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Abstract: The recent focus on the role of epigenetic mechanisms in mental health has led to
several studies examining the association of epigenetic processes with psychiatric conditions and
neurodevelopmental traits. Some studies suggest that epigenetic changes might be causal in the
development of the psychiatric condition under investigation. However, other scenarios are possible,
e.g., statistical confounding or reverse causation, making it particularly challenging to derive
conclusions on causality. In the present review, we examine the evidence from human population
studies for a possible role of epigenetic mechanisms in neurodevelopment and mental health and
discuss methodological approaches on how to strengthen causal inference, including the need for
replication, (quasi-)experimental approaches and Mendelian randomization. We signpost openly
accessible resources (e.g., “MR-Base” “EWAS catalog” as well as tissue-specific methylation and gene
expression databases) to aid the application of these approaches.

Keywords: DNA methylation; epigenetics; mental health; neurodevelopment; causal inference;
Mendelian randomization

1. Epidemiological Evidence Linking Epigenetics and Mental Health

Mental health and neurodevelopmental disorders are under the influence of both genetic and
environmental factors. Epigenetic mechanisms regulate gene expression and are potential mediators of
both these genetic and environmental effects on mental traits and disorders. Of the known epigenetic
processes involved in gene regulation, DNA methylation, which consists of the covalent addition of a
methyl group to a cytosine base at CpG dinucleotides, is the most widely studied. The main reason for
its popularity is the availability of cost-effective, high throughput laboratory assays that utilise DNA
extracted using standard protocols. To date, most epigenetic studies of mental health have measured
DNA methylation at the genome-wide level using Illumina Infinium 450K or EPIC arrays in peripheral
blood or saliva samples, since these tissues are most commonly available in large studies.

Epidemiological studies that have investigated the association of DNA methylation with mental
health traits and conditions in peripheral blood or saliva using the Illumina 450K arrays were identified
in a semi-systemic manner by searching within PubMed. The characteristics of the studies are
summarised in Table 1. While this search is not meant as a systematic review, it provides examples of
studies that investigated the link between DNA methylation and brain-related processes in peripheral
tissues. Associations of DNA methylation variation measured in peripheral blood in relation to
schizophrenia are among the most widely published so far. In the largest study to date, a comparison
of 689 men affected by the disease and 645 controls reported over 900 methylation-variable sites across
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the genome. Although the authors applied a more relaxed threshold (false discovery rate (FDR) p < 0.2)
in the discovery sample, many methylation sites were replicated in an independent sample with effects
consistent in size and direction [1]. Other associations have been reported, linking methylation-variable
loci with suicidal behaviour within individuals with bipolar disorder [2], for depressive symptoms
within the elderly [3], self-reported wellbeing [4] and panic disorder in adulthood [5]. However, in
some instances, conflicting evidence can be found [6] or only very weak evidence is provided, as seen in
a study on post-traumatic stress and major depressive disorder [7]. With respect to neurodevelopment,
DNA methylation differences were reported in relation to educational attainment and cognitive
abilities measured in adulthood [8], attention-deficit hyperactivity disorder [9], oppositional defiant
disorder [10], multiple risk behaviours [11], substance abuse [12], early-onset conduct disorder [13] and
childhood physical aggression [14], with weaker evidence for an association with violent aggression
and diagnosed autism spectrum disorders [15–17]. Neurological conditions that showed differences in
blood-based DNA methylation when compared to controls include mesial temporal lobe epilepsy [18],
narcolepsy [19] and Parkinson’s disease [20].

Table 1. Epigenome-wide association studies of mental health traits and diseases conducted in
peripheral blood. A semi-systematic PubMed search was undertaken (access date 21/11/2018) using the
terms ‘DNA methylation’, ‘methylome-wide’, ‘epigenome-wide’, ‘psychiatry’, ‘psychiatric’, ‘behaviour’
and ‘human’. FDR: false discovery rate; DMR: differentially methylated regions.

Trait/Disease Study Design Tissue Sample Size DNA Methylation
Differences

Significance
Threshold Reference

Wellbeing Population study Blood N = 2456 2 CpGs Bonferroni p < 0.05 [4]

Schizophrenia Case-control Blood N = 1339 (discovery);
N = 497 (replication) 923 CpGs FDR p < 0.2 [1]

Substance abuse Population study Cord blood N = 244 65 CpGs FDR q < 0.05 [12]

Suicidal behaviour Case-control White blood cells N = 123 None below threshold Not specified [2]

Post-traumatic stress
disorder

Clinical study
(trauma patients) Blood N = 473 None below threshold FDR p < 0.05 [7]

Major depressive
disorder Case-control Blood N = 473 None below threshold FDR p < 0.05 [7]

Panic disorder Case-control Blood N = 96 40 CpGs FDR p < 0.05 [5]

Educational
attainment Population study Blood N = 10767 9 CpGs p < 1 × 10−7 [21]

Mesial temporal lobe
epilepsy Case-control Blood N = 60 216 CpGs p < 1.03 × 10−7 [18]

Parkinson’s disease Case-control Peripheral blood
mononuclear cells N = 38 2 CpGs (identified via

multiple methods)

methylation
difference >15% and
validation with other

methods

[20]

Attention-deficit
hyperactivity disorder Population study Cord blood N = 828 13 CpGs FDR q < 0.05 [9]

Oppositional defiant
disorder Population study Cord blood N = 671 30 CpGs FDR q < 0.05 [10]

Depression Case-control Blood N = 200 6 DMRs Sidak corrected
p < 0.05 [22]

Cognitive abilities Population study Blood N = 2557–6809 2 CpGs p < 0.05/(420000 CpG
x7 traits) [8]

Depressive symptoms Case-control Blood N = 47 None below threshold [6]

Depressive symptoms Population study Blood N = 7948 (discovery);
N = 3308 (replication) 3 CpGs p < 1.03 × 10−7 [3]

Narcolepsy Case-control Blood N = 46 14 CpGs FDR p < 0.05 [19]

Violent aggression
Clinical study
(schizophrenia

patients)

Peripheral blood
mononuclear cells N = 134 (discovery) Weak differences p < 1 × 10−6 [15]

Physical aggression Population study
Buccal (discovery);
peripheral T cells

(replication)

N = 119 (discovery);
N = 38 (replication) 4 CpGs; 2 DMRs FDR q < 0.05 [14]

Early-onset conduct
disorder Case-control Cord blood N = 260 7 CpGs FDR q < 0.05 [13]

Multiple risk
behaviours Population study Blood N = 227–575 2 CpGs FDR q < 0.10 [11]

Autism spectrum
disorder Case-control Blood N = 1311 None below threshold p < 1.12 × 10−7 [16]

Autism spectrum
disorder Case-control Cord blood N = 1263 None below threshold p < 1 × 10−7 [17]
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2. Challenges to Assess Causality

Although there are indications that peripheral DNA methylation could be a plausible mechanism
that leads to certain brain-related conditions, causality is often difficult to establish in epigenetic
epidemiology. Many studies based on epigenome-wide associations are observational and do not
allow for a direct assessment of whether the observed DNA methylation differences are a cause,
consequence or confounder for the disease of interest.

Firstly, evidence is often based on studies with small sample sizes without replication. Even if the
effects are replicated across studies, they might arise due to similar confounding structures in the data
sets, such as the distribution of tobacco smoking behaviours. Even after adjusting for self-reported
smoking, residual confounding could still be present due to reporting bias. For example, the association
study of DNA methylation on educational attainment has revealed that all sites linked with education
have previously been associated with smoking behaviour. Since smoking is often negatively correlated
with years of education, this suggests that the observed association between DNA methylation and
education is largely due to confounding, rather than describing a causal relationship [21].

Another possible scenario where DNA methylation changes are not causal for a disease arises
when the disease manifestation itself causes changes in DNA methylation, also referred to as reverse
causation. This could arise in cross-sectional studies, where the samples for DNA methylation analysis
are obtained at the same time point as the administration of a questionnaire to assess the outcome of
interest, or where the methylation measurement was taken after the diagnosis of a disease was made.
For instance, in the large epigenome-wide association study (EWAS) on major depressive disorder,
DNA methylation was measured after the diagnosis was made. Hence, based on the association study
alone, it is impossible to disentangle whether epigenetic changes are the cause or consequence of the
disease [3].

Most human epigenetic studies of mental health are based on peripheral samples. Although in
some cases methylation changes occur in CpG sites linked to genes that have relevant brain functions,
it is often challenging to relate changes in peripheral methylation to the development of a condition
that affects the central nervous system (CNS). This problem is of relevance mainly because DNA
methylation in the brain of living individuals cannot be quantified. Post-mortem samples, while rare,
only allow the assessment of DNA methylation changes after the disease has manifested [23], as,
for instance, in an EWAS of autism spectrum disorder conducted across several brain regions [24]. In
this case, epigenetic changes could be confounded by treatment effects, as DNA methylation changes
have been reported, for instance, in relation to antipsychotic treatment [25].

The ‘gold standard’ experimental approach used to seek causal evidence is the randomised
controlled trial (RCT). However, this is not a feasible option for DNA methylation research, as it is not
yet possible or ethical to undertake an RCT with DNA methylation as the primary controlled exposure.
Some studies have taken advantage of RCTs set up with other primary exposures and subsequently
measured DNA methylation as a surrogate or intermediate, but these have tended to be serendipitous,
relying on RCTs that have collected DNA samples for other purposes (see below for further discussion
of this issue).

Animal studies, particularly in the laboratory, have the advantage of allowing for controlled
experimental conditions and access to specific tissues other than peripheral blood, therefore avoiding
the issue of confounding and the otherwise limited inferences that can be made with respect to tissue
specificity. In mouse studies, DNA methylation can, for example, be manipulated by deleting the
genes coding for DNA methyltransferases (Dnmt1/Dnmt3a/Dnmt3b), the enzymes that catalyse the
transfer of a methyl group to a cytosine nucleotide. A study by Hutnick et al. [26] showed that
the deletion of Dnmt1, even when restricted to the forebrain, caused widespread hypomethylation,
neuronal degeneration and behavioural impairment in learning and memory. This is in line with
other mouse studies, where Dnmt1 deletion seemed to cause increases in anxiety-like behaviour
and deleting both Dnmt1 and Dnmt3 led to synaptic abnormalities with functional consequences for
hippocampal plasticity [27,28]. These studies indicate a causal link between overall DNA methylation
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and brain-related traits, however they do not allow for the identification of specific methylation
loci within the genome at which the changes in DNA methylation might be exerting their influence.
Recently, with the technology of the CRISPR-Cas9 system applied in vivo to laboratory mice, it has
become possible to demonstrate that DNA methylation at the FMR1 gene causes the molecular and
physiological phenotype of fragile-X syndrome [29]. While fragile-X syndrome has a specific and
detectable molecular phenotype (lack of FMR1 protein), the limitation of most animal studies is that
many human psychiatric diseases are defined by behavioural traits that can only be partially observed
in other species. Most animal models are based on the resemblance of the behavioural symptoms and
therefore mostly correspond to a sub-set of symptoms and traits of the modelled human psychiatric
diseases, rather than the full disease. Similarly, the pathological mechanisms leading to the human
psychiatric conditions might not necessarily correspond to the changes observed in the animal models
that only partially mimic the human condition.

3. Epidemiological Approaches to Investigate Causality

3.1. Strength and Robustness of the Associations

True epigenetic associations often tend to replicate in population samples with similar
characteristics and confounding structures, thus the associations observed could be due to real effects
or to other non-causal explanations. To assess the strength and robustness of the associations it
is recommended, where feasible, to work collaboratively across multiple studies, as true causal
associations ought to be reproduced across studies with different confounding structures. Such
collaborations can be achieved within consortia, where several studies with available epigenomic
data can contribute to addressing the same research questions according to agreed and standardized
analysis plans. Selected examples of such consortia that have been used in the field of epigenetic
epidemiology are listed in Table 2 below.

Table 2. Selection of consortia in the field of epigenetic epidemiology.

Resource Description Link

Pregnancy and Childhood Epigenetics
(PACE) consortium [30]

Focus on the effect of early life exposures on
DNA methylation in childhood

https:
//www.niehs.nih.gov/research/

atniehs/labs/epi/pi/genetics/pace/
Cohorts for Heart and Aging Research

in Genomic Epidemiology
(CHARGE) [31]

Focus on facilitating genetic and epigenetics
meta-analyses and replication opportunities

among cohort studies
http://www.chargeconsortium.com/

Genetics of DNA Methylation (GoDMC)
consortium [32]

Focus on the genetic basis of DNA
methylation variation in participants of

different ages and ethnicities

http://www.godmc.org.uk/
information.html

For these cross-cohort analyses, it is, however, essential to standardize pre-processing steps,
including normalisation, quality checks, and epigenome-wide association study (EWAS) analyses
procedures. Data sharing is often a limiting factor in analyses of this type and harmonizing data across
studies can sometimes be resource intensive. Software packages have been developed to facilitate such
analyses. For example, the meffil R package, which was created to enable cross-cohort harmonization
without data sharing, is available for download at https://github.com/perishky/meffil [33].

Where there is no opportunity for collaboration, or the phenotypes of interest are not available
in consortia, it is sometimes possible to access DNA methylation data and their association with
the phenotype from openly available online repositories, such as Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/). In the GEO repository, data can be downloaded or analysed
online with the interactive GEO2R tool [34].

Replicating associations across different datasets also provides an opportunity to verify that
results are not due to technical artefacts. Although replication does not necessarily increase the
likelihood of associations being causal, it can be a further step in supporting the veracity of the
observed association. For instance, investigating the same CpG sites-trait associations across the

https://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/
https://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/
https://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/
http://www.chargeconsortium.com/
http://www.godmc.org.uk/information.html
http://www.godmc.org.uk/information.html
https://github.com/perishky/meffil
https://www.ncbi.nlm.nih.gov/geo/
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Illumina 450K or the more recent EPIC array or using different techniques, including pyrosequencing,
bisulphite sequencing and qPCR, will strengthen the inferences that can be made with respect to the
confidence in true associations.

3.2. Experimental and Quasi-Experimental Approaches

The conventional epidemiological design to investigate causality, an RCT requires the participants
to be randomly assigned to groups that are similar except for the exposure of interest (here,
DNA methylation). Although theoretically it is possible to conduct an RCT of a demethylating agent
and assess its impact on a mental health outcome, a targeted manipulation of specific methylation sites
is currently not achievable with the available tools.

RCTs are, however, more tractable where methylation is considered as a secondary outcome to
investigate the effects of an intervention. For example, RCT designs were exploited to assess the effects
of pollution [35] and folate intake [36] on DNA methylation. Linking changes in methylation, which
have been identified to be a causal consequence of environmental exposures, to psychiatric disorders
could be an interesting and worthwhile extension of such findings.

Natural experiments, where populations are exposed to an unplanned disaster or event, provide
valuable data to reveal changes in DNA methylation that are causal for psychiatric conditions.
For example, methylation changes due to prenatal exposure to the Dutch famine [37] have been
shown to cause changes in mental health in adulthood [38] and suggest that DNA methylation could
be a potential mediating mechanism. Similarly, prenatal maternal stress due to a significant ice storm
in Quebec in 1998 affected DNA methylation [39] and autism-related traits [40].

3.3. Mendelian Randomization

One widely adopted approach to strengthen causal inference is the method of Mendelian
randomization (MR), a form of instrumental variable analysis. In MR, the instrument is comprised of
one or more genetic variants that are robustly associated with the exposure of interest. As individuals
inherit alleles at random, these individuals are assigned to experience a higher-than-average dosage of
the exposure.

Mendelian randomization relies on the availability of genetic variants to use as instrumental
variables (for a discussion on additional assumptions, see [41,42]). Where genetic variants can be
identified that correlate strongly with DNA methylation levels, MR can be applied to study causal
effects of DNA methylation on mental health. Depending on the research question, the sample
characteristics and data availability, different MR methodologies can be applied, such as one-sample,
two-sample, bidirectional, multivariable and two-step MR, the details of which can be found
elsewhere [43,44]. Due to limitations in data availability and the computational resources required,
MR has predominantly been performed to date on selected methylation loci (e.g., top hits of a robust
EWAS), with a few notable exceptions [45,46]. However, with the advent of more detailed data on
genetic variants that tag methylation variation, the approach promises to be more widely adopted.

3.3.1. Instruments for Epigenetic Mendelian Randomization Analysis

Potential instruments for DNA methylation are single nucleotide polymorphisms (SNPs)
that are strongly associated with methylation at the CpG sites of interest—often referred to as
methylation quantitative trait loci (mQTL). These can be found in online databases that have performed
genome-wide association studies (GWAS) of DNA methylation (Table 3). The overwhelming majority
of catalogued mQTLs have been derived from populations of European ancestry and are based on
peripheral blood DNA, raising the issue of whether the same SNP–DNA methylation relationship is
observed in other ethnicities or tissues. Emerging evidence suggests that this assumption might be
plausible in some instances [47]. However, as DNA methylation is often tissue-specific, brain-tissue
specific databases (Table 3) can be used to identify mQTLs when the hypothesis implies a biological
mechanism that acts via changes in brain DNA methylation.
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Alternatively, blood-derived mQTLs can be used in MR when an EWAS of a brain-related trait
has been conducted in blood and it is plausible that changes in methylation in blood cells are reflected
in changes in brain activity, for instance, via circulating hormones that cross the blood–brain barrier
(see Section 3.4.1 for a more detailed discussion).

Table 3. Resources that can be used to identify genetic effects on DNA methylation probes. mQTL:
methylation quantitative trait locus.

Resource Description Link

mQTL database [48] 1000 mother–child pairs across the
life course; based on blood http://mqtldb.org

BIOS QTL browser 3841 adult blood samples of
varying ages https://genenetwork.nl/biosqtlbrowser

GoDMC [49] Largest mQTL consortium to date;
focus on blood tissue http://www.godmc.org.uk/projects.html

Brain xQTL Serve [49] 411 frontal cortex brain samples of
older adults http://mostafavilab.stat.ubc.ca/xqtl

Brain Epigenomics [50] 166 foetal brain samples https://epigenetics.essex.ac.uk/mQTL

Some of the resources listed in Table 3 are based on data from specific developmental periods
(e.g., foetal sample, cord blood), however, our ability to use these resources in a developmentally
sensitive manner is still restricted and heterogeneity in ethnicity and cell type composition between
the target and the reference datasets limits any conclusions drawn from these analyses.

Most mQTLs are cis-associations, i.e., they are located proximal to the CpG of interest. Cis-SNPs
have large effects on the CpGs in their proximity, whereas trans-SNPs have smaller effects and tend to
act polygenically on several target loci. For these reasons, cis-SNPs, rather than trans, are preferred as
instruments for use in MR.

3.3.2. Methodologies in Epigenetic Mendelian Randomization Analyses

If mQTLs are available for the CpGs of interest, they can be used as instruments for MR. In studies
where genotypes, DNA methylation data and the outcome (e.g., a mental health trait), are available, it
is possible to perform one-sample MR using the 2-stage-least-square regression (Figure 1, top panel).
This is easily implemented with the ivreg2 command in the STATA software or the function tsls in the
gmm R package (https://cran.r-project.org/web/packages/gmm/index.html) [51].
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When this data is not available, a two-sample MR approach can be used (Figure 1, bottom
panel). This relies on extracting the genotype-methylation (G-M) summary statistics (beta regression
coefficients and standard errors) from one study and the genotype-outcome (G-O) statistics from
another, independent study. For one SNP, the causal estimate is the ratio of the genotype-outcome
beta coefficient divided by the genotype-methylation beta coefficient. The standard error of the causal
estimate is estimated via the delta-method as described in Thomas et al. [52]. When at least three genetic
variants are available, the G-M/G-O ratio estimates are meta-analysed using standard meta-analysis
methods, such as the inverse variance weighted approach with fixed or random effects models.
Two-sample MR can be easily performed using the MR-Base online tool (http://www.mrbase.org/)
and the TwoSampleMR R package available for download at the github online repository (https://
github.com/MRCIEU/TwoSampleMR) [53]. Similarly, the MendelianRandomization R package performs
two-sample MR using existing summary data on genetic associations with exposure and outcome [54].
When several SNPs are available it is useful to choose the MR-Egger model, which provides a test for
horizontal pleiotropy and a pleiotropy-adjusted causal estimate [55]. However, this method has lower
power and is recommended primarily as a sensitivity analysis. GWAS summary statistics for the G-O
associations can be found in several online databases (Table 4).

Table 4. Resources providing genome-wide association study (GWAS) summary statistics for (mental
health) traits. EMBL-EBI: European Molecular Biology Laboratory - European Bioinformatics Institute;
NHGRI: National Human Genome Research Institute; ENIGMA: Enhancing Neuro Imaging Genetics
Through Meta Analysis.

Resource Description Link

MRInstruments
R package that contains a number of

data files from various sources to
provide instruments in two-sample MR

https://github.com/MRCIEU/
MRInstruments

Phenoscanner [56] Lists over 65 billion GWAS associations,
hosted at the University of Cambridge

http://www.phenoscanner.medschl.
cam.ac.uk

GWAS catalogue [57] Curated catalogue in collaborative
between the EMBL-EBI and NHGRI https://www.ebi.ac.uk/gwas

Psychiatric Genomics Consortium [58] Genome-wide summary data for
psychiatric disorders

https://www.med.unc.edu/pgc/
results-and-downloads

ENIGMA brain structure [59] Genome-wide summary data for brain
structure phenotypes

http://enigma.ini.usc.edu/research/
download-enigma-gwas-results

Following this strategy, two-sample MR has recently been applied to test for a causal effect of
methylation in the DRD4 gene on physical aggression and did not support a causative link [14].

The direction of the association, if not known a priori, can be queried using bi-directional MR,
where both a causal effect of methylation on the trait and a causal effect of the trait on methylation are
estimated. Effectively, this procedure involves two MR analyses, requires a set of independent SNPs
for each analysis and can be carried out within the one-sample or the two-sample setting.

When the research interest is to estimate the effect of an exposure on an outcome via DNA
methylation, to supplement the conventional observational mediation approach, it is useful to adopt
an MR strategy that involves two MRs, one from exposure to methylation and one from methylation to
the outcome of interest. In the two-step MR approach, the SNPs used as instruments for each step need
to be independent. Each MR step adopts the usual assumptions for MR and is performed using the
same general principles and methods for MR. This implies that several independent study samples are
needed to obtain the summary statistics for the genotype-exposure (G-E), G-M and G-O associations,
which can be identified using the resources listed in Tables 3 and 4. Two-step MR has been applied
to test the causal role of prenatal nutrients involved in the one-carbon metabolism on schizophrenia
via epigenetic changes [60] and to reveal DNA methylation as a mediator between the exposure to
prenatal vitamin B12 and cognitive abilities [61].

Other methods using genetic variants to strengthen causal inference are based on the integration
of genome-wide genetic and epigenetic data with the disease of interest, using polygenic risk scores

http://www.mrbase.org/
https://github.com/MRCIEU/TwoSampleMR
https://github.com/MRCIEU/TwoSampleMR
https://github.com/MRCIEU/MRInstruments
https://github.com/MRCIEU/MRInstruments
http://www.phenoscanner.medschl.cam.ac.uk
http://www.phenoscanner.medschl.cam.ac.uk
https://www.ebi.ac.uk/gwas
https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads
http://enigma.ini.usc.edu/research/download-enigma-gwas-results
http://enigma.ini.usc.edu/research/download-enigma-gwas-results
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(PRS) for the disease and co-localisation analyses. PRS are defined as the sum of trait-associated
alleles across many genetic loci, weighted by the GWAS effect size. Similar to the MR approach,
the epigenetic and phenotypic variation associated with PRS is less likely to be confounded by lifestyle
exposures such as smoking and environmental factors such as pollution and is less prone to reverse
causation. For example, EWAS studies on schizophrenia where PRS rather than diagnosis were
used in the analysis have identified DNA methylation differences at novel CpGs [62]. Furthermore,
Bayesian co-localisation analysis, where the results of a GWAS of methylation at the CpG sites and
the results from an independent GWAS for schizophrenia were compared, supported the hypothesis
that some of the genetic variants within the overlapping sites had a regulatory role in the disease via
influencing DNA methylation [63]. PRS for brain-related disease can be computed using summary
statistics from published GWAS (see Table 4 for a list of resources; to derive polygenic scores, see https:
//choishingwan.github.io/PRSice (version 2.1.9), https://www.cog-genomics.org/plink/1.9/score
(version 1.9) and [64]). Bayesian colocalization analysis can be performed using existing summary data
from mQTL databases and the coloc R package (https://cran.r-project.org/web/packages/coloc/) [65].

3.4. Plausibility of Biological Mechanisms

3.4.1. A Word of Caution: Mechanism vs. Biomarker

The excitement of obtaining an epigenetic signal that is strong, robust and potentially causal can
be exhilarating. However, before deriving conclusions about the ‘aetiological mechanism of disease’,
it is advisable to recall the original aim of the study. Frequently, the aim is to identify causes of disease,
which is imperative for interventions to be successful. On the other hand, establishing non-causal
associations (often referred to as biomarkers, see below) can be useful in prediction. However,
a biomarker can be causal or non-causal. Whether the aim is to identify a causal pathway and/or a
biomarker (of risk or of disease) should be set out in the initial stages of the project. Caution is advised
with respect to the conclusions that can be drawn from the study design and data in terms of biological
mechanisms. The interpretation of results will differ, depending on the underlying assumptions about
the likelihood of system-wide effects of the exposure (i.e., genetic or environmental causes of disease),
the relationship between the studied tissue and the primary tissue of pathophysiology. In most cases,
methylation profiles would have been obtained from peripheral tissues (blood or saliva), with a small
proportion of studies using post-mortem brain tissue.

Under the assumption that the causal (but not necessarily initial, see argument below) tissue of
pathophysiology is the brain, at least three potential scenarios are possible to describe the relationship
between peripheral and CNS methylation profiles: A shared common cause, periphery-mediated or
CNS-mediated pathways to disease (left, middle and right panels in Figure 2). Note that a scenario in
which DNA methylation is a direct consequence, rather than a precursor, of disease, is an equally likely
possibility, but not the focus of the current discussion. A mechanistic interpretation of findings based
on peripheral tissue only makes sense assuming that the initial cause of pathophysiology originates in
the periphery (Figure 2b,e) or at the very least assuming concordance of methylation patterns across
tissues (top panel Figure 2, although see below for additional assumptions).

‘Concordance’ in this case shall be defined as the consistency in effect of the exposure
(i.e., the cause of disease) on DNA methylation across tissue. This is different from ‘correlation’
of DNA methylation across tissue. For example, relative (but meaningful) perturbations in DNA
methylation due to an exposure might be comparable across tissue, while absolute DNA methylation
levels themselves are less correlated across tissues (Figure 3a). This assumes that small levels of
perturbations can have large effects in some but not in other tissues. Likewise, without knowing
what precisely causes cross-tissue correlations in DNA methylation, DNA methylation levels might be
correlated across tissue, but the effect of an exposure on DNA methylation in each tissue is different
(Figure 3b). Therefore, while correlation of DNA methylation profiles across tissues is often an
important indication, it is neither necessary nor sufficient for cross-tissue concordant effects.

https://choishingwan.github.io/PRSice
https://choishingwan.github.io/PRSice
https://www.cog-genomics.org/plink/1.9/score
https://cran.r-project.org/web/packages/coloc/
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Even in the case of cross-tissue concordance, it is easy to overstate risk pathways to disease.
In the concordant, common cause scenario (Figure 2a), the tendency is to assume system-wide causal
effects, but it might be equally likely that a disease risk factor impacts methylation of the same
gene in different tissues independently. In all concordant scenarios (Figure 2a–c), concordant gene
function across tissues is presumed, although genes can have different functions in different tissues.
For example, assuming that in an analysis based on data from whole blood, a methylation site was
identified with a potential relevance for serotonin function. In the periphery, the primary function of
serotonin is digestion, while in the CNS, serotonin is mainly involved in sleep and mood [67]. In the
‘shared common cause’ scenario (Figure 2a), we do not need to focus on digestion-related functions,
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as these are not likely to be involved in the disease pathophysiology. In the ‘periphery-mediated’
scenario (Figure 2b), however, digestion should be a main pathway-of-risk, while in the ‘CNS-mediated’
scenario (Figure 2c), digestion is, if anything, a downstream pathway of disease. Any mechanistic
interpretation of findings depends fundamentally on which scenario is most likely.

When concordance is not assumed (Figure 2d–f), the default position is often that, even though
the epigenetic variation is not likely to be mechanistically involved, it may act as a biomarker of
disease risk. However, the precise ‘biomarker’ definition referred to is often not clear. According to
the National Institute of Health Biomarkers Definition Working group, a biomarker is ‘a characteristic
that is objectively measured and evaluated as an indicator of normal biologic processes, pathologic
processes or biological responses to a therapeutic intervention’ [68]. While it is beyond the scope of this
review to discuss the role of DNA methylation as a biomarker of risk or disease, this term should not be
used too lightly. Biomarkers should be easily (in terms of tissue accessibility) and robustly measurable
with little measurement error, reproducible across studies (e.g., it is not advised to claim biomarker
potential based on a single study without replication) and have predictive power (or alternative
advantages, such as reducing costs). Finally, it should be clear what exactly the established biomarker
indexes (risk, disease or treatment). While it is often claimed that methylation-based biomarkers have
the potential to inform intervention strategies, studies designed to explicitly demonstrate this are
rarely seen [69].

It is impossible to test these scenarios (Figure 2) directly without access to longitudinal and
repeated measures of both peripheral and brain tissue in living humans, but their likelihood can
be assessed by using tissue-specific causal inference method such as Mendelian randomization
(see Section 3.3) and the increasing body of online resources as described in the following sections.

3.4.2. Biological Characterisation

Characterising the biological relevance of an identified methylation site is often part of an
epigenome-wide analysis, regardless of whether a potential disease mechanism has been established.
While methylation sites are often primarily viewed in relation to the nearest coding gene, it can
be equally important to consider DNA methylation in the context of regulation of gene expression
via impacting chromatin accessibility and transcription factor binding. For instance, studies have
confirmed that DNA methylation around the transcription start site is largely associated with reduced
gene expression locally [49]. In a study based on brain samples, DNA methylation and histone
modifications were located in regulatory regions and seemed to mediate the association of genetic
variants with gene expression [70]. Many of those epigenomic loci were also replicated in peripheral
blood samples and were associated with psychiatric diseases, such as schizophrenia and bipolar
disorder. To characterize the biological context of a methylation site, the results of an EWAS can
first be matched to the annotation file usually provided with the data, or openly accessible online
(Illumina 450k and EPIC array annotation are, for example, available via various R packages such as
meffil [33]). This will provide CpG information on genomic location, SNPs located in or close to the
probe, associated genes and location with respect to the transcription start site of these genes or CpG
islands. Furthermore, information is provided on low- or high-CpG density regions associated with
Functional Annotation of the Mouse/Mammalian Genome (FANTOM) 4 promoters [71], although the
reader should keep in mind that this information was based on human myeloid leukaemia cell lines
and is not specific to CNS tissue. Finally, in the annotation file the reader will find information on
enhancer elements, DNase I Hypersensitivity Sites, open chromatin regions and transcription factor
binding sites (all based on the Encyclopaedia of DNA Elements (ENCODE) data [72]).

Whenever possible, however, querying several databases (see Table 5 for selected resources) is
advocated to corroborate results and to summarize all findings to avoid selective reporting. Also,
to achieve a more meaningful interpretation of the regulatory nature of the genomic region in
question, investigating these regulatory characteristics in a cell-type specific manner is advisable,
which can be achieved using ENCODE data (www.encodeproject.org), usually via platforms such

www.encodeproject.org
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as genome.ucsc.edu. For example, DNase I hypersensitivity clusters—indicative of regulatory
chromatin regions that are sensitive to cutting by the enzyme DNase—can be viewed for 125 cell
types (including cells derived from blood and brain tissue) as part of the ENCODE project. Histone
marks and transcription levels are available for up to nine cell lines (including blood, embryonic
stem cells and skeletal muscle, among others). Transcription factor binding sites are listed for
161 factors in 91 cell types (for a list on cell types, see here: https://genome.ucsc.edu/cgi-bin/
hgEncodeVocab?type=%22cell%22). Note that information on CNS-specific cell types is not always
available but high (or low) correspondence across these diverse cell types could indicate similarly
(un-)correlated profiles in brain tissue. For cell-type specific profiles related to brain tissue, a suggestion
could be to investigate DNase I and histone mark data from the Roadmap Epigenetics Project
(http://www.roadmapepigenomics.org/data/) that assayed ten different brain regions (including
the hippocampus, cerebellum and mid-frontal lobe, among others). Note though that DNase I data
is only available for foetal brain (not region-specific) and spinal cord tissue. Also note that, to
view Roadmap data in the UCSC genome browser, the reader will need to import these tracks
via the UCSC Track data hub (https://genome.ucsc.edu/cgi-bin/hgHubConnect) or via http://
www.roadmapepigenomics.org/data/. PsychENCODE is a comprehensive resource with exceptional
relevance to brain related traits [73–83]. It provides raw and derived transcriptomic, epigenomic,
and genomic data of post-mortem adult and developing human brains, both at the single-cell and tissue
level. This dataset also includes measures on (hydroxy-)methylation, is based on up to 2000 individuals
and incorporates resources such as GTEx, ENCODE and Roadmap Epigenetics Project, discussed
above and elsewhere in this article. Data and results can be downloaded from The PsychENCODE
knowledge portal (http://www.synapse.org/pec) and from http://resource.psychencode.org/.

Table 5. Selection of resources to aid in the biological characterisation of DNA methylation findings.

Resource Description Link

ENCODE data [72] Tissue-specific regulatory elements across a wide
range of tissues

www.encodeproject.org; or
viawww.ucsc.genome.edu

Roadmap Epigenetics Project [84] Tissue-specific regulatory elements, specifically
in brain tissue

http://www.
roadmapepigenomics.org; or via

www.ucsc.genome.edu

PsychENCODE [75] Brain-specific tissue and single-cell
transcriptomic and epigenomic data http://www.psychencode.org/

EWAS catalogue Manually curated and quality controlled
catalogue of epigenome-wide association studies ewascatalog.org

Imprinted genes List of imprinted genes (by species) http://www.geneimprint.com/
site/genes-by-species

After investigating the regulatory nature of the genomic region, it can also be helpful to query
whether the CpG itself or the differentially methylated region (DMR) has been implicated in other
epigenome-wide analyses, which can be done using a manually curated EWAS catalogue hosted at
http://www.ewascatalog.org/.

Finally, it is advised to investigate: (1) Ehether a CpG-of-interest is under genetic control by
identifying potential mQTLs, ideally in a tissue-specific manner (see Section 3.3.1 and Table 3 above for
a list of resources); (2) whether a genomic region might show epigenetic supersimilarity, i.e., where the
similarity in DNA methylation between twins is greater than expected based on shared genetics,
as reported by Van Baak et al. [85]; and (3) whether a CpG-linked gene might be imprinted, meaning
that the expression of this gene depends on the parental origin. For a list of imprinted genes, see http:
//www.geneimprint.com/site/genes-by-species.

3.4.3. Cross-Tissue Comparisons

Cross-tissue correlation (see Section 3.4.1) is an important, but not essential, requirement, even
for a mechanistic interpretation of findings (e.g., Figure 2e). In practice, correspondence can be
investigated using cell-type specific data on regulatory regions (see Section 3.4.2 and Table 5) and

https://genome.ucsc.edu/cgi-bin/hgEncodeVocab?type=%22cell%22
https://genome.ucsc.edu/cgi-bin/hgEncodeVocab?type=%22cell%22
http://www.roadmapepigenomics.org/data/
https://genome.ucsc.edu/cgi-bin/hgHubConnect
http://www.roadmapepigenomics.org/data/
http://www.roadmapepigenomics.org/data/
http://www.synapse.org/pec
http://resource.psychencode.org/
www.encodeproject.org
via www.ucsc.genome.edu
http://www.roadmapepigenomics.org
http://www.roadmapepigenomics.org
www.ucsc.genome.edu
http://www.psychencode.org/
ewascatalog.org
http://www.geneimprint.com/site/genes-by-species
http://www.geneimprint.com/site/genes-by-species
http://www.ewascatalog.org/
http://www.geneimprint.com/site/genes-by-species
http://www.geneimprint.com/site/genes-by-species
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several other openly accessible online resources (Table 6). BECon [86] (https://redgar598.shinyapps.
io/BECon/) is based on paired blood and post-mortem brain tissue data from 16 individuals. The
user can enter a CpG or gene name to visualize cross-tissue correlation across blood and three brain
regions (BA10 (frontal), BA20 (temporal) and BA7 (parietal)). Another online resource with similar
functionality is available via https://epigenetics.essex.ac.uk/bloodbrain/, based on matched blood
and four post-mortem brain tissues (cerebellum, entorhinal cortex, frontal cortex and superior temporal
gyrus) in 74 individuals. These two resources are based on the Illumina 450k array. Methylation
data based on bisulphite sequencing are available via MethBase [87] (http://smithlabresearch.org/
software/methbase/) and can be imported via the Track hub option (see Section 3.4.2) into the
UCSC genome browser. This resource provides information on methylation levels at individual sites,
allele-specific methylation and hypomethylated or hypermethylated regions. Furthermore, MethBase
does not only allow for comparisons across cell types (frontal cortex, neural progenitor cells, embryonic
stem cells and blood tissue cells in humans), but also across development (from 35 days to 64 years
in the case of brain tissue data) and across species (including human, mouse, chimp, dog, zebrafish
and plants).

Alternatively, it is possible to test for a tissue-specific enrichment of EWAS probe sets, an option
which is currently implemented in eFORGE (http://eforge.cs.ucl.ac.uk/). Relying on data from
ENCODE and the Epigenomics Roadmap, eFORGE compares DNase I hypersensitivity site hotspot
overlap between an EWAS input list and background probes in a cell-type specific manner.

Table 6. Resources for cross-tissue comparisons of methylation signals.

Resource Description Link

BECon [86]
Cross-tissue correlations of 450k probes across

paired blood and brain regions of
16 individuals

https:
//redgar598.shinyapps.io/BECon

Brain
Epigenomics

Cross-tissue correlations of 450k probes across
paired blood and brain regions of

74 individuals

https://epigenetics.essex.ac.uk/
bloodbrain

MethBase [87]
Methylation profiles across tissues,

development and species, based on bisulphite
sequencing

http://smithlabresearch.org/
software/methbase

eFORGE [88] Analysis of cell type-specific signals in
epigenomic data http://eforge.cs.ucl.ac.uk/

An alternative technique to investigate cross-tissue correspondence was applied in Linnér et al. [21]
using data from the Epigenomic Roadmap Consortium (see Section 3.4.2; although alternative resources
such as PsychENCODE listed in Table 5 could also be used). There, the authors calculated average
cross-tissue methylation for a selected number of CpG sites linked to educational attainment and derived
deviation from this average for a range of tissues (including brain tissue). These tissue-specific measures
of deviation were then correlated with EWAS test statistics (z-scores). The authors argued that a lack of
correlation between EWAS z-scores of educational attainment and tissue-specific derivation (especially in
brain tissue, assumed to be the target tissue of interest) indicated an absence of brain-tissue specific effects
and might be suggestive of confounding. Of note, this method is based on average methylation levels
across tissue and not on correlations (i.e., methylation profiles might be correlated across tissues, but at
different absolute methylation levels).

Finally, there is some evidence that the effects of mQTLs on methylation can be stable across
tissues [48], although large-scale investigations across a wide range of tissue types (including brain
tissue) are still missing. With this in mind, investigating consistency of mQTL effects across tissues
(using resources described in Section 3.3.1) can be helpful to obtain some indirect evidence for or
against cross-tissue concordance.

https://redgar598.shinyapps.io/BECon/
https://redgar598.shinyapps.io/BECon/
https://epigenetics.essex.ac.uk/bloodbrain/
http://smithlabresearch.org/software/methbase/
http://smithlabresearch.org/software/methbase/
http://eforge.cs.ucl.ac.uk/
https://redgar598.shinyapps.io/BECon
https://redgar598.shinyapps.io/BECon
https://epigenetics.essex.ac.uk/bloodbrain
https://epigenetics.essex.ac.uk/bloodbrain
http://smithlabresearch.org/software/methbase
http://smithlabresearch.org/software/methbase
http://eforge.cs.ucl.ac.uk/
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3.4.4. Tissue-Specific Gene and Protein Expression

It is generally assumed that DNA methylation influences gene expression. However, this issue is
still extensively debated [89] and the absence of a functional effect of methylation of gene expression
does not preclude the possibility of a meaningful, causal mechanism. Still, it can be highly informative
to investigate whether a gene linked to variation in DNA methylation at a site-of-interest also shows
variation in its level of expression in the tissue-of-interest. The following section and Table 7 provide
an overview of online resources to assess gene expression profiles by tissue and across development.

The Human Protein Atlas (https://www.proteinatlas.org/humanproteome) is an excellent
resource to investigate in which tissues a gene-of-interest is expressed in absolute terms, and also
whether the expression of such a gene is elevated in the target tissue relative to average expression
levels in all tissues. Lists of whole groups of genes that are preferentially expressed in certain tissues
(e.g., n = 1460 genes are listed to show elevated expression profiles in brain tissue relative to all other
tissues) can be used to test for enrichment of brain-expressed genes in EWAS results.

The Genotype-Tissue Expression project (GTEx, https://gtexportal.org/home/) provides similar
options, listing information on tissue-specific gene expression, regulation and expression quantitative
trait loci (eQTL) information. Importantly, the eQTL function allows users to investigate tissue-specific
eQTL effects (for example of SNPs that have already been identified to be mQTLs).

To gain insight into gene expression profiles across development, the reader is encouraged to
consult the EMBL-EBI expression atlas (https://www.ebi.ac.uk/gxa/home), which displays data from
a range of resources (including NIH Epigenomics Roadmap, ENCODE and GTEx).

Several resources are of particular relevance to brain tissue-specific gene expression. The Allen
Brain Map portal (http://portal.brain-map.org/) provides a range of useful data, including the Human
Brain Atlas and the Developing Human Brain resources. The former is a unique multimodal atlas of the
human brain, integrating highly detailed anatomic and genomic information. The user can search for
a gene-of-interest and visualize its expression profile in different brain regions using high-resolution,
MRI-based 3-D histology scans.

The BrainSpan Atlas of the Developing Human Brain (http://www.brainspan.org) provides
information on the human transcriptome (RNA sequencing and exon microarray data) across different
brain regions and development. The BrainCloud application informs on genome-wide gene expression
and their genetic control in the dorsolateral prefrontal cortex of normal subjects across the lifespan
(http://braincloud.jhmi.edu).

The PsychENCODE project combines data from several resources (including GTEx and BrainSpan)
to characterize a large spectrum of genomic elements with the human brain, including gene expression
as well as multi-QTL maps (for expression, chromatin, transcript expression and cell fraction),
enhancers, splice variants and co-expression modules, often specific to cell type, brain region or
developmental period. For a more detailed discussion on brain-based resources, see Keil et al [90].

Finally, it is important to note that gene expression levels (either in absolute terms or relative to
average levels across tissues) can be misinterpreted. For example, DRD4 (coding for the dopamine D4
receptor) does not appear to be preferentially expressed in brain tissue, but it would be misleading
to come to the conclusion that DRD4 has no role in psychopathology, as numerous studies have
demonstrated DRD4 functioning to be involved in emotion and complex behaviours such as
novelty seeking [94–96]. Furthermore, there is a renewed interest in dopamine D4 receptor-based
pharmacological treatments for substance use and Parkinson’s disease [97]. As highlighted throughout
this review, molecular phenotypes including DNA methylation and gene expression vary over time
and across tissues, meaning that any measure will be specific to the temporal context at which the
sample was taken, thus limiting the inferences that can be made with respect to cause.

https://www.proteinatlas.org/humanproteome
https://gtexportal.org/home/
https://www.ebi.ac.uk/gxa/home
http://portal.brain-map.org/
http://www.brainspan.org
http://braincloud.jhmi.edu
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Table 7. Resources to investigate tissue-specific gene expression. eQTL: expression quantitative
trait locus.

Resource Description Link

Human Protein Atlas Expression profiles for all protein-coding genes in 44
tissues and organs in the human body

https://www.proteinatlas.org/
humanproteome

Genotype-Tissue Expression
project (GTEx)

Information on tissue-specific gene expression,
regulation and eQTL information, based on 53

non-diseased tissues across 714 individuals
https://gtexportal.org/home/

BIOS QTL Browser [49] Methylation QTL data, based on up to 3,841
whole-blood samples

https:
//genenetwork.nl/biosqtlbrowser/

EMBL-EPI expression atlas Gene expression profiles across development, based on
a range of resources https://www.ebi.ac.uk/gxa/home

Human Brain Atlas [91]
Multimodal atlas of the human brain, integrating

highly detailed anatomic and genomic information
based on six adult brains

http://human.brain-map.org/

Developing Human [92] Brain Human transcriptome in up to 16 brain regions from
4 weeks post conception to over 40 years http://www.brainspan.org/

BrainCloud [93]
Gene expression and their genetic control in the

dorsolateral prefrontal cortex of normal subjects across
the lifespan

http://braincloud.jhmi.edu/

PsychENCODE [75]
Integration of expression and other regulatory

elements across different brain cell types, regions and
developmental periods

http://www.psychencode.org/

3.4.5. Gene Ontology Analysis

At last, it can be of interest to carry out an ontology analysis (or, relatedly, pathway or gene
property analyses) to investigate whether the most associated CpG probes cluster within distinct
biological functions. A plethora of online resources is available for ontology analyses and the reader is
referred to excellent reviews on the topic [98,99]. In general, analysis tools with the option to carry out
tissue-specific analyses are recommended. For example, FUMA (http://fuma.ctglab.nl, [100]) tests
the relationships between tissue-specific gene expression and disease-gene associations, using gene
expression data from GTEx and the BrainSpan project, among others. As this resource was primarily
designed for genetic data, the user needs to map CpGs first to a gene before carrying out the analysis
using the GENE2FUNC option. With this functionality, Linnér et al. [22] reported that genes closest
to CpG probes linked to educational attainment were not preferentially expressed in brain tissue,
suggesting that findings might have been driven by confounding factors.

4. Strengths and Limitations

Epigenetic epidemiological studies of mental health and related phenotypes continue to be
the focus of much interest with the hope of enhancing understanding of the biological mechanisms
underlying the aetiology and progression of psychiatric diseases. However, they still present challenges
and limitations.

The platforms to generate data that have been most widely employed sample only a very small
portion of CpG sites in the genome. Studies using sequencing-based approaches, such as a recent
methylome-wide association study of major depressive disorder that measured DNA methylation in
28 million CpGs, promise to unlock more information on epigenetic variation and will unravel more
insights into the role of methylation in mental health [101]. Moreover, while the majority of the current
studies focus on CpG methylation, DNA methylation is also present at non-CpG sites, particularly in
brain tissue, suggesting a potential role in neurodevelopment and mental health [102]. Methylome
sequencing only recently allowed the characterisation of non-CpG methylation in brain tissue [103]
but could provide an additional avenue to discover novel effects in relation to neuropsychiatric traits.

Mendelian randomization is proving to be a useful tool to strengthen causal inference and explore
molecular mediation by DNA methylation. It does, however, have recognized limitations and is
unlikely to provide definitive evidence of causal pathways without triangulation using complementary
approaches in epidemiology and other disciplines.

https://www.proteinatlas.org/humanproteome
https://www.proteinatlas.org/humanproteome
https://gtexportal.org/home/
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Epidemiological studies of methylation and brain-related processes using peripheral tissue alone
may not be able to unravel true biological mechanisms, but the associations found can be translated in
useful biomarkers (whether causal or not) for diseases or their progression and therefore are worth
investigating. They can also be used to establish how substantial the contribution of genetic factors to
variance in methylation is. Also, it is often of interest to know whether a CpG impacts gene expression
(or vice versa), even if not causally linked to disease. Finally, these approaches are useful to explain the
correlation between peripheral DNA methylation and brain-based processes, even if these processes
index (non-causal) disease correlates. Even with the limitation of not necessarily addressing the
issue of causal correlates of psychiatric diseases that could be translated into intervention, peripheral
epigenetic associations can answer biological questions that ultimately help the understanding of
mental health.

5. Future Perspectives and Conclusions

In conclusion, recently developed openly accessible resources allow epigenetic epidemiological
studies of mental health and offer multiple opportunities to understand the aetiology and progression
of psychiatric conditions. Future advances in software development specific for epigenetics and
statistical methodologies for causal inference as well as large biobanks in multiple complementary
populations will substantially increase our understanding of mental health and lead to the generation
of reproducible results to inform prevention and intervention strategies.
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