BACE1 inhibition using 2'-OMePS steric blocking antisense oligonucleotides.

Madhuri Chakravarthy and Rakesh N Veedu

Results

Figure S1. The RT-PCR products after treatment with AO1, AO2, AO3, AO4, AO5, AO6, AO7, and AO8. The AOs were treated using a variety of transfection reagents including Lipofectamine 3000, Lipofectamine 2000, Lipofectamine RNAimax, and Lipofectin according to the manufacturer's protocol. FL, full-length; *SMN* was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. .

Exon 6

Figure S2. The RT-PCR products after treatment with AO9, AO10, AO11, AO12, AO13, AO14, AO15, AO16, AO17, AO18, AO19, AO20 and AO21. The AOs were treated using a variety of transfection reagents including Lipofectamine 3000 and Lipofectamine 2000 according to the manufacturer's protocol. FL, full-length; *GAPDH* was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. .

Figure S3. The RT-PCR products after treatment with AO2, AO5, AO6, AO8, AO12 and AO13. FL, full-length; *GAPDH* was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. [The gel in this figure is the original gel representing the gel in Figure 2 of the article. The cropped gel has been shown in Figure 2 of the article due to other unimportant samples that exist between the desired samples.].

Figure S4. The RT-PCR products after treatment with AO2, AO6, AO12, and AO13. FL, full-length; *GAPDH* was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. [The gel in this figure is the original gel representing the gel in Figure 3 of the article. The cropped gel has been shown in Figure 3 of the article due to other unimportant samples that exist between the desired samples and the samples loaded in the wrong wells.].

Figure S5. The RT-PCR products after treatment with AO2-PMO. FL, full-length; *GAPDH* was used as a loading control SCR, Scrambled or Gene tools control was used as a control. [The gel in this figure is the original gel representing the gel in Figure 5 of the article. The cropped gel has been shown in Figure 5 of the article due to other unimportant samples that exist between the desired samples.].

Figure S6. The RT-PCR products after AO2 treatment amplified using different primer sets. FL, fulllength; *GAPDH* was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. [The gel in this figure is the original gel representing the gel in Figure 6 of the article. The cropped gel has been shown in Figure 6 of the article due to other unimportant samples that exist between the desired samples and nonspecific bands that exist.].

Figure S7. The western blot membranes after AO2 treatment incubated with anti-BACE1 antibody (top membrane) and anti-GAPDH antibody (bottom membrane). *GAPDH* was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. [The membrane in this figure is the original membrane representing the membrane in Figure 7 of the article. The cropped membrane has been shown in Figure 6 of the article due to other nonspecific bands that exist.].

Methods:

Table S1. The seeding density of HEK293 cells used for different assays.

Assay	Plate or Flask?	Seeding density
RNA Extraction	24 well plate	50,000 cells/well
Western Blot	T25cm ² flask	625,000 cells/flask
Nucleofection	24 well plate	100,000 cells/well

Table S2. The primer sets used to amplify *BACE1* transcript.

Primer sets	Primer pairs	Primer Sequences	Expected size	
Primer Set 1	BACE1_Ex1Fa	5' GACAACCTGAGGGGCAAGTC 3'	420 hm	
	BACE1_Ex4R	5' AACGTGGGTCTGCTTTACCA 3'	429 bp	
Primer Set 2	BACE1_Ex2F	5' ACCAAAGTGAACCACGGAGG 3'	0(9 h-	
	BACE1_Ex8R	5' TCTGGTAAAGCAGACCCACG 3'	900 DP	
Primer Set 3	BACEL 4E	5' CCCACCACTAACTTTCCACT 3'	Variant A= 901 bp	
	BACE1 ExOP	5' CCATAACACTCCCCTCCAT 2'	Variant B= 826 bp	
	DACE1_EX9K	5 CCATAACAGIGCCCGIGGAT 5	Variant C= 769 bp	
Primer Set 4	BACE1 Ev2E		Variant A= 753 bp	
	DACE1_EX3F	5 ACCIGGIAAGCAICCCCAI 5	Variant B= 678 bp	
	DACEI_EX8K	5 ICIGGIAAAGCAGACCCACG3	Variant C= 601 bp	

Table 3. The primer sets used to amplify *GAPDH* transcript.

GAPDH Primer set	Primer pairs	Primer Sequences	Expected product length	
	GAPDH	5' GGACTCATGACCACAGTCCATGC		
Primer Set 1	GAPDH	5 5′ TTACTCCTTGGAGGCCATGTGGG	492 bp	
	Rev	3′		

Primer pairs		PCR Conditions	
	Temperature	Time	
BACE1 Primer set	55°C	30 min	
(25 ng each)	94°C	2 min	
BACE1_Ex1Fa	94°C	30 s	
BACE1_Ex4R	58°C	1 min	30 cycles
	68°C	2 min	
	Temperature	Time	
BACE1 Primer set	55°C	30 min	
(25 ng each)	94°C	2 min	
BACE1_Ex2F	94°C	30 s	
BACE1_Ex8R	55°C	1 min	30 cycles
	68°C	2 min	
BACE1 Primer set	Temperature	Time	
(25 ng each)	55°C	30 min	
BACE1_4F	94°C	2 min	

BACE1_Ex9R	94°C	30 s	28 cycles
	60°C	1 min	
	68°C	2 min	-
BACE1 Primer set	Temperature	Time	
(25 ng each)	55°C	30 min	
BACE1_3F	94°C	2 min	
BACE1_Ex8R	94°C	30 s	30 cycles
	60°C	1 min	
	68°C	2 min	
GAPDH Primer set (12.5 ng each)	Temperature	Time	
GAPDH For	55°C	30 min	
GAPDH Rev	94°C	2 min	
	94°C	30 s	18 cycles
	60°C	1 min	-
	68°C	2 min	-

Table 5. The HPLC analysis of the most efficient AOs (AO2, AO5, AO6, AO8, AO12, and AO13). All the AO samples were run on a Ion-Exchange HPLC using (1M NaClO4, 25mM Tris-HCl pH 8 and water) as mobile phase.

