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Abstract: Hybridization is increasingly recognized as an important force impacting adaptation and
evolution in many lineages of fungi. During hybridization, divergent genomes and alleles are brought
together into the same cell, potentiating adaptation by increasing genomic plasticity. Here, we review
hybridization in fungi by focusing on two fungal pathogens of animals. Hybridization is common
between the basidiomycete yeast species Cryptococcus neoformans × Cryptococcus deneoformans, and
hybrid genotypes are frequently found in both environmental and clinical settings. The two species
show 10–15% nucleotide divergence at the genome level, and their hybrids are highly heterozygous.
Though largely sterile and unable to mate, these hybrids can propagate asexually and generate
diverse genotypes by nondisjunction, aberrant meiosis, mitotic recombination, and gene conversion.
Under stress conditions, the rate of such genetic changes can increase, leading to rapid adaptation.
Conversely, in hybrids formed between lineages of the chytridiomycete frog pathogen Batrachochytrium
dendrobatidis (Bd), the parental genotypes are considerably less diverged (0.2% divergent). Bd hybrids
are formed from crosses between lineages that rarely undergo sex. A common theme in both species
is that hybrids show genome plasticity via aneuploidy or loss of heterozygosity and leverage these
mechanisms as a rapid way to generate genotypic/phenotypic diversity. Some hybrids show greater
fitness and survival in both virulence and virulence-associated phenotypes than parental lineages
under certain conditions. These studies showcase how experimentation in model species such
as Cryptococcus can be a powerful tool in elucidating the genotypic and phenotypic consequences
of hybridization.
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1. Introduction

Hybridization refers to the interbreeding of individuals from genetically distinct populations or
species. Through hybridization, genes and alleles that have diverged significantly from each other
are brought together into the same cells and individuals, potentially creating the scenario of novel
interactions among genes and genomes. There are two contrasting views on the roles of hybridization
in organic evolution. On the one hand, hybridization is considered an evolutionary noise with limited
long-term effects. Indeed, under a model in which species diverge by adaptation to different niches,
the majority of hybrids are expected to show lower fitness than either parental genotype in parental
niches [1,2]. On the other hand, certain hybrid progenies may display transgressive segregation/extreme
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phenotypes or fitness, both positive and negative, that exceed parental values, especially in novel
ecological niches. Because of this, the contrasting view believes that hybridization plays critical roles
in generating evolutionary novelty and can impact long-term evolution [3,4].

Hybrids may be either homoploid or polyploid. Homoploid hybrids have the same ploidy as
the parents, but they may face obstacles to further sexual reproduction due to potential chromosomal
incompatibilities. If homoploid hybrids can self-fertilize or backcross, the resulting offspring often
reveals high genetic and phenotypic variance, including the generation of transgressive phenotypes [5].
Polyploid hybrids, specifically allopolyploids, have a higher ploidy generated typically by chromosome
duplication, either in gametogenesis or after zygote formation following the mating of different
species [6]. The presence of pairs of homologous chromosomes from each parental species alleviates
the problems in meiosis due to low sequence similarity or structural rearrangements that lead to hybrid
sterility in homoploids. Outcomes of hybridization are diverse. For example, in plants, hybridization
may lead to the formation of novel hybrid species that are genetically isolated and phenotypically
distinct from progenitors [3,5]. In other contexts, the extent of hybridization may be limited to
a geographic region (or hybrid zone) maintained by either environment-genotype interactions or
through a balance between migration and selection. In any case, hybridization also makes possible the
introgression of alleles from one parental species into another, which is becoming easier to identify
through genome sequencing [7,8].

In all major groups of eukaryotes, such as plants, animals, and fungi, natural hybridization has
been reported, with some groups showing over 20% of extant species as hybrids. Previously, however,
hybridization in fungi was either ignored or discounted, and only since the molecular revolution has
hybridization in fungi been increasingly accepted as playing important roles [9,10]. Fungi are unique
from the better-studied plants and animals in that they often produce copious (literally millions or
billions) amounts of recombinants from a single mating event, which could lead to the generation of
immense diversity. They are also unique because their dispersal is not considered particularly limited,
such that traditional hybrid zones of a limited geographic extent seem unlikely. On the other hand,
many fungi display a mixed mode of reproduction, with extensive generations of asexual reproduction
interspersed with rare sexual reproduction [11]. Such versatility in reproduction could allow hybrids
to propagate asexually for extended periods of time without suffering from a potential segregation
load [12]. In fungi, F1 hybrids often display aneuploidy, diploidy, or higher ploidy, and because of
the extra chromosome copies they can continue to diversify and adapt through mechanisms such as
mitotic recombination and the gain/loss of individual chromosomes.

In this review, we explore these issues with a fungal view of hybridization described using two
major fungal pathogens, the human-pathogenic Cryptococcus species and the amphibian chytrid fungus
Batrachochytrium dendrobatidis. We argue that hybridization in these two groups of fungi reveals much
about how speciation and hybridization in fungi is unique, and how hybridization will become an
increasingly important concern for both the environment and human health in this era of rapid fungal
evolution. The choice of these two species is based off of the authors’ experiences. However, the pair
complement each other nicely. On the one hand, Cryptococcus (Basidiomycota) is a model system and
easily manipulated in the lab, while B. dendrobatidis (Chytridiomycota), a species of great ecological
significance, is far from a model system and lacks genetic tools. Insights into hybridization in these
species require different approaches, but much has been revealed and facilitated by genomics.

2. Hybridization in Cryptococcus Species Complex

2.1. Cryptococcus Species Complex

The human pathogenic Cryptococcus species complex comprises a group of closely related,
basidiomycetous yeast species, responsible for over 220,000 annual, global infections with a mortality
rate of ~80% [13]. Cryptococcal infections, known to occur in multiple forms including respiratory
infections, skin lesions, and meningoencephalitis, are collectively called cryptococcosis and are a
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leading cause of death among HIV/AIDS patients worldwide. Commonly found in association with
soil, bird droppings and tree barks, Cryptococcus species has a global distribution with strains having
been discovered from all continents except Antarctica [14]. Currently, seven evolutionarily divergent
lineages are recognized as pathogenic Cryptococcus species, which can be distinguished based on their
genetic and molecular characterization, with each species having been assigned specific molecular
types (Figure 1) [15,16]. Historically, Cryptococcus strains were categorized into serotypes based on the
structure of polysaccharides at the cell surface. An alternative classification system aims to maintain
two major species that are subdivided into varieties and/or molecular types [17,18]. In this review,
we will use the seven-species classification system with (i) C. neoformans (serotype A, molecular types
VNI, VNII and VNB; VN = variety neoformans), (ii) C. deneoformans (serotype D, molecular type VNIV),
(iii) C. gattii (molecular type VGI; VG = variety gattii), (iv) C. bacillisporus (molecular type VGIII), (v)
C. deuterogattii (molecular type VGII), (vi) C. tetragattii (molecular type VGIV) and (vii) C. decagattii
(molecular type VGIV/VGIIIc) (the last five species share serotypes B and C). To maintain consistency
with the previous literature, we will categorize cryptococcal hybrids based on the serotypes of the
parental species. For example, hybrids of C. neoformans and C. deneoformans will be referred to as
AD hybrids.

Figure 1. The currently recognized species in the pathogenic Cryptococcus species complex. The seven
species of this complex can be distinguished based on genetic and molecular differences, and each
is assigned a distinct molecular type based on clade assignment using multilocus sequence typing
markers. Historically, cryptococcal strains were broadly categorized into serotypes based on the
antigens found at the cell surface. Hybrids arising from mating between species are named based on
the serotypes of the parental strains.

The seven species are believed to be descended from a common ancestor that existed on the
supercontinent Pangea [19]. It is hypothesized that the ancestral population was split into two distinct
groups following the breakup of Pangea and subsequent continental drift further spatially isolated
the subgroups, leading to the emergence of two major, independently evolving populations in South
America and Africa. This theory is supported by the fact that the estimated split of VN molecular types
from VG molecular types occurred ~100 million years ago (mya) which coincides with the breakup of
Pangea [19]. Furthermore, genomic analyses have revealed the origin of VN molecular types to be
Africa, while VG molecular types originated in South America. The ancestral populations of VN and
VG molecular types continued to diverge and evolve, likely due to local niche differences, eventually
splitting into the seven species observed today. C. neoformans and C. deneoformans are believed to
have diverged ~24.5 mya [19–22]. More recently, within C. neoformans, VNI and VNII split from each
other ~4.7 mya. Among VG lineages, VGII diverged from other VG lineages ~12.5 mya, followed by
VGIV splitting ~11.7 mya. VGI and VGIII were the last to diverge from each other, approximately
8.5 mya [21].

In the last century, historical spatial barriers between the seven cryptococcal species have been
challenged with the significant increase in international commercial and human travel. The different
lineages are now thrust back into contact due to anthropogenic transfer of cryptococcal cells/strains
across countries and continents. Despite significant genomic nucleotide divergence, these species are
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still sufficiently compatible to initiate mating with each other, making interspecific hybridization a
significant force that shapes their ongoing evolution. In fact, cryptococcal hybrids with superior fitness
to parental strains have been recovered from both natural and laboratory settings while the proportion
of infections caused by C. neoformans x C. deneoformans (AD) hybrids is on the rise, especially in Europe,
where these hybrids are responsible for nearly 40% of all cryptococcal infections. The implications of
interspecific hybridization on the adaptive evolution of the pathogenic Cryptococcus species complex
are discussed below.

2.2. Sexual Cycle of Cryptococcus

Cryptococcus species are haploid basidiomycete yeasts that can reproduce asexually via budding
or sexually via mating (Figure 2). The sexual cycle of Cryptococcus was first observed by Kwon-Chung
four decades ago [23,24]. Under nutrient-limiting conditions (e.g., low nitrogen) and dehydration,
cells of opposite mating types (MATa and MATα) could be triggered to fuse and form a zygote.
A germ tube originating from the MATa end of the zygote extends out and subsequently develops
into dikaryotic hyphae with the two parental nuclei maintained as separate entities. During hyphal
growth, a specialized hypha called a clamp connection forms across septa and fuses with the subapical
neighboring cell. One of the two daughter nuclei in the apical cell is transferred to the subapical cell
via the clamp connection to reform the dikaryon. Haploid blastospores can form along the hyphae:
blastospores are vegetative, yeast-like cells that bud from the hyphae. Some hyphal cells can also
enlarge and form chlamydospores, which are thick-walled vegetative cells with a condensed cytoplasm.
Chlamydospores can facilitate the long-term survival of cells in harsh environments [25]. At the onset
of meiosis, the tip of an aerial hypha enlarges to form a basidium within which the two parental nuclei
fuse and meiosis occurs to produce four recombinant, haploid nuclei. The daughter nuclei undergo
repeated mitotic divisions with individual nuclei packaged into individual basidiospores that bud off

from the basidium, consequently forming four chains of basidiospores [26–28].

Figure 2. Genomic changes of Cryptococcus occur by sexual and asexual processes. (A) In sexual
mating and subsequent meiosis, resulting in the formation of recombinant cells, both euploidy and
aneuploidy can be observed; (B) Asexual replication can undergo nondisjunction, endoreduplication,
or the formation of titan cells to cause genomic changes.

Sexual mating in Cryptococcus is normally restricted to cells of opposite mating types. However,
cryptococcal cells of the same mating type could be induced to mate with each other under
nutrient-limiting conditions, referred to as same-mating-type reproduction [29–31]. Mating between
genetically different strains of the same mating type can produce a high frequency of recombinants,
similar to opposite-mating-type mating [27]. Even though both MATa and MATα cells can undergo
same-mating-type reproduction, the presence of cells with opposite mating types significantly enhances
this process [32]. MATα is the predominant mating type in natural populations, with >99% of C.
neoformans strains and ~95% of other cryptococcal strains belonging to this mating type [14,33,34].
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During same-mating-type mating, haploid MATα cells become α/α diploids, either by endoduplication
or by nuclear fusion following cell–cell fusion between two α cells [27,35]. The newly formed diploid
nucleus then undergoes one round of meiosis to produce four, recombinant haploid nuclei, which are
then packaged into basidiospores [36]. Evidence for same-mating-type mating in Cryptococcus has also
been found in nature: particularly, same-mating-type reproduction could be beneficial due to natural
populations in both clinical and environmental settings being predominantly of the same mating type,
MATα [37,38].

Both mating processes confer two major benefits to Cryptococcus: (i) they result in the production of
basidiospores which act as the unit of long-distance dispersal, and (ii) they are known to be mutagenic,
generating both genetic and phenotypic variation, as described in the sections below [39]. Strains
of different cryptococcal species have been successfully mated with each other in the laboratory,
albeit generally with low spore germination rates [40]. Unlike haploid parental strains, the resulting
interspecific hybrids are often diploid or aneuploid, indicating that genomic divergence between
parental lineages could hinder chromosomal disjunction and proper meiosis during gamete formation.

2.3. Hybrids in the Cryptococcus Species Complex

Cryptococcal hybrids, discussed below, are categorized according to the serotypes of the
parental lineages.

AB and BD hybrids: To the best of our knowledge, hybrids arising from the mating of C. neoformans
(serotype A) or C. deneoformans (serotype D) with one of C. gattii, C. bacillisporus, C. deuterogattii, C.
tetragattii or C. decagattii (serotypes B or C) have not been recovered from the environment. However,
there have been several reports of infections caused by AB (serotype A x serotype B) and BD (serotype
B x serotype D) hybrid strains. The first such hybrid was reported in 2006, when three strains isolated
from the cerebrospinal fluid of two patients in the Netherlands were determined to be diploid strains
of serotype BD [41]. Based on these findings, it was estimated that BD hybrids made up about 1%
of the clinical isolates found in the Netherlands between 1977 and 2005. A cryptococcal hybrid of
serotype A x serotype B was first reported in 2008, when a strain isolated from an AIDS patient in
Canada was determined to be an AB hybrid [42]. In 2012, four AB hybrid strains were identified among
clinical samples obtained from the cerebrospinal fluid of patients in Brazil (n = 2), Columbia (n = 1)
and India (n = 1) [43]. AB and BD hybrids have since been reported in Germany [44], Denmark [45],
and the United States [46], all from clinical sources. Even though mating between the parental lineages
can be induced in the laboratory, the mating cells often fail to complete the sexual cycle, indicating a
strong post-zygotic reproductive barrier [24]. These observations suggest that, while these species
are still genetically and phenotypically compatible enough to initiate mating, they produce relatively
few viable hybrid progenies, leading to their rare occurrence in environmental and clinical samples.
Furthermore, to date, cryptococcal hybrids of serotypes AC and CD have never been reported in
the literature.

AD hybrids: Hybridization between A and D serotypes is a significantly more common occurrence
than the hybridization of A or D serotypes with B or C serotypes. Indeed, C. neoformans x C. deneoformans
hybrids, commonly referred to as AD hybrids, are the most common of all cryptococcal hybrids.
AD hybrids are assigned their own molecular type of VNIII. Since their initial discovery in 1977,
their prevalence has been steadily increasing, with AD hybrids currently causing up to 40% of all
cryptococcal infections in Europe [47–50]. They have been recovered from clinical and environmental
sources in many countries, across most continents [51]. AD hybrids are typically diploid or aneuploid
and experience frequent loss of heterozygosity during vegetative growth [52–54].

BC hybrids: Under mating-inducing conditions, strains of different VG molecular types (serotypes
B and C) are capable of mating with each other in the laboratory [40,55–57]. However, to the best
of our knowledge, diploid/aneuploid VG hybrid strains (BC hybrids) have not been recovered from
environmental or clinical sources. One likely explanation might be that VG lineages are still sufficiently
compatible with each other to produce haploid, recombinant progeny: nucleotide divergence between
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VG lineages is less extensive in comparison to that between VNI and VNIV (see Section 2.1). In fact,
when strains of serotypes B and C are mated with each other, they produced proper dikaryotic hyphae
with clamp connections that were morphologically similar to those produced when VG strains of the
same serotype are mated with each other [24,55]. However, spore viability was found to be very low
(<1%) in lab-derived reciprocal crosses of VGII (MATα) × VGIII (MATa) and VGII (MATa) x VGIII
(MATα): among the spores that successfully germinated, 18/18 and 9/16 were diploid/aneuploid in the
two crosses, respectively [58]. Furthermore, almost all collected F1 hybrid progeny were determined to
be diploid/aneuploid when VG lineages were mated with each other, or VGIII was mated with VN
lineages in the laboratory (You et al., unpublished data). Together, these observations suggest that VG
hybrids can be produced, and the apparent absence of diploid/aneuploid VG hybrids in nature is likely
due to these hybrids’ failure to successfully compete with parental lineages in their natural habitats.

3. Outcomes of Hybridization between Cryptococcal Lineages

3.1. Hybrid Inviability

Spore germination rates in hybrid cryptococcal crosses are typically low, indicating significant
post-zygotic reproductive isolation between these species. Studies have reported ~5–20% of hybrid
spores to be viable in lab-derived hybrid crosses between C. neoformans and C. deneoformans [52,59,60].
However, the true germination rate might be slightly higher, since we have observed some AD hybrid
spores to display an abortive phenotype where, following germination, growth is aborted after several
mitotic divisions, indicating genetic incompatibilities within the nucleus [61]. Two recent studies
detected significant variability in spore germination rates in crosses between strains of C. gattii, C.
bacillisporus, C. deuterogattii, C. tetragattii and C. decagattii, with a range of ~1–98% [29,40,60]: however,
since the ploidy of germinated spores was not determined in the study by You et al., the proportion
of viable progeny that were diploid/aneuploid is not known. You et al. also found spore viability to
vary between ~1–43% in a series of crosses where a Cryptococcus bacillisporus strain was crossed with
different C. neoformans and C. deneoformans strains [29]. The significant variation in spore viability
observed across multiple studies highlights the complex interplay of determinants, including parental
genetic backgrounds as well as environmental and genotype–environment interaction effects, on the
germination of hybrid cryptococcal spores [29,58,59].

3.2. Hybrid Sterility

While most cryptococcal hybrids are heterozygous at multiple loci across the genome and contain
alleles for both mating types (i.e., heterozygous at the MAT locus), few are self-fertile or can mate with
other strains [52,61]. Basidiospores produced by three self-fertile AD hybrids containing both mating
types germinated at a very low rate of ~5% in laboratory conditions: these three AD hybrids did not
produce any sexual spores when co-incubated with haploid MATa and MATα strains of C. neoformans
and C. deneoformans [52]. However, sterility does not pose a barrier to cryptococcal hybrid success, as
they can propagate asexually via mitosis.

3.3. Phenotypic Diversity and Hybrid Vigor

Studies investigating the phenotypes and virulence of cryptococcal hybrids have found variable
results with some reporting hybrid vigor (heterosis) while others have found hybrids to be inferior to
parental strains. In general, AD hybrids are less virulent than either C. neoformans or C. deneoformans
haploid strains, though this result is not always observed [62]. However, increasing evidence of
hybrid vigor in both natural and laboratory-constructed AD hybrids has been found. For example,
AD hybrids might be better able to adapt to new environmental niches than C. neoformans and C.
deneoformans isolates. Natural AD hybrid strains are more resistant to UV irradiation than native
C. neoformans strains from Botswana [63]. Laboratory-constructed AD hybrids also showed hybrid
vigor with higher resistance to both UV irradiation and high temperatures than C. neoformans and C.
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deneoformans parents [63,64]. Another study found the majority of 31 investigated global AD isolates to
be resistant to the antifungal drug FK506 [54,65]. A small proportion of hybrid strains in an AD hybrid
population derived from a cross between CDC15 (C. neoformans, MATα) and JEC20 (C. deneoformans,
MATa) was found to surpass both parents in the expression of essential virulence factors, including
melanin production, capsule production, growth at 37 ◦C, resistance to the antifungal fluconazole,
and cell size [66]. The remaining hybrid offspring displayed intermediate phenotypes or inferior
phenotypes to both parents. At present, similar phenotypic data on other cryptococcal hybrids are
not available due to their rarity compared to AD hybrids. However, the presence of these hybrids in
clinical settings suggests that at least some are capable of causing fatal infections in humans.

The phenotypic diversity found among cryptococcal hybrids indicates the presence of extensive
genetic diversity in hybrid populations. Due to significant genomic differences between the parental
species, frequent chromosome nondisjunction is observed during meiosis, with hybrids often inheriting
novel and/or unique combinations of chromosomes. For example, evidence of homozygosity (or
hemizygosity) interspersed with heterozygosity is observed across AD hybrid genomes [59,66,67].
Homozygosity could be derived through either chromosome loss or mitotic gene conversion, leading
to loss of heterozygosity [54,65,68]. The generation of novel allelic and chromosomal combinations can
offer cryptococcal hybrids a significant advantage in adapting to a diversity of environmental niches
and competing with parental lineages for resources.

4. Genetics of Cryptococcal Hybrids

4.1. Aneuploidy in Cryptococcal Hybrids

AD hybrids are either diploid or aneuploid, as determined by fluorescence-activated cell sorting
(FACS) analysis [49,52]. Previous studies revealed that aneuploidy in AD hybrids is most likely caused
by the non-disjunction of homologous chromosomes during meiosis due to nucleotide sequence
divergence (10–15%), as well as genetic incompatibilities, between C. neoformans and C. deneoformans
genomes [52,69,70]. Sun and Xu found that at least one out of 114 screened co-dominant loci was
heterozygous in the majority of lab-derived AD hybrid offspring strains, with an average heterozygosity
of ~75% per strain [53]. Recombination between markers located on the same chromosome was observed,
confirming the involvement of a meiotic process in the generation of these progeny, although the rate
of crossovers was significantly lower during hybridization than that observed in intraspecific crosses
of C. neoformans and C. deneoformans. Another analysis of a hybrid cross between H99 (C. neoformans,
MATα) and JEC20 (C. deneoformans, MATa) suggested that the resulting hybrid progeny were likely
generated via random nuclear fusion of two of the four recombinant nuclei generated from meiosis,
which could result in heterozygous hybrids with doubled ploidy levels [71].

Clinical BD hybrid strains have also been found to be diploid or aneuploid by Bovers et al. [42].
These hybrids have a unique Amplified Fragment Length Polymorphism (AFLP) genotype (AFLP
genotype group 8), revealing that they likely originated from hybridization between a MATα, serotype
B strain (AFLP genotype 4) and a MATa, serotype D strain (AFLP genotype 2). Interestingly, these
hybrids were heterozygous at two of the genotyped loci, namely RNA polymerase II (RPB2) and
laccase (LAC): however, they were homozygous for the serotype B parent’s genotype at the Internal
Transcribed Spacer (ITS) regions of the nuclear ribosomal RNA gene cluster. In addition, most BD
hybrids were homozygous for the serotype B allele at the Intergenic Spacer (IGS) sequence of the
nuclear ribosomal RNA gene cluster, while the remaining hybrids were homozygous for the serotype
D allele.

While diploid/aneuploid hybrid strains of C. gattii, C. bacillisporus, C. deuterogattii, C. tetragattii
and C. decagattii have not been recovered from nature, lab-derived hybrids of such crosses often
display diploidy or aneuploidy. In two laboratory crosses between C. bacillisporus and C. deuterogattii,
18/18 and 9/16 of the spores that successfully germinated were determined to be diploid/aneuploid,
respectively [58]. Furthermore, almost all collected F1 hybrid progeny were determined to be
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diploid/aneuploid when these five species were mated with each other, or when C. bacillisporus was
mated with C. neoformans and C. deneoformans in the laboratory (You et al., unpublished data).

4.2. Loss of Heterozygosity

The definition of loss of heterozygosity (LOH) is the loss of one parental allele in a certain genomic
region in a heterozygous individual. LOH can be caused by multiple mechanisms, such as unbalanced
chromosome rearrangements, gene conversion, mitotic recombination, and loss of a chromosome
or a chromosomal segment. Double-strand break repair can give rise to short-range LOH events by
gene conversion without crossover. In contrast, long-range LOH events are mostly caused by single
crossovers or break-induced replication [72]. In addition, whole-chromosome LOH can arise from
chromosome loss through nondisjunction, followed by duplication of the remaining homolog [73].
The duplication of a chromosome is a common occurrence in whole-chromosome LOH. With complete
duplication of the remaining genetic material, the appearance of a normal karyotype is maintained,
even though there may have been a wholesale loss of genetic diversity. Generally, LOH is not reversible,
however, cells can regain the lost heterozygous alleles via outcrossing or mutation.

The emergence of LOH is considered a major mechanism of generating genetic diversity in
populations of diploid heterozygous organisms. Unlike the parental haploid lineages, cryptococcal
AD hybrids are often highly heterozygous, and may be prone to LOH, both during hybridization
events and during asexual growth following germination [39,49,52,54,64]. During sexual mating, the
two parental nuclei have been observed to fuse at earlier stages of sexual development (e.g., in the
zygote or hyphae), providing opportunities for mitotic recombination to facilitate LOH at certain
chromosomal regions before meiosis. A recent analysis of 297 lab-derived AD hybrid progeny strains
generated from a single cross revealed the hybrids to experience extensive loss of chromosomes [74].
Both partial and complete chromosome loss and duplication have been observed in some AD hybrids.
Partial chromosome loss may result in genome rearrangement or the formation of novel chromosomes
through truncation or translocation [54]. Li et al. found that the progeny strain P5 (progeny of a
self-fertile AD strain CDC228) partially lost some chromosomes (Chromosomes 8 and 10 from the C.
neoformans parent) and completely lost some others (Chromosomes 5 and 13 from C. neoformans, and
Chromosomes 3 and 12 from C. deneoformans), giving rise to a highly unique genome organization [54].

Interestingly, natural AD hybrids show a preferential retention of specific alleles and chromosomes
from one of the two parents, suggesting that those alleles may offer survival and growth benefits under
specific conditions [68]. Allele distributions in the genomes of AD hybrids often show significant
departures from Mendelian ratios with alleles of one parent preferred over that of the other at
certain loci [74]. In fact, Samarasinghe et al. [75] found genome-wide allele distribution in 297 AD
hybrids to be significantly skewed in favor of the C. deneoformans parent from which the hybrids
inherited mitochondria. It is hypothesized that given the uniparental mitochondrial inheritance seen
in cryptococcal species, hybrids prefer to retain chromosomes of the mitochondria-donor parent to
minimize incongruence between their mitochondrial and nuclear genomes.

A very recent study conducted by Dong et al. estimated the rate of LOH during mutation
accumulation in a laboratory-constructed diploid AD hybrid (CDC15 × JEC20) during mitotic divisions.
They used 33 genetic markers located on 14 chromosomes to determine genome-wide allele distributions
in the AD hybrid [76]. The parental haploid strain CDC15 (serotype A, MATα) is more resistant
to fluconazole (minimum inhibitory concentration [MIC] = 64 µg/mL) than the other parent JEC20
(serotype D, MATa, MIC = 4 µg/mL). Their findings showed that only a few LOH events occurred over
800 generations of propagation on nutrient-rich medium, with an estimated rate of 6.44 × 10−5 LOH
events per mitotic division. However, fluconazole exposure resulted in a dramatic 50-fold increase in
LOH rate at two markers on Chromosome 1. Interestingly, Chromosome 1 contains two genes, ERG11
(the fluconazole target gene) and AFR1 (a major transporter for triazoles), both of which play major
roles in the development of antifungal resistance in C. neoformans [66,75]. Here, the AD hybrid lost
the fluconazole-susceptible allele of both genes inherited from JEC20 while maintaining the alleles
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from CDC15. In these evolved strains, the copy number of Chromosome 1 inherited from CDC15 also
increased. Results from this study suggested that hybridization can facilitate the rapid adaptation of
Cryptococcus to stressful environmental conditions.

4.3. Dynamic Ploidy Changes in Cryptococcus

Ploidy change is often associated with sexual reproduction. Fungal cells generally mate with cells
of identical ploidy levels, resulting in intermediate sexual structures with double the genomic content.
Subsequent meiosis reduces the DNA content by half, reinstating the original ploidy of the parental
strains. Some fungi, like Saccharomyces cerevisiae, favor propagation in the diploid state while other
fungi, like Schizosaccharomyces pombe, prefer to propagate in the haploid state with a transient diploid
state, as is the case observed in Cryptococcus [77–79].

Cryptococcal cells isolated from clinical and environmental settings are normally haploid with
14 chromosomes. FACS analyses have revealed an appreciable proportion of AD hybrids to be
diploid [46,52,80]. However, it is possible that the diploid AD hybrids are not heterozygous at all loci
across the genome: the remaining copy of a chromosome is often duplicated following LOH events,
maintaining diploidy. Environmental stress has been observed to induce chromosome mis-segregation
causing chromosomal instability. For example, exposure to a high-dose fluconazole treatment can
result in the amplification of Chromosome 1 in both haploid C. neoformans and AD hybrids [77,78].
A comparison of haploid and diploid C. neoformans cells found that haploid cells were generally more
virulent than diploid cells in a murine inhalation model of cryptococcosis [64]. However, in a rabbit
infection model, diploids displayed similar virulence levels to haploid forms [79]. Higher ploidy
was found to be associated with larger cell size in C. neoformans. For example, titan cells that can
grow up to an impressive 100 µm in diameter contain 16, 32, 64 or more copies of the genome [81].
The large size facilitates the survival of titan cells during infection by hindering ingestion by host
macrophages and by imparting resistance to oxidative and nitrosative stresses [73]. However, in certain
cases, increased ploidy has been shown to have modest detrimental effects on virulence in a murine
inhalation model, growth at high temperature, and melanisation [64]. In addition, melanin production
was found to be correlated with monosomy at Chromosome 13, while disomic variants produced
less melanin and were less virulent in mice in C. neoformans cells isolated from AIDS patients [82].
The plasticity of their genomes provides cryptococcal hybrids with the flexibility to alter their ploidy,
via chromosome loss/gain or duplication, which in turn promotes adaptation to a wide range of
environmental conditions.

4.4. Cryptococcus as a Model System for Fungal Hybridization

Hybrids face significant challenges to survival and functionality due to two divergent genomes
residing in the same cell. In a process referred to as genome stabilization, hybrids eliminate unfavorable
combinations of the two parental genomes via a variety of mechanisms including recombination,
gene conversion and chromosome loss [76]. The rate at which genome stabilization is achieved
in a hybrid may be related to the extent of divergence between the two parental genomes, since
incompatibilities between more differentiated genomes will be resolved faster within the hybrids.
For example, aneuploidy is commonly found in hybrids derived from two divergent parents, while
frequent LOH events can be viewed as a mechanism of achieving genome stabilization.

Chromosomal nondisjunction during meiosis coupled with LOH during vegetative growth leads
to the creation of cryptococcal hybrids with novel and unique allelic combinations not found in
parental species. The novelty and plasticity of their genomes have put cryptococcal hybrids at a
unique position to dynamically adapt to novel environmental niches and compete with parental
lineages in current habitats. In fact, hybrid vigor, displayed by some hybrids in laboratory settings,
and the increasing presence of AD hybrids in clinical samples suggest an advantage of cryptococcal
hybrids to successfully adapt to the changing environment. In summary, genomic plasticity likely
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facilitates the rapid adaptation of hybrids to new environmental niches (e.g., harsh environments) or
genetic perturbations.

In a world where frequent international commerce and human travel is blurring geographical
and spatial boundaries, hybridization between closely related taxa is an increasingly likely outcome
across all kingdoms of life. The seven species of the Cryptococcus species complex provide an excellent
model system for studying hybridization in fungi. Many tools have been developed and optimized
for the study of these yeasts, including transformation [83], ploidy estimation by flow cytometry [84],
and a strain-typing system integrating numerous well-characterized strains [85]. Importantly, there
are multiple host models of cryptococcal infections that make in vivo experiments feasible [86].
Furthermore, whole genome sequences of hundreds of isolates from various geographical origins are
available on online databases (e.g., NCBI, FungiDB) while gene editing in these species can now be
carried out with high efficiency using specially adapted CRISPR-Cas9 [87]. Finally, experimenting on
haploid yeasts such as Cryptococcus is more convenient, and the findings can be more generalizable
to understanding pathogenicity as compared to the well-established model Saccharomyces cerevisiae,
which is primarily diploid in nature and the lab. Insights gained from cryptococcal hybrid research
can be used to guide research strategies on hybridization in lesser known pathogenic fungi such as B.
dendrobatidis, discussed in the remaining sections of this review. The major obstacles in understanding
the process of hybridization in non-model species are typically the lack of genetic tools, such as ability
to conduct gene disruption, the inability to perform genetic crosses, or both. Fortunately, much can be
understood about the process of hybridization using genomic characterization of wild collected strains.
The genomic tools developed in model systems can be adapted to study the non-model fungal hybrids.

5. Hybridization in an Aquatic Chytrid Fungus Associated with Amphibian Declines

5.1. The Amphibian Chytrid Batrachochytrium Dendrobatidis

The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a broad host-range pathogen that is
known to infect close to 700 species of frogs, salamanders, and caecilians worldwide [88]. Bd is now
recognized as the major contributor to near-simultaneous amphibian population declines in the 1980s
and 1990s that are correlated with arrival of the pathogen [89,90]. To date, Bd has been detected on
every continent except Antarctica [91] and is most likely introduced from source populations in east
Asia [92].

Bd is composed of at least four deeply divergent evolutionary lineages with varying geographical
histories and virulence against hosts. The most widespread and well documented of these lineages
is a globally-distributed, hypervirulent diploid genotype, BdGPL (Global Panzootic Lineage) [93].
The other, putatively less virulent lineages of Bd include: a Brazilian lineage endemic to the Atlantic
Forest region of southern Brazil, BdBrazil (also known as BdBrazil/Asia2) [92,94]; an African lineage
endemic to the Cape region of South Africa, BdCape [93]; and an endemic Asian lineage BdAsia1,
believed to be closest to the source of origin for Bd diversity [92]. Recently, the existence of an additional
endemic lineage, BdAsia3, widespread throughout southeast Asia was reported from amphibian
swabs [95].

5.2. Hybrids in Batrachochytrium Dendrobatidis

Intraspecific hybrid strains resulting from outcrossing between parental genotypes of divergent
lineages are rare, but known to occur. Within the divergent lineages of Bd, reproduction appears to
be strictly asexual [96], with the exception of BdAsia1, which has a population signature of a highly
recombining population [93]. Both the paucity of outcrossing in natural Bd populations and the
inability to cross isolates is a major point of contrast between Bd (and other non-model species) and the
model fungal species with hybrids, such as Cryptococcus. Outcrossing among the divergent Bd lineages
(referred to here as hybridization) is only known to occur in secondary contact zones where divergent
lineages have been brought into proximity by human activity. There are currently five hybrid Bd isolates
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reported in the literature from two hybrid zones. Three of these hybrid isolates were documented
from the Atlantic Forest of Brazil within a narrowly restricted zone in the southern Brazilian state of
Paraná [94,97,98]. This locality is one of the areas where the BdGPL and BdBrazil lineages overlap.
The other two known Bd hybrids are described from the Eastern Cape Province of South Africa where
BdGPL and BdCape overlap. Putative hybrid isolates were also identified from genotyping DNA
from amphibian skin swabs, but these could also be explained by coinfection [95]. Unlike the narrow
geographic range of the Brazilian hybrid zone, the two South African hybrid isolates were collected
approximately 200 km apart from one another [92]. Additional regions where secondary contact
could occur along with hybridization are Europe, western Africa, and Central America [92,95,98].
These regions are of interest with respect to hybridization because they harbor BdGPL and BdCape
lineages which are already known to hybridize. Evidence of hybridization derives from combination
of otherwise lineage-specific alleles into the same genome, increased heterozygosity, and Bayesian
admixture analyses [92,97,98]. Most of the hybrids appear to be F1, and an earlier F2 reported [94]
was later determined to be an F1 which had undergone some LOH [97]. In most Cryptococcus hybrids,
divergence in the chromosomal structure greatly hinders the ability to undergo meiosis. As a result, in
Cryptococcus, most natural hybrids appear to be close to F1, and these data also agree with expectations
of chromosomal pairing problems reflected in the 100 million year divergence between C. neoformans
and C. deneoformans [19–22] and the studies which show meiotic segregation in F1 hybrids to be highly
abnormal [53]. On the other hand, for Bd, there is no evidence that F1 hybrids have higher ploidy
than the parental genotypes and, though the timeframe of divergence between the lineages of Bd is
debated [92,97], the extreme end of an estimate of 100,000 years of divergence before hybridization is
three orders of magnitude younger than cryptococcal hybrids. These data would predict that hybrids
should be fertile.

While clear genetic evidence of hybridization in Bd exists, mating and hybridization have not
yet been observed in situ or in the laboratory. Likewise, specialized meiotic structures have never
been reported for this species. The cellular process of hybridization in Bd is of special interest
to understanding the dispersal ecology of this pathogen, because sexual reproduction in related
members of the Chytridiomycota results in the production of harsh environment-resistant resting
spores which may facilitate environmental or long-range transmission. Alternative cellular mechanisms
of outcrossing that do not involve meiosis have also been proposed. One alternative mechanism by
which Bd may be outcrossing is through a parasexual cycle [98]. Parasexual reproduction is well
documented in other groups of pathogenic fungi, such as Candida albicans [99,100]. This mode of
reproduction involves the fusion of diploid cells without meiosis. The resulting cell is a tetraploid
intermediate which, in most cases, loses chromosomal copies back to a diploid state (Figure 3). Such a
reproductive mechanism may explain the varying levels of aneuploidy prevalent throughout individual
Bd isolates, as well as the lack of obvious meiotic structures or resting spores in this species. On the
other hand, given the diversity of mechanisms possible to create aneuploidy, as discussed above for
Cryptococcus, it is plausible that the sexual cycle of Bd is typical for other fungi, cryptic as it may be.

Figure 3. Parasexuality is a process of reproducing without a reductive cell division (meiosis). With
parasexuality, a tetraploid offspring is produced, which is a transient stage followed by random loss of
chromosomes during vegetative growth.
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5.3. Outcomes of Hybridization in Batrachochytrium Dendrobatidis

The phenotypic outcomes of hybridization in Bd remain largely unknown. It is unclear whether
hybrids are favored by natural selection in the habitats in which they were created. In order to test this,
it would be useful to return to regions where hybridization has occurred in order to attempt reisolation
of the same hybrid genotypes and to estimate the frequencies of hybrids related to parental species.
Both measures can test whether hybrid genotypes are on the increase, which is predicted if they are
favored by selection. In the only currently available study on hybrid phenotypes, Greenspan et al. [101]
showed that hybrid virulence and pathogenicity was highly dependent on the infected host species.
In a virulence challenge assay, the authors infected two endemic Brazilian, direct-developing frog
species with BdGPL, BdBrazil, or hybrid isolates produced by the two lineages. In one host species, the
high-altitude endemic pumpkin toadlet (Brachycephalus ephippium), hybrid isolates were more virulent
(causing greater mortality in host animals) than either BdGPL or BdBrazil isolates. The endemic
BdBrazil was the least virulent in this host species. In the other host species tested, the robber frog
(Ischnocnema parva), hybrid isolates displayed an intermediate degree of virulence, with BdGPL being
the most and BdBrazil being the least virulent.

Hybrid pathogenicity also varied according to host context. In the Greenspan et al. [101] study,
the authors examined pathogenicity among isolates in three host species by assessing pathogen load
upon host mortality. Again, the pathogenicity phenotypes of hybrids depended on the host species.
In the host species, B. ephippium, where hybrid isolates were most virulent, the hybrids were also more
pathogenic, with hybrid strains producing the highest spore loads on hosts at the time of mortality. In I.
parva, the host species in which hybrid virulence was intermediate between BdGPL and BdBrazil, spore
loads produced by hybrid isolates were comparable to those of BdGPL. The third species examined in
the Greenspan et al. [101] study, the habitat-generalist, swamp treefrog (Dendropsophus minutus), is
known to be more tolerant to Bd infection in laboratory challenge assays [102]. Because of this, infection
experiments did not produce sufficient mortality in this species to analyze differences in virulence.
However, the authors showed that Bd pathogenicity varied by genotype in this host species. Hybrid
isolates produced spore loads intermediate between BdGPL (highest loads) and BdBrazil (lowest)
when the host animals were assessed 60 days post-inoculation.

In summary, much work remains to be completed in understanding the cellular processes and
phenotypic outcomes of hybridization in Bd. However, the Greenspan et al. study documents two
interesting results. First, hybrid genotypes do show some degree of heterosis (hybrid vigor) in both
virulence and pathogenicity characteristics. Second, and very importantly, this increase in the virulence
and pathogenicity of the hybrid strains are context-dependent on the host species being infected.
These results highlight that predicting the phenotypic characteristics of hybrid Bd genotypes is very
complex, and further experimental work should focus on assessing hybrid characteristics in a broad
range of host species.

5.4. Aneuploidy in Batrachochytrium Dendrobatidis

Although most fungi are considered to have zygotic meiosis where the diploid stage is highly
limited, this is a gross generalization. In fact, there are no extensive studies of the genetics of
Chytridiomycota that would allow ploidy changes during the life cycle to be fully elucidated. In Bd, an
outcome of hybridization is the creation of genomes that are approximately 0.233% heterozygous [97].
This level of divergence is considerably lower than other hybrids, like the cryptococcal hybrids.
and presumably should not provoke chromosome incompatibilities. Nonetheless, the presence of
chromosomal rearrangements across Bd lineages has not been explored. Like Cryptococcus, Bd is also
capable of generating genetic diversity via dynamic genome mutations including aneuploidy and
LOH. While the Bd genome is generally considered to be diploid, chromosomal copy number can
vary greatly. Whole genome sequencing studies of Bd finds a high variation in aneuploidy within
individuals and among closely related isolates. Chromosomal copy number in Bd can vary between 1
(monosomic) to 5 (pentasomic). In 51 Bd genomes that have been sequenced and analyzed for copy
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number variation, two studies together show that approximately 58.7% of Bd chromosomes are disomic,
29.0% are trisomic, 11.3% are tetrasomic, and less than 1% monosomic or pentasomic [97,103].

The widespread nature of aneuploidy across major lineages of Bd suggests that it may be an
important mechanism in the generation of genetic variation, especially given the rarity of sexual
reproduction observed in this species. Links between variation in chromosomal copy number and
phenotypic effect, however, have been difficult to establish in this species. This is largely due to the
paucity of phenotyped Bd isolates with accompanying whole genome sequences. Comparatively,
no obvious patterns have emerged to link highly aneuploid genomes to the hypervirulent BdGPL
clade. The BdGPL lineage contains representative isolates displaying disomic, trisomic, and tetrasomic
genomes throughout its phylogeny [97,103]. While the sample sizes of analyzed genomes outside the
better-studied BdGPL clade are very small, some phylogenetic trends are beginning to emerge around
Bd aneuploidy with respect to lineage. In the novel, enzootic Bd lineages, the BdCape isolates analyzed
so far (n = 5) show a mix of trisomic (60%) and tetrasomic (40%) genomes [103]. Three representative
isolates assigned to BdCH were mostly trisomic. BdBrazil isolates (n = 2) were mostly disomic [97].
Finally, the single BdGPL/BdBrazil hybrid analyzed is also mostly disomic, with 13/17 of its major
chromosomes disomic and 4/17 trisomic [97].

In addition to observations of widespread aneuploidy in Bd, chromosomal copy number has also
been shown to be mutable over short timescales. Farrer et al. [103] examined replicate laboratory
lines of an ancestrally trisomic Bd isolate serially passaged over 40 passages under differing growth
conditions. One line was passaged in a standard media while the other was passaged in a selective
media containing defensive antimicrobial peptides collected from the European water frog (Pelophylax
esculentus) [104]. After approximately 40 weekly passages, the culture sequenced from standard media
lost a copy of one chromosome (supercontig IV) and gained a copy of another (supercontig V), while
the culture passaged in antimicrobial peptide media gained a chromosomal copy at supercontig V.
Another study investigated the genomic changes in an isolate, JEL427, before and after 30 transfers
in the lab [105]. The isolate showed lower virulence and spore production after the passages [106].
The major change in the isolate over the 30 passages was a reduction in ploidy, going from an average
of 3.6 copies per chromosome (in practice genomic scaffold as the genomic map is not available) to
3.1. The difference between the two laboratory evolution studies may relate to their divergent starting
points, but both results show that aneuploidy changes can occur rapidly in Bd, perhaps serving as
a mechanism for rapid genomic adaptation to changing selective pressures. While the functional
underpinnings of these pattern are difficult to tease out, they may suggest that specific Bd chromosomes
more readily gain or lose copies. This pattern is also reported in another major study investigating
aneuploidy in Bd, where the authors find that supercontig V is one of the Bd chromosomes more likely
to present higher than average copy numbers [97].

Characterization of the ploidy of additional hybrid isolates will be essential for understanding
whether meiosis and sex result from the fusion of haploid gametes or through a parasexual cycle.
The general reduction in chromosome number over time from an ancestor of higher than disomic
average chromosome numbers would tend to support parasexuality, however, the absence of more
than two alleles per locus suggests that it is more likely that an endoduplication of all or part of the
genome occurs sometime after hybridization via a heretofore undetected standard sexual cycle. Either
way, hybrid genotypes present a greater deal of allelic diversity, which could facilitate adaptation by
LOH. Understanding whether LOH occurs primarily at the chromosome level, i.e., aneuploidy, or at
the gene level, e.g., gene conversion, in hybrid isolates is critical for understanding the nature and
magnitude of the selective forces they experience.

5.5. LOH in Batrachochytrium Dendrobatidis

Loss of heterozygosity is a well-known feature contributing to genome diversity in Bd. LOH is
hypothesized to occur during asexual reproduction of Bd through mitotic recombination, chromosome
loss, or gene conversion [96]. In addition to changes in chromosome copy number, LOH has a great
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capacity to generate genotypic diversity without the input of new alleles [107]. This may be particularly
important in clonally dominant pathogen lineages such as in Bd, such as the BdGPL lineage which
typically shows a maximum of two alleles per locus, despite being frequently trisomic. The genotypic
diversity generated by LOH should alter combinations of alleles within and across loci, displaying
overdominance, underdominance, or epistasis, which can then be subject to selection pressure with
presumably advantageous tracts of LOH sweeping to fixation in a population.

The most prominent example of this in Bd may be a large, shared LOH region on supercontig II that
is present in all members of BdGPL [92,97,103]. The conserved nature of this LOH feature throughout the
globally invasive clade may reveal clues to the successful proliferation of this lineage. Gene functions,
enriched in shared LOH regions of BdGPL, included processes related to reactive oxygen metabolism,
L-serine metabolism, and superoxide dismutase/oxidoreductase [97]. These gene classes, in addition to
various peptidases identified through comparative genomics with the closely related non-pathogenic
chytrid Homolaphlyctis polyrhiza [108], and transcriptomic studies of Bd infections [109,110], are
possibly involved in the genomic evolution underpinning the adaptive success of BdGPL in varied
habitats worldwide.

In clonally reproducing diploid organisms such as Bd, the lack of outcrossing results in regions
of LOH in the genome persisting in lineages through time. Because of this, shared homologous
regions of LOH can be a powerful tool to inform populations of closely related clonal strains. For
example, homologies in patterns of LOH have been used to distinguish evolutionary subclades within
the global BdGPL [96,107]. Further geographic sampling and improved computational methods
to detect homologies in LOH patterns hold the promise of resolving their finer-scale, intra-lineage
population structure, and providing a more refined picture of the geographic history of this ecologically
important pathogen.

6. Conclusions and Perspectives

Hybridization and genomic plasticity appear to be shared hallmarks contributing to rapid
adaptation in fungal pathogens. The shared mechanisms of hybridization, aneuploidy, and LOH
between the two major fungal pathogens Cryptococcus and B. dendrobatidis span the fungal tree of
life (phylum Basidiomycota to Chytridiomycota) and appear to reflect a global pathway for rapid
adaptation in pathogens across the fungal kingdom. Themes emerging from multiple studies of
fungal hybrids are that they demonstrate increased ploidy, heterosis, and novel ecological niches.
Prime examples of successful hybrids with these traits across the fungal tree of life are readily found.
For example, hybridization in the plant endophytic species Epichlöe leads to asexual diploids/polyploids
with major benefits to the host, and hence the fungus [111]. Likewise for the pathogen, Verticillium
longisporum, hybridization is associated with an expanded host range and diploidization [112,113].
Ancient hybridization is involved in the diversification of Saccharomycete yeasts [114], while more
recent hybridization and polyploidization is involved in the formation of yeasts (Saccharomyces spp.)
involved in beer brewing [115,116]. Finally, two examples of human pathogenic species appear to be
largely of hybrid origin: the halophilic black yeast Hortaea warnecki is the cause of superficial skin
infection, tinea nigra [117] and the recently described, but rare, Candida metapsilosis [118].

The above-mentioned fungal hybrids generally are discovered as F1 and have higher ploidy than
their parental species or lineages. This appears to be the case for Cryptococcus hybrids but not for Bd,
for which hybrids are the same ploidy as the parental genotypes. Bd hybrids are therefore similar to
homoploid hybrids, good examples of which, in fungi, are Zymoseptoria pseudotritici and Microbotryum
spp. [119,120]. Following the formation of F1 hybrids, persistence and adaptation is facilitated by the
mechanisms of genomic plasticity during asexual growth, such as ploidy cycling and LOH. The high
number of successful asexual F1 hybrids with heterosis across species suggests that any reproductive
isolation caused by genetic incompatibilities are likely to be recessive as predicted by theory [1].
Overall, however, it is plausible that the importance of hybridization in fungal adaptation may be
overinterpreted, as the likelihood of identifying or observing failed hybrids is low. The community
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would benefit from additional work synthesizing hybrids in the lab to understand and predict the
outcome of hybridization on evolution, such as has been conducted for investigating reproductive
isolation in Neurospora and Microbotryum [121,122]. More needs to be known about fungal adaptation
to ecological gradients in order to understand whether hybrid zones are likely to exist at the boundaries
in which allopatric species meet.

Understanding the evolutionary dynamics of better studied pathogens such as Cryptococcus
can inform the biology of less characterized, or newly discovered, fungal pathogens such as Bd.
As we have discussed, the Cryptococcus system has served as a model for establishing the relationship
between divergence, chromosomal pairing, and sterility. As Bd hybrids are not as diverged as
Cryptococcus, and may not even represent the fusion of distinct species, we predict that F2 and further
generation of hybrids of Bd are likely to exist, and it would be appropriate to account for this possibility
when conducting additional sampling in regions of admixture, perhaps even as more subtle forms
of introgression. Model species, like Cryptococcus, not only allow specific gene hypotheses to be
tested through gene manipulation [123], they also generally have easy to trigger sexual cycles and
selectable markers that allow for crossing designs to understand the genetics of complex traits [66].
As another example, crosses have established that the mitochondrial genotype in Cryptococcus is not
known to have an impact on hybrid fitness, yet this has been demonstrated in other species of fungal
hybrids, using crossing designs that create identical nuclear genomes in alternative mitochondrial
association [79,124]. More work should be done to develop a crossing system in Bd that could allow
for mitochondrial–nuclear genetic interactions to be tested. Finally, in Cryptococcus, same-mating-type
mating was first demonstrated to occur in nature, because the mating type locus had been well
described and easily genotyped [37]. This is a large hurdle for a species like Bd, but the fact that Bd
hybrids exist should provide impetus to determine the genetic basis of mating types which may reveal
similar same-mating-type mating dynamics.

Regardless of the underlying genetic differences between Cryptococcus and Bd, this review has
highlighted several commonalities regarding their hybridization. Hybrids in both genera show
increased genomic plasticity, with the potential to generate transgressive phenotypes, unleashed
following both meiotic and mitotic recombination. Hybrids in both genera reveal that it is a subset of
environments, rather than all, in which they have higher fitness. Finally, the spread of both pathogen
genera likely involves human-assisted migration that led to subsequent admixture. Given the potential
adaptive benefits of hybridization in both Cryptococcus and Bd, improved measures for pathogen
containment to prevent increased opportunities for hybridization should be put in place, both in
clinical and environmental settings.
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