://www.ebi.ac.uk/) or the NCBI Gene Expression Omnibus (GEO) repository
(https://www.ncbi.nlm.nih.gov/geo/), among others.

https://www.ebi.ac.uk/
https://www.ncbi.nlm.nih.gov/geo/
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Table 1. List of datasets and their attributes.

GSE/ID Datasets Tissue Number
of Cells

Number of
Genes

Amount of
Population References

GSE57249 Biase Mouse embryo cell 49 25,384 3 Biase et al., 2014 [56]
GSE36552 Yan Human embryo cell 90 20,214 6 Yan et al., 2013 [57]
GSE45719 Deng Mouse embryo cell 259 22,147 10 Deng et al., 2014 [58]

E-MTAB-2805 Pollen Human different tissues
(stem cell) 249 14,805 11 Pollen et al., 2014 [59]

GSE52583 Treutlein Mouse lung epithelial cell 80 23,129 5 Treutlein et al., 2014 [60]
GSE57872 Patel Human glioblastoma cells 430 5948 5 Patel et al., 2014 [61]

GSE75688 Chung Human breast cancer and
lymph node metastasis cells 518 41,821 4 Chung et al., 2017 [62]

GSE38495 Ramskold Human cancer cell 33 21,042 7 Ramsköld et al., 2012
[63]

3. Experiments and Results

To demonstrate the performance of the proposed method SSE, we carefully compared it with three
unsupervised learning methods for scRNA-seq data analysis: Nonnegative matrix factorization (NMF),
SIMLR, and structural entropy (SE) minimization principle. All these algorithms were run on Windows
7. To perform SSE, we used the R code to implement a similarity matrix by multikernel learning
algorithms, which are given in detail in [39]. We also used a JAVA code to implement structural entropy
minimization principle algorithms, which are given in detail in [53]. The heat maps were drawn by a
matplotlib package in Python, version 2.7.12 [64].

3.1. Performance Evaluation

To make the comparison fairly, we ran all methods with the commonly used eight datasets
which were analyzed in other methods. In the same way, we compared these methods based on two
evaluation metrics: Normalized mutual information (NMI) and adjusted Rand index (ARI). The true
number of populations, abbreviated as ‘gold standard’ cluster numbers, was applied on computing
the NMI value and ARI value. The number of categories of datasets was selected on the basis that
one could be highly confident in the cell-labels, as they represent cells from different conditions or
lines, and thus we considered them ‘gold standard’. The ‘gold standard’ cluster number of each testing
dataset is shown in Table 1.

NMI [65] is commonly used to evaluate the consistency between the obtained cluster results and
the true labels of the cells. NMI is defined as follows:

NMI(X, Y) = 2
I(X; Y)

H(X) + H(Y)
(4)

I(X; Y) = ∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
(5)

H(X) = −
n

∑
i=1

p(xi) logb p(xi) (6)

where I (X; Y) is the mutual information between clustering X and Y, and H(X) is the entropy of the
clustering X. p(x, y) is the joint probability distribution function of x and y. p(xi) is the probability
distribution function of xi.

ARI [37] is commonly used to evaluate the agreement between the predicted clusters and the true
categories. ARI is defined as follows:
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ARI =

∑ij

(
nij
2

)
−
[

∑i

(
ai
2

)
∑j

(
bi
2

)]
/

(
n
2

)
1
2

[
∑i

(
ai
2

)
+ ∑j

(
bi
2

)]
−
[

∑i

(
ai
2

)
∑j

(
bi
2

)]
/

(
n
2

) (7)

where a, b, c, and d are calculated as follows, respectively.
a: A number of pairs of objects are placed in the same group in X and in the same group in Y;
b: A number of pairs of objects are placed in the same group in X and in a different group in Y;
c: A number of pairs of objects are placed in the same group in Y and in a different group in X;
d: A number of pairs of objects are placed in a different group in X and in a different group in Y;
n: The number of the elements (cells).
The overlap between X and Y can be formed in a contingency table, and nij are the values from

abovementioned contingency table; ai is the i-th row of the contingency table and bj is the j-th column
of the contingency table.

We compared the performance of our method SSE to NMF, SIMLR, and the structural entropy
minimization principle (SE) in terms of NMI and ARI. The results of NMI are listed in Table 2, while
the results of ARI are listed in Table 3. It is worth mentioning that all of these methods were performed
with default parameters, without any parameter optimization. The parameter pair (k, σ) of SIMLR
was set to default values. SE also had parameter σ’ (different from that of SIMLR), with σ’ defaulting
to 1/2n; the number of clusters calculated by SE, denoted as k’, depends on σ’ by one dimensional
structure entropy minimization. For SE, when k’ could not be easily determined at the default value of
σ’, different σ’ values in {1/n, 2/3n, 1/2n, 2/5n, 1/3n} were tested to determine k’.

Table 2. Cluster performance comparison of NMF (nonnegative matrix factorization), SIMLR
(single-cell interpretation via multikernel learning), SE (structural entropy minimization principle),
and SSE (single-cell structural entropy minimization principle) in terms of NMI (Normalized mutual
information).

Datasets NMF SIMLR SE SSE

Biase 0.322 0.673 0.554 0.721
Yan 0. 673 0.727 0.776 0.747

Deng 0.509 0.676 0.635 0.676
Pollen 0.944 0.950 0.781 0.950

Treutlein 0.277 0.276 0.344 0.270
Patel NA 0.576 NA 0.599

Chung 0.196 0.283 0.322 0.334
Ramskold 0.831 0.818 0.596 0.772
Average 0.536 0.622 0.573 0.634

Table 3. Cluster performance comparison of NMF, SIMLR, SE and SSE in terms of ARI (Adjusted Rand
index).

Datasets NMF SIMLR SE SSE

Biase 0.244 0.682 0.682 0.742
Yan 0.519 0.487 0.477 0.524

Deng 0.312 0.364 0.388 0.386
Pollen 0.981 0.943 0.613 0.943

Treutlein 0.262 0.229 0.183 0.155
Patel NA 0.527 NA 0.553

Chung 0.134 0.136 0.200 0.158
Ramskold 0.686 0.683 0.344 0.613
Average 0.448 0.506 0.412 0.509
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From Tables 2 and 3, we can see that a specific method for domain-specific scRNA-seq dataset
performed well. SSE had the best average performance and achieved a better performance for some
datasets, such as the Biase, Deng, Pollen, Patel, and Chung datasets. SE performed better for the Yan
and Treutlein dataset. SIMLR achieved a better performance for the Deng and Pollen datasets. NMF
performed better for the Ramskold dataset.

Taken together, the above results indicated that SSE was a robust method with the best average
performance, which would be applied for clustering analysis to identify cell types. Especially,
these results provided evidence that SSE was a simple and promising tool for clustering analysis,
which did not need to adjust complex parameters, including the value of k. Meanwhile, we used the
Mann–Whitney U test, which is a commonly used nonparametric test method, to test whether our
method significantly outperformed others. The results showed that the improvement is insignificant.
However, it should be noted the improvement varies a lot for different datasets. For example,
our method achieves much better results on the Biase data, but the improvement is less significant on
the Chung data; on the Treutlein data, our method performed worse than others.

To describe the overlap and relationship of the four methods, the cluster results comparison
between SSE and NMF, SIMLR, and SE in terms of NMI and ARI were calculated, and the results are
shown in Supplementary Tables S1 and S2.

3.2. Cluster Result Analysis

To represent and analyze the cluster results, the true types and cluster heat maps of the eight
datasets were provided, giving the visualization of how these cell samples are clustered, as shown in
Figures 2–9, in which (a) is the heat map of true types with labels and (b) is the heat map of cluster
result using SSE method. The x-coordinate represents the cell samples, the y-coordinate represents the
gene expression values, and the top horizontal line marks the number of categories.

According to the heat maps, we found that our method could cluster the samples unambiguously.
The cluster numbers were marked above the top horizontal line. Clear blocks appear in the diagrams.
Each of the blocks was the high expression gene set in one cluster, that is, a feature gene set. Moreover,
we observed that SSE achieved different cluster numbers than the other competing methods. The
detail of cluster number results is shown in Table 4. Especially in the Patel dataset and Chung dataset,
this phenomenon was more obvious. For the Patel dataset, the gold standard number was 5, while it
was 15 in the SSE result. Meanwhile, compared to other methods, SSE achieved the best NMI value
of 0.599. For the Chung dataset, the gold standard number was 4, while it was 21 in the SSE result.
Meanwhile, compared to other methods, SSE achieved the best NMI value of 0.334.

Genes 2019, 10, x FOR PEER REVIEW 10 of 17 

 

 
 

  
(a) (b) 

 
Figure 2. The heat maps of Biase datasets. 

  
(a) (b) 

 

Figure 3. The heat maps of Yan datasets. 

 

  
(a) (b) 

 

Figure 4. The heat maps of Deng datasets. 

 

Figure 2. The heat maps of Biase datasets.



Genes 2019, 10, 98 10 of 17

Genes 2019, 10, x FOR PEER REVIEW 10 of 17 

 

(a) (b) 
 

Figure 2. The heat maps of Biase datasets. 

  
(a) (b) 

 

Figure 3. The heat maps of Yan datasets. 

 

  
(a) (b) 

 

Figure 4. The heat maps of Deng datasets. 

 

  
(a) (b) 

 

Figure 5. The heat maps of Pollen datasets. 

 

Figure 3. The heat maps of Yan datasets.

Genes 2019, 10, x FOR PEER REVIEW 10 of 17 

 

(a) (b) 
 

Figure 2. The heat maps of Biase datasets. 

  
(a) (b) 

 

Figure 3. The heat maps of Yan datasets. 

 

  
(a) (b) 

 

Figure 4. The heat maps of Deng datasets. 

 

  
(a) (b) 

 

Figure 5. The heat maps of Pollen datasets. 

 

Figure 4. The heat maps of Deng datasets.

Genes 2019, 10, x FOR PEER REVIEW 10 of 17 

 

(a) (b) 
 

Figure 2. The heat maps of Biase datasets. 

  
(a) (b) 

 

Figure 3. The heat maps of Yan datasets. 

 

  
(a) (b) 

 

Figure 4. The heat maps of Deng datasets. 

 

  
(a) (b) 

 

Figure 5. The heat maps of Pollen datasets. 

 

Figure 5. The heat maps of Pollen datasets.



Genes 2019, 10, 98 11 of 17
Genes 2019, 10, x FOR PEER REVIEW 11 of 17 

 

  
(a) (b) 

 

Figure 6. The heat maps of Treutlen datasets. 

 

  
(a) (b) 

 

Figure 7. The heat maps of Patel datasets. 

 

  
(a) (b) 

Figure 8. The heat maps of Chung datasets. 

 

Figure 6. The heat maps of Treutlen datasets.

Genes 2019, 10, x FOR PEER REVIEW 11 of 17 

 

  
(a) (b) 

 

Figure 6. The heat maps of Treutlen datasets. 

 

  
(a) (b) 

 

Figure 7. The heat maps of Patel datasets. 

 

  
(a) (b) 

Figure 8. The heat maps of Chung datasets. 

 

Figure 7. The heat maps of Patel datasets.

Genes 2019, 10, x FOR PEER REVIEW 11 of 17 

 

  
(a) (b) 

 

Figure 6. The heat maps of Treutlen datasets. 

 

  
(a) (b) 

 

Figure 7. The heat maps of Patel datasets. 

 

  
(a) (b) 

Figure 8. The heat maps of Chung datasets. 

 

Figure 8. The heat maps of Chung datasets.



Genes 2019, 10, 98 12 of 17
Genes 2019, 10, x FOR PEER REVIEW 12 of 17 

 

  
(a) (b) 

 

Figure 9. The heat maps of Ramskold datasets. 
 

Table 4. The number of clusters in the ‘gold standard’ and four methods. 

Datasets Gold Standard NMF SIMLR SE SSE 
Biase 3 3 3 5 3 
Yan 6 6 6 11 7 

Deng 10 10 10 8 13 
Pollen 11 11 11 7 11 

Treutlein 5 5 5 4 6 
Patel 5 5 5 NA 15 

Chung 4 4 4 11 21 
Ramskold 7 7 7 3 5 

 
PCA is a popular tool to identify the subgroups from scRNA-seq data, of which the first two 

components are commonly performed for visualization [58]. The first two components capture the 
highest percentage of variance, which means greater information, so we used them to visualize the 
eight datasets after binary log-transformation and centering of the scRNA-seq data. The scatter 
diagram of eight datasets by PCA is shown in Figure 10. In the experiments, each sample point in the 
same category was assigned the same color according to its true label. From Figure 10, some 
remarkable phenomena can be observed: (1) Limited to the difference of inherent attributes in each 
dataset, the performance of PCA method varied greatly over different datasets. Note that the Biase 
dataset was clustered clearly into three groups, which was in accordance with the true clusters. 
However, it was unfortunate that the PCA method did not work well in other datasets with higher 
heterogeneity; (2) SSE had an excellent clustering performance both in the Biase and Pollen dataset, 
i.e., several block structures were revealed in the gene map, which indicated that SSE better 
discovered the true clusters. We can observe that there were more blocks in the other five datasets 
from the gene maps; this phenomenon can particularly be observed in the Patel and Chung datasets. 
Because there was no cluster number as input as in NMF and SIMLR, SSE and SE found more or 
less clusters based on scRNA-seq data; this aspect deserves further investigation; (3) the marker 
genes in each cluster could be specified explicitly via the SSE method, but the PCA method could not 
get it. Finally, we observed that some datasets were clearly separated, such as the Biase dataset, and 
most datasets were indistinguishable. 

Moreover, to describe the results of dimensionality reduction more fully, we applied another 
nonlinear dimensionality reduction method, t-SNE (t-distributed stochastic neighbor embedding). 
The scatter diagram of eight datasets by t-SNE can be found in Supplementary Figure S1. To better 
spot out possible clustering, we also presented the visualization of single cells in 3D space using the 
first three principal components (Supplementary Figure S2). 
 

Figure 9. The heat maps of Ramskold datasets.

Table 4. The number of clusters in the ‘gold standard’ and four methods.

Datasets Gold Standard NMF SIMLR SE SSE

Biase 3 3 3 5 3
Yan 6 6 6 11 7

Deng 10 10 10 8 13
Pollen 11 11 11 7 11

Treutlein 5 5 5 4 6
Patel 5 5 5 NA 15

Chung 4 4 4 11 21
Ramskold 7 7 7 3 5

PCA is a popular tool to identify the subgroups from scRNA-seq data, of which the first two
components are commonly performed for visualization [58]. The first two components capture the
highest percentage of variance, which means greater information, so we used them to visualize the
eight datasets after binary log-transformation and centering of the scRNA-seq data. The scatter
diagram of eight datasets by PCA is shown in Figure 10. In the experiments, each sample point in
the same category was assigned the same color according to its true label. From Figure 10, some
remarkable phenomena can be observed: (1) Limited to the difference of inherent attributes in each
dataset, the performance of PCA method varied greatly over different datasets. Note that the Biase
dataset was clustered clearly into three groups, which was in accordance with the true clusters.
However, it was unfortunate that the PCA method did not work well in other datasets with higher
heterogeneity; (2) SSE had an excellent clustering performance both in the Biase and Pollen dataset,
i.e., several block structures were revealed in the gene map, which indicated that SSE better discovered
the true clusters. We can observe that there were more blocks in the other five datasets from the
gene maps; this phenomenon can particularly be observed in the Patel and Chung datasets. Because
there was no cluster number as input as in NMF and SIMLR, SSE and SE found more or less clusters
based on scRNA-seq data; this aspect deserves further investigation; (3) the marker genes in each
cluster could be specified explicitly via the SSE method, but the PCA method could not get it. Finally,
we observed that some datasets were clearly separated, such as the Biase dataset, and most datasets
were indistinguishable.
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Moreover, to describe the results of dimensionality reduction more fully, we applied another
nonlinear dimensionality reduction method, t-SNE (t-distributed stochastic neighbor embedding).
The scatter diagram of eight datasets by t-SNE can be found in Supplementary Figure S1. To better
spot out possible clustering, we also presented the visualization of single cells in 3D space using the
first three principal components (Supplementary Figure S2).

4. Discussion

Single cell RNA-seq data posed a challenge to cluster approaches for exploring new cell subtypes
and rare cell populations without prior knowledge. Scialdone et al. clustered mouse embryonic stem
cells, suffering from the limitation of the dependence on known data as training dataset. As a matter
of fact, most datasets were lacking prior knowledge. In addition, as similarity calculation plays an
important role in clustering results, complex similarity measurement algorithms were designed to
get high accurate clusters. Here, we explored graph theory and the structure entropy minimization
principle for the purpose of subgroup identification in scRNA-seq data. Instead of using conventional
hierarchical clustering, here we focused on minimizing the structure entropy to find the natural
communities in cell networks. We found that SSE correctly clustered cells to biologically meaningful
subgroups. Compared to NMF, SIMLR, and SE, SSE could produce the cluster results as stable
communities that were straightforward to interpret. Remarkably, SSE performed well even without
prior dimension reduction, such as extraction feature genes using PCA.

As can be seen from our analysis, in the SSE method, we constructed cell networks using KNN,
as Xu et al. did. However, Xu et al. had to adjust a set of parameters k, r, and m to improve cluster
performance. Nevertheless, SSE only had the parameter pair (k,σ) of SIMLR with default values.
Beyond that, there were no other parameters to be adjusted in the steps of network construction
and clustering.

In addition, SSE proved very robust when it was applied to scRNA-seq datasets. By analyzing
eight datasets, we found that SSE showed the best average performance in terms of NMI and ARI
compared to the three competing approaches. In conclusion, our study showed that SSE was an
effective and robust clustering method for scRAN-seq dataset.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/2/98/s1,
Figure S1: The scatter diagram of eight datasets by t-SNE, Figure S2: The three-dimensional scatter diagram of
eight datasets by PCA, Table S1: Cluster results comparison between SSE and NMF, SIMLR, SE in terms of NMI,
Table S2: Cluster results comparison between SSE and NMF, SIMLR, SE in terms of ARI.
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