
genes
G C A T

T A C G

G C A T

Article

SparkRA: Enabling Big Data Scalability for the GATK
RNA-seq Pipeline with Apache Spark

Zaid Al-Ars * , Saiyi Wang and Hamid Mushtaq

Computer Engineering Lab, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands;
S.Wang-17@student.tudelft.nl (S.W.); H.Mushtaq@tudelft.nl (H.M.)
* Correspondence: z.al-ars@tudelft.nl

Received: 30 October 2019; Accepted: 10 December 2019; Published: 3 January 2020

Abstract: The rapid proliferation of low-cost RNA-seq data has resulted in a growing interest in
RNA analysis techniques for various applications, ranging from identifying genotype–phenotype
relationships to validating discoveries of other analysis results. However, many practical applications
in this field are limited by the available computational resources and associated long computing time
needed to perform the analysis. GATK has a popular best practices pipeline specifically designed
for variant calling RNA-seq analysis. Some tools in this pipeline are not optimized to scale the
analysis to multiple processors or compute nodes efficiently, thereby limiting their ability to process
large datasets. In this paper, we present SparkRA, an Apache Spark based pipeline to efficiently
scale up the GATK RNA-seq variant calling pipeline on multiple cores in one node or in a large
cluster. On a single node with 20 hyper-threaded cores, the original pipeline runs for more than 5 h
to process a dataset of 32 GB. In contrast, SparkRA is able to reduce the overall computation time of
the pipeline on the same single node by about 4×, reducing the computation time down to 1.3 h. On
a cluster with 16 nodes (each with eight single-threaded cores), SparkRA is able to further reduce this
computation time by 7.7× compared to a single node. Compared to other scalable state-of-the-art
solutions, SparkRA is 1.2× faster while achieving the same accuracy of the results.

Keywords: GATK variant calling; RNA-seq; Apache Spark; scalability; computation time

1. Introduction

With the development of next-generation sequencing (NGS) technologies, both DNA-seq and
RNA-seq data are becoming increasingly accessible. Identifying variants from DNA-seq data attracted
much attention from the research community, which resulted in the development of a number of tools
and computational pipelines to address the problem. One of the most widely-used DNA-seq pipelines
is GATK best practices [1], which recommends a sequence of tools to process DNA-seq data from raw
reads all the way to variant calls. However, it usually takes many hours to run the complete pipeline,
due to the large size of the input data and the poor scalability of some of the tools used.

In order to improve the performance of DNA pipelines and get results faster, a number of solutions
have been proposed: Either by scaling the pipelines on multiple compute nodes in a cluster, or by
improving the performance on a single node. In terms of cluster solutions, Churchill [2] adapts
GATK and creates a high-performance alternative pipeline with an integrated set of tools to utilize
the computational resources more efficiently. Other solutions, like Halvade’s [3], scale up the pipeline
using the big data Hadoop MapReduce [4] framework. In contrast, SparkGA [5–7] is based on the
in-memory big data framework Spark [8]. Both Halvade and SparkGA try to optimize the scalability
of the GATK pipeline at a cluster level. The logic behind each of them is the same: The input data are
divided into chunks and each step in the pipeline can be performed on those independent chunks to
achieve data-parallel computations. The advantage of these two solutions is the ease of implementation

Genes 2020, 11, 53; doi:10.3390/genes11010053 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0001-7670-8572
http://dx.doi.org/10.3390/genes11010053
http://www.mdpi.com/journal/genes

Genes 2020, 11, 53 2 of 15

of the pipelines on a scalable cluster without having to know the exact details of the cluster setup. In
terms of performance improvement on a single node, various solutions have been proposed, ranging
from algorithmic optimizations [9] to hardware acceleration [10].

At the same time, RNA-seq data have emerged as a cheaper and more efficient alternative to
DNA sequencing data. While it has primarily been used for novel gene identification, expression
quantification and splicing analysis [11], new analysis methods allow using this RNA-seq data for
calling variants in the genome. In addition to the lower sequencing costs, variants discovered from
RNA-seq data are from expressed genome regions, which provides direct evidence to study the relation
between genotypes and phenotypes [12]. Furthermore, calling variants in RNA-seq is also an efficient
option to validate the discoveries from whole-genome sequencing (WGS) or whole-exome sequencing
(WES) experiments [13].

A number of tools and pipelines have specifically been proposed to enable RNA-seq data analysis;
examples are GSNAP [14], MapSplice [15], TopHat [16] and STAR [17], which address the challenge of
spliced reads alignment. In addition, the GATK team released their own best practices computational
pipeline tailored for RNA-seq variant discovery [18]. However, variant calling in RNA-seq data has
some unique computational challenges, such as the large difference in coverage between chromosomes,
and the fact that the reads in RNA-seq data are not contiguous makes alignment and subsequent
processing steps more difficult. This results in increasing the processing time of such data. For example,
running the GATK RNA-seq pipeline on two paired-end data files of 25 GB each takes about 29 h
on a single-core computer. On a system with 20 cores, the pipeline still takes up to 16 h, resulting in
a speedup of about 2× rather than the desired 20×. This indicates the poor scalability of this pipeline,
and the low efficiency of running it on multiple cores.

In order to address this issue of limited scalability, Halvade introduced an updated version of
their pipeline called Halvade-RNA [19]. This solution starts by dividing the input data into chunks and
then runs the GATK RNA-seq pipeline on each of these chunks independently to achieve data-parallel
computations. A drawback of Halvade-RNA is that it uses the slow in-disk Hadoop MapReduce
computation model, which introduces a large overhead on the computation time of the pipeline.

In this paper, we present SparkRA (Spark RNA Analysis), a pipeline that enables the GATK
RNA-seq pipeline to scale efficiently on multiple nodes in a cluster environment. SparkRA uses
the Apache Spark big data in-memory framework to facilitate easy scalability of the pipeline,
while ensuring low computational overhead, thereby increasing the performance of the pipeline
compared to other state-of-the-art solutions.

The contributions of this paper are:

1. Introducing SparkRA, a Spark-based pipeline to scale up RNA-seq analysis pipelines easily and
efficiently, using the Apache Spark in-memory framework.

2. Improving the parallelism of the GATK best practices RNA-seq tools by addressing their
sequential bottlenecks, and allowing them to take full advantage of the capabilities of SparkRA.

3. Comparing the performance of SparkRA with other state-of-the-art pipelines, and measuring
an overall speedup of 7.7× as SparkRA scales the GATK RNA-seq pipeline from one node to 16.
Compared to Halvade-RNA, our solution is about 1.3× faster on a single node and 1.2× faster on
a cluster.

2. Methods

In this section, we discuss the details of SparkRA and how it is able to achieve efficient parallel
scalability. First, we present the original GATK RNA-seq pipeline, then we discuss the parallelization
and optimization techniques we implemented.

Genes 2020, 11, 53 3 of 15

2.1. GATK RNA-seq

Figure 1 shows the tools used in the GATK RNA-seq pipeline and how they process the input
files to variant calls at the output. The pipeline is divided into three main parts as highlighted in the
figure, each using the following tools: 1. STAR aligner, 2. Picard tools, 3. GATK toolkit.

... - - - ...
, '

,

,

I

I

I FASTQ I
I File (s) I

\
\
' ' , '

... - - - ...

'

\

,

r

�
r

...... --- , '
,

'

,' Static \
I I

I
I
I

genome :
\ index
' , ' ,

Mapping pass 1

Mapping pass 2

AddOrReplace-

Read Groups

Split'N'Trim

-------.
I I

'SJ file ;
I I
·-------

:SAM file:
I I

.. - - - - - - - -·

-------.
I I

'SJ file :
I

I ·-------

:SAM file:
I I

.. - - - - - - -·

r --------

I I

, BAM file'
I I

.. - - - - - - - -·

r--------

�
r

�
r

Rebuild Genome
Index

' f
... - . - , , '

,
'

I New
\

I
\

I I

genome
I
I index \ I

' , ' , ' ... - - - ... ,

MarkDuplicates

I

1
I

'BAM file ,..., �f-------___,,
I I

.. - - - -

r --------

1 I
�,

rl BAM file ,_' ---i.i BaseRecalibrator
I I

I
. - - - -

�

r

' f
r --- - - - -

I I
I table I
I ., ____ ----

' f

I
I
I
I

HaplotypeCaller �·
r •

I

I

I

�

r------

l f

r------

�

I
\ ------

' '

STAR Aligner

Picard tools

GATK toolkits

'

\
I
I

data

Called Variants :

\ ' '
... - - -

,, ,
I

I

Figure 1. Tools used in the GATK RNA-seq pipeline and the way they process the data from input
to output.

The pipeline starts by taking one (or two for paired-end reads) FASTQ file at the input. This file is
read by the STAR aligner [17], which is considered as the most accurate aligner for RNA-seq reads [20].
STAR compares the reads to a reference genome encoded in a static genome index file to perform
the first mapping pass (mapping pass 1). This mapping produces a SAM output file that contains
the mapping location of each read to the reference. This file is discarded since this mapping is not
accurate as it does not take into consideration that these RNA reads are spliced (i.e., split) at multiple
intermediate locations (so-called junctions). In addition to the SAM file, a splice junction (SJ) file
containing the splice junction information is produced by the first mapping pass. The SJ file is used by
STAR as a guide in the rebuilding of the genome index (rebuild genome index), which produces a new
genome index that includes the needed splice junction information to perform a more accurate mapping

Genes 2020, 11, 53 4 of 15

of the spliced reads in the FASTQ file. Then, STAR starts a second mapping pass (mapping pass 2) to
create an accurate SAM file with read mapping information.

This SAM file is then used as input to Picard, the second tool in the GATK RNA-seq pipeline. First,
Picard sorts the SAM file and creates groups of reads (AddOrReplace-ReadGroups) and compresses
SAM to a BAM file for better performance in the rest of the pipeline. Then, Picard identifies repeated
reads in the file and marks them as duplicates (MarkDuplicates) in the BAM file.

The remaining steps in the pipeline are carried out by various tools in the GATK toolkit. First,
the Split’N’Trim tool is designed to identify the location of gaps in RNA reads, and to subsequently
split a spliced read into exon segments. Then, the BaseRecalibrator tool creates a table to reassign the
base quality values of the reads that could be biased by the sequencing machines. Finally, the pipeline
ends by the HaplotypeCaller which is a variant calling tool that reads the BAM file and the base quality
table to identify the probability of a variant in the reads with respect to the reference, and write these
variants to a VCF file.

In order to identify the scalability bottlenecks in this pipeline, we measured the time taken by
the different tools as we scale the number of available CPU threads the tools can use. Figure 2 shows
the measurement results for running STAR on the one hand, and for Picard and GATK combined on
the other. Throughout the paper, Picard and GATK are treated as a single component in the pipeline,
which a feature of our scalability framework. The figure shows that as the number of threads increases,
STAR is able to effectively make good use of these threads and reduce its runtime from about 350 min
down to about 70 min. However, the runtime of Picard and GATK hardly ever changes as we increase
the number of threads. This is due to the fact that among all the tools used in Picard and GATK, only
the BaseRecalibrator can be executed with more than one thread.

0	

50	

100	

150	

200	

250	

300	

350	

400	

1	 5	 10	 20	 40	

Ti
m
e	
[m

in
ut
es
]	

Number	of	threads	

STAR	

Picard	&	GATK	

Figure 2. Scalability bottlenecks of the different tools in the GATK RNA-seq pipeline.

In addition to evaluating the scalability potential of the pipeline, we also investigated the
computational bottlenecks of the pipeline. Figure 3 shows the percentage breakdown of the time
taken by each tool in the GATK RNA-seq pipeline when executed on a single node with 40 threads.
The figure shows that STAR is the fastest part of the pipeline, taking about 19% of the total time, 12% of
which is used for index rebuilding. Picard is slower, taking 21% of the total time. Finally, the GATK
toolkit takes most of the runtime consuming 60% of the pipeline. The results in Figures 2 and 3 show
that in order to get any benefit from scaling up our pipeline to multiple nodes, we will have to address
the limited scalability of Picard and GATK.

Genes 2020, 11, 53 5 of 15

3	
12	

4	

11	

10	

21	

4	

35	

STAR	mapping	1	

STAR	rebuild	index	

STAR	mapping	2	

AddOrReplaceReadGroups	

MarkDuplicates	

Split'N'Trim	

BaseRecalibrator	

HaplotypeCaller	

 G
AT

K

 P

ic
ar

d

ST
AR

__
__

__
__

 _
__

__
__

__
__

__
_

Figure 3. Percentage of time taken by each tool in the GATK RNA-seq pipeline on a single node with
40 threads.

2.2. SparkRA Execution Flow

Figure 4 shows the general execution flow of our SparkRA pipeline [21]. The general idea behind
parallelizing the various tools is to divide the input files of each tool into a number of chunks, and then
running multiple instances of each tool in parallel to allow for efficient scalability to multiple threads
and multiple nodes. However, there are a couple of challenges that limit the parallel potential of the
pipeline. First of all, there are three points in the pipeline (1. merge SJ info, 2. sorting and 3. merge VCF)
where the next tool needs to wait on all the instances of the previous tool to finish completely before it
can start. These points are called synchronization points. In order to reduce their impact, we need to
balance the execution time of the tool instances running in parallel so that they finish in approximately
the same time, such that waiting time can be minimized. Secondly, the sorting task itself has a strong
sequential component and is therefore difficult to parallelize. As a result, we need to implement it in
a very efficient way to ensure that it does not become a bottleneck for the pipeline as it scales.

Figure 4 shows the various components of the SparkRA pipeline. Before starting the pipeline,
the FASTQ files are divided into chunks of nearly equal size. The initial version of the genome index
is stored locally on all nodes to allow all tasks to access it. Then multiple instances of STAR aligner
are executed to map the reads in the chunks to the reference in parallel. The number of chunks is
equal to the number of threads available on the cluster. Next, the first synchronization point is reached,
where the splice junction files must be merged into one and used to rebuild the genome index. STAR
then uses the new genome index to remap the FASTQ chunks to the reference. The output SAM
strings of the second mapping pass have to be sorted and grouped by chromosome before being
fed to Picard and GATK. This is the second synchronization point. After grouping by chromosome,
bigger chromosomes are divided into regions to even out the distribution of the reads in the SAM file.
This creates smaller SAM files with chromosome regions to ensure better load balancing of later stages
of the pipeline. Finally, each SAM region is processed by Picard and GATK to identify variant calls,
stored in multiple VCF files. This is where the third synchronization point is reached. These VCF files
are then merged into one final VCF file used for further analysis.

The SparkRA pipeline has been implemented in Spark, using the Scala language, with minor
utilities written in Java and Python. To maximally use the parallelism available in the pipeline,
we implement two load balancing techniques (static and dynamic load balancing) to allow the different
parallel processes to overlap their execution as much as possible. The pipeline is separated into
three parts.

Part 1 does the alignment and performs static load balancing according to the size of each
chromosome defined by the reference genome.

Part 2 performs dynamic load balancing to divide the SAM files according to the actual number of
reads mapped to each chromosome.

Genes 2020, 11, 53 6 of 15

Part 3 is represented by Picard and GATK.

Merge SJ info

Mapping 2

fastq
chunk 2

Mapping N-1

fastq
chunk N-1

Mapping N

fastq
chunk N

Rebuild Genome
Index

Splice
junctions

Splice
junctions

Splice
junctions

indexed genome

New index with SJ
info

Mapping 1

fastq
chunk 1

Pa
rt

1:
 S

TA
R

 m
ap

pi
ng

fastq
chunk 2

Mapping N-1

fastq
chunk N-1

Mapping N

fastq
chunk N

Mapping 1

fastq
chunk 1

Splice
junctions

sam regions sam regions sam regions sam regions

Sorting and grouping by chromosome

sam
region

sam
region

sam
region

sam
region

Picard or
GATK

Picard or
GATK

Picard or
GATK

Picard or
GATK

VCF 1 VCF 2 VCF
N-1 VCF N

Merge VCF

Final VCF

Mapping 2

Pa
rt

3:
 P

ic
ar

d
&

G
AT

K
Pa

rt
2:

 S
or

tin
g

Static load balancing

Dynamic load balancing

Figure 4. Execution flow of the SparkRA pipeline.

Genes 2020, 11, 53 7 of 15

In Part 1, there are two optimizations we can perform to run STAR efficiently. First, since we
execute multiple STAR instances, each instance requires to load the full genome index file into memory
(about 27 GB of RAM for human RNA), which occupies excessive amounts of memory. In order to
reduce memory utilization, STAR allows loading the genome index to a shared memory on each node
that can be used by all STAR instances on that specific node. Second, since rebuilding the genome
index is a totally sequential step, it becomes an increasingly serious bottleneck as the pipeline scales.
Therefore, STAR allows to rebuild an index with a sparse suffix array in a sparse way, which can
be built much faster. For example, a suffix array of sparsity 8 (i.e., distance between indices is 8) is
6.3× faster to build than a suffix array of sparsity 1 (39.2 min versus 6.27 min). A sparse suffix array
does, however, slow down the second mapping, but since the mapping can be parallelized, it is not
a bottleneck for scalability.

2.3. Static and Dynamic Load Balancing

As shown in Figure 4, Part 3 (Picard and GATK) of the pipeline is executed fully in parallel.
This means that it is important to balance the load of each of the parallel instances to minimize the
overall computation time. This can be done by balancing the number of reads in every SAM region
provided as input to each pipeline instance in Part 3. Since this in itself a computationally intensive
process to be done for the many millions of reads in the SAM file, we divide the process into two stages:
Static and dynamic load balancing, as presented by SparkGA [5].

2.3.1. Static Load Balancing

If we assume that the reads are on average distributed equally across the different chromosomes
in the DNA, we can approximate the load balancing process by dividing the reads in the SAM file
according to the size of the DNA region they belong to. Since this information is known in advance
(before the pipeline starts), we can perform it statically for a specific reference genome. If sizeStaticsum

represents the total size of the genome in base pairs, and numRegions represents the number of regions
we would like to create (based on the number of parallel instances of the pipeline we would like to
create), then the target size of each region used for static load balanced would be

avgSizeStatic =
sizeStaticsum

numRegions
(1)

However, to make the computation easier, we first create regions along the boundaries of
individual chromosomes. Then, we only divide a single chromosome into two or more regions
if the size of the chromosome is larger than a multiple of numRegions. This means that the eventual
number of regions actually created is not equal to the targeted numRegions. We refer to the number of
regions actually created during static load balancing as RsLB.

Static load balancing requires very limited computation, since all the needed information is
already available after STAR mapping of Part 1 completes. This means that we can use this simple
heuristic already in Part 1 to improve the performance of Part 3 at a negligible cost. Moreover,
the performance of Part 3 can be further improved using dynamic load balancing in Part 2 as discussed
in the next section.

2.3.2. Dynamic Load Balancing

Static load balancing is performed without taking in account the actual number of reads mapped
to every region of the genome. This is done to simplify the computational complexity of the balancing
process. However, after the alignment and sorting takes place, we perform a second load balancing
iteration based on the actual number of mapped reads in every region to further optimize the process.
This second iteration is referred to as dynamic load balancing, since it uses the mapping information
that was just calculated in Part 1 of the pipeline.

Genes 2020, 11, 53 8 of 15

The actual total number of reads (sizeDynamicsum) can efficiently be calculated in Spark at run
time. The target size of each genome region (avgSizeDynamic) can be calculated as follows.

avgSizeDynamic =
sizeDynamicsum

RsLB
(2)

Then, this number is compared with the actual number of reads in each genome region. If the
number of reads is larger than a multiple of avgSizeDynamic, we will divide the genome region into
sub-regions to make the load more balanced for Part 3 of the pipeline. We refer to the number of
regions actually created during dynamic load balancing as RdLB.

In many cases, the number of reads in the majority of regions will not exceed a multiple of
avgSizeDynamic. Therefore, this step will not incur much delay in the pipeline. However, in cases
where the number of reads in a region does happen to be rather high, dynamic load balancing will
succeed in preventing this region from becoming a bottleneck for Part 3 of the pipeline.

3. Results

In this section, we discuss the measurement results of our SparkRA pipeline as compared to
other state-of-the-art solutions. In these experiments, we use a dataset with two files of 16 GB each:
ENCFF005NLJ and ENCFF635CQM. The data are publicly available from the Encyclopedia of DNA
Elements (ENCODE) [22]. We used GATK version 3.4 instead of GATK version 4, since the cluster
used to run the experiments did not support running GATK version 4.

First, we present the scaling up results on a single compute node, followed by the results on
multiple nodes in a cluster.

3.1. Single-Node Performance

For the single node experiment, we run the pipelines on a node that has two processors, each
with 10 physical cores with hyper-threading enabled (two threads per core). The node is able to run
40 threads and has 196 GB of RAM.

3.1.1. Impact of Load Balancing

Table 1 lists the relationship between the number of regions requested by the user and the actual
number of generated regions during static and dynamic load balancing. The results show that there are
always more static regions generated than the requested number of regions. This takes place due to the
large difference between the sizes of chromosomes in the human genome. Since we start by creating
regions based on chromosomes and subsequently divide these into sub-regions, smaller chromosomes
will always have their own region and more regions are added by dividing bigger chromosomes into
sub-regions. This effect diminishes gradually as we increase the number of requested regions. The table
also shows that there are even more dynamic regions created than static ones (36% to 56% more).
This indicates that the number of reads is not uniformly distributed along the genome, but comes
rather concentrated in specific regions. This is specifically true for RNA-seq data, as it gets expressed
in specific genetic regions only.

With respect to computation time, the shortest total time is achieved with 72 requested regions.
However, the table shows limited impact of the change in the number of regions on the total time.
There is a slight decrease in the time of Part 2 as the number of regions increases, which gets offset
by a slight increase in the time of Part 3. The limited impact of the number of regions here can be
attributed to the limited amount of parallel resources a single node has. Parallelization can help up to
the limit of the nodes capabilities. Since our node has 20 cores capable running a total of 40 threads,
creating up to 40 regions can help reduce the computation time of the pipeline. However, with 50
regions or more, the computation time is not expected to decrease much. The increased number of
regions beyond 40 is chosen here to investigate the impact on the actual number of regions generated
during static (RsLB) and dynamic (RdLB) load balancing.

Genes 2020, 11, 53 9 of 15

Table 1. Impact of the user requested number of the regions (numRegions) on the actual number of
regions generated during static (RsLB) and dynamic (RdLB) load balancing, in addition to the resulting
total computation time of the pipeline and that of Parts 1 to 3 (single-node performance).

Time [minutes]

numRegions RsLB RdLB Part 1 Part 2 Part 3 Total

180 224 304 39.4 9.33 32.5 81.2
144 193 262 39.7 10.3 30.8 80.8
108 156 217 40.7 11.2 29.2 81.0
72 123 183 39.7 11.4 29.1 80.2
50 103 161 40.0 13.8 29.4 83.2

To show the effectiveness of our load balancing technique, we compare it with the load balancing
method used by Halvade-RNA. Figure 5 shows a histogram of the size of regions (in MB) generated by
SparkRA (left) and Halvade-RNA (right). The static and dynamic load balancing technique used by
SparkRA insures that enough regions are generated (depending on the size of the input data), such that
the maximum sizes of the regions remain relatively small. This is not the case for Halvade-RNA,
which uses a fixed number of regions irrespective of the size of the data. The figure shows that
the maximum size of the regions generated by SparkRA for the used dataset is less than 120 MB,
while regions can have a size of up to 655 MB for Halvade-RNA. This difference is made possible due
to two reasons. On the one hand, SparkRA is able to generate many more regions (161 in this case)
compared to Halvade-RNA (only 37 regions) when the size of the dataset is large, thereby keeping the
size of each region smaller. On the other hand, SparkRA specifically breaks down larger regions into
smaller ones, rather than uniformly dividing the whole DNA in equal sized regions. This results in
creating more regions with larger sizes, which increases the utilization of the compute infrastructure,
and reduces the number of CPUs that wait idle after processing the smaller regions. The figure shows
that most of the regions generated by Halvade-RNA have sizes smaller than 50% of the corresponding
maximum region size, while most of the regions generated by SparkRA have sizes larger than 50% of
the corresponding maximum region size.

47	

7	
1	

55	

40	

2	
0	

10	

20	

30	

40	

50	

60	

20	 40	 60	 80	 100	 120	

N
um

be
r	o

f	r
eg
io
ns
	

Region	size	in	MB	

SparkRA	

10	

16	

8	

2	 1	

0	

3	

6	

9	

12	

15	

18	

135	 265	 395	 525	 655	

N
um

be
r	o

f	r
eg
io
ns
	

Region	size	in	MB	

Halvade-RNA	

Figure 5. Histogram of the size of regions (in MB) generated by SparkRA (left) and Halvade-RNA (right).

3.1.2. Comparison with Existing Solutions

In this section, we compare the compute capabilities of SparkRA with the computation time of
other state-of-the-art solutions in the field: The original GATK RNA-seq pipeline and Halvade-RNA,
as shown in Table 2. The table lists two measurements for GATK: Executed with only 1 thread (GATK1)
and with 40 threads (GATK40). The table also lists the time taken by the different parts of each
pipeline. For Part 1 (STAR mapping), we provide the time for the first and second STAR aligner
passes, in addition to the genome index rebuild step in between. For Part 2 (sorting and dynamic load
balancing), we provide only a measurement for SparkRA; the sorting time for GATK and Halvade is
included in the time of Part 3 in the table.

Genes 2020, 11, 53 10 of 15

Table 2. Pipeline computation time (in minutes) comparison of GATK RNA-seq running with one
thread (GATK1) and 40 threads (GATK40) with Halvade-RNA and SparkRA (single-node performance).

Pipeline Stage GATK1 GATK40 Halvade SparkRA

Part 1:

STAR (pass 1) 92.4 9.87 9.60 10.5

Index rebuild 152 39.2 6.70 6.27

STAR (pass 2) 116 14.0 33.0 22.9

Total Part 1 360 63.1 49.3 39.7

Part 2: Sorting n/a n/a n/a 11.4

Part 3: Picard & GATK 265 255 56.8 29.1

Total pipeline time 625 318 106 80.2

Figure 6 shows the speedup achieved by the 40-thread GATK RNA-seq pipeline, Halvade-RNA
and SparkRA over the single-threaded GATK pipeline. We compare Parts 1 and 3 of the pipeline
in addition to the total speedup. For SparkRA, we compare the combined time of Parts 2 and 3 to
that of Part 3 of GATK1. The figure shows that SparkRA is by far the fastest pipeline, achieving
a speedup of 7.8×, followed by Halvade with 5.9×, and finally GATK40 with about 2×, compared
to GATK1. This same is true for Parts 1 and 3 of the pipelines individually. Compared to Halvade,
SparkRA is about 1.32× faster in total, 1.4× faster for Parts 2 and 3 and 1.24× faster for Part 1. These
results indicate that SparkRA makes good use of the parallel capabilities of Spark and allows for easy
scalability on a single node.

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

GATK1	 GATK40	 Halvade	 SparkRA	

Sp
ee
du

p	

Part	1	

Part	2	&	3	

Total	

Figure 6. Single-node speedup of 40-thread GATK RNA-seq (GATK40), Halvade-RNA and SparkRA
over single-threaded GATK RNA-seq (GATK1).

Interestingly, Table 2 shows that SparkRA is actually slower than GATK40 for both STAR pass
1 and 2. This has two reasons. On the one hand, STAR is implemented to scale very efficiently
on a single node with increasing number of threads (as shown in Figure 2). On the other hand,
Spark scalability is done by creating multiple independent STAR processes, which creates much more
overhead, in addition to extra overhead that the Spark framework itself adds to the computation time
to manage the scheduling and resilience of these processes.

3.2. Multi-Node Performance

This section discusses the scalability capabilities of SparkRA in a cluster environment. We use
SURFsara, the Dutch national supercomputing infrastructure to run our analysis [23]. Each node we
used on the SURFsara cluster has 56 GB of RAM and two processors, each with four single-threaded
cores (total eight cores per node). The cluster uses the Hadoop Distributed File System (HDFS) for
distributed file storage. We tested SparkRA on 1, 4, 8 and 16 nodes.

Genes 2020, 11, 53 11 of 15

3.2.1. Scalability of SparkRA

Figure 7 shows the total speedup achieved by SparkRA and each of its parts on the cluster while
running on 1, 4, 8 and 16 nodes. The figure shows that the total speedup of SparkRA scales up to
7.7× for 16 nodes, with Part 3 achieving the highest speedup of 13×, followed by Part 1 with 6.1×
and Part 2 scaling the slowest with 5.6×. The high scalability of Part 3 can be attributed to the large
amount of parallelism available in the algorithm. The only sequential component in Part 3 is at the
end of the pipeline where the relatively small VCF files need to be combined. Part 1 also has a lot of
parallelism, but also has a significant sequential component represented by rebuilding the genome
index, which reduces the overall scalability of Part 1. The least scalable part of the pipeline is Part 2,
which has a communication bottleneck, as the sorting step requires the location of mapped reads
computed on a given node to be communicated and compared with the mapped location of all other
reads in other nodes on the cluster. This significantly limits the scalability potential, since increasing
the number of nodes also increases the number of sources and destinations to communicate with.
However, since the time taken by Part 2 is relatively small, it has limited impact on the overall speedup.
Still, if we increase the number of nodes even further beyond 16 nodes, this part will eventually become
an important bottleneck.

0	
2	
4	
6	
8	
10	
12	
14	
16	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Sp
ee
du

p	

Number	of	nodes	

	Part	1	
	Part	2	
	Part	3	
	Total	

Figure 7. Speedup achieved by SparkRA and its parts when running on 1, 4, 8 and 16 nodes in
the cluster.

3.2.2. Comparison with Existing Solutions

Table 3 lists the time taken by Halvade-RNA and SparkRA on the SURFsara cluster, as well as the
speedup achieved by SparkRA for the different parts of the pipeline. The table shows that SparkRA
is 1.22× faster than Halvade for the total runtime of the pipelines, bringing the total runtime down
from 80.9 to 66.5 min. For Parts 2 and 3, SparkRA is 1.36× faster than Halvade. This underscores
the effectiveness of the load balancing capabilities of our pipeline, enabling it to benefit as much as
possible from the parallelism in Part 3. For Part 1, our pipeline has a more modest speedup of 1.16× as
a result of sequential limitations to scalability of that part.

Table 3. Pipeline computation time (in minutes) results and speedup of SparkRA compared to
Halvade-RNA running on the SURFsara cluster.

Pipeline Stage Halvade SparkRA Speedup

Part 1: Mapping 54.7 47.2 1.16
Parts 2 and 3: Sorting, Picard & GATK 26.2 19.3 1.36

Total pipeline time 80.9 66.5 1.22

Genes 2020, 11, 53 12 of 15

4. Discussion

This section provides a discussion of the results and measurements and analyzes the bottlenecks
and limitations of the SparkRA pipeline. We start by an analysis of the CPU utilization in the cluster
mode, followed by a discussion of the accuracy of the pipeline results.

4.1. CPU Utilization

This section discusses in more details CPU utilization while SparkRA is running in cluster mode.
This allows us to understand the efficiency of our solution and potential areas to improve performance
even further.

Figure 8 shows the average CPU utilization in a node on the cluster as it executes the different
parts of SparkRA. The figure has three curves, one representing an active CPU (Process), a CPU
waiting for I/O access (IOwait), and an idle CPU (Idle). There are two charts in the figure that show the
utilization during the three parts of SparkRA. In Part 1, however, there are three steps: STAR mapping
pass 1 done in parallel on all nodes, followed by an index regeneration step done sequentially on only
one node in the cluster, and finally a second STAR mapping pass done on all nodes. The top chart in
the figure shows utilization on the one node in the cluster doing all these three steps including the
sequential index regeneration, while the bottom chart shows utilization of one of the other nodes in
the cluster doing only the two parallel STAR mapping steps. Parts 2 and 3 take place on all nodes of
the cluster, but are not shown in the bottom chart, since they are identical to the top chart.

Generally, the figure indicates that CPUs in the cluster are highly utilized throughout the execution
of the pipeline, since “Process” is close to 100% utilization all the time. There are a number of exceptions,
however, specifically during the index regeneration step in Part 1, and during Part 2.

In Part 1, we can clearly observe different utilization behaviors between mapping pass 1, the
index regeneration and mapping pass 2. At the end of STAR pass 1, computation stops and splice
junction information is sorted, shuffled and finally collected on one node. This explains the 100%
“Idle” time at the end of the STAR pass 1. Then, during the index regeneration step, there is a period
(1000 to 2000 s) where only one node has some “process” activity (top chart), while all other nodes
are idle (bottom chart). This step ends with I/O wait activity (top chart) as the newly generated
index is being copied to other nodes and gets stored in disk. Finally, the STAR pass 2 starts with I/O
wait activity in all other nodes (bottom chart), as these nodes read the new index to use it in pass 2.
Then there is a period of active STAR mapping, which ends Part 1 at about 5000 s.

In Part 2, sorting takes place which, as we discussed earlier, has a significant communication
component. Therefore, the CPU utilization in this part is the least compared to the other pipeline parts.
As the figure shows, the “Idle” curve is elevated throughout this part. In addition, the figure shows
a consistently elevated “IOwait” curve, indicating a large I/O access and network access component
in this part.

In Part 3, Picard and GATK tools are used to call variants in the reads. This figure shows that this
part has the highest utilization as the “Process” curve is consistently at 100%. This result validates our
earlier observation that Part 3 is the most parallelizable and scalable part in the pipeline. This high
100% utilization continues until 7000 s, which is where the VCF files are generated. Then utilization
drops gradually until the files are combined together into one file at the end of the pipeline.

Based on these observations, future work can focus on Part 2 to improve CPU utilization during
the sorting part. One possible solution is to partly overlap sorting with mapping in Part 1, by starting
the sorting as the reads are mapped by the STAR aligner. Another possibility to improve performance
is by optimizing the STAR index regeneration step in Part 1. However, this step is STAR specific and
will require changes to the aligners itself.

Genes 2020, 11, 53 13 of 15

Figure 8. Average CPU utilization of the three different parts of SparkRA on a 16-node cluster. In Part
1, there are three steps: STAR pass 1, STAR index regeneration, and STAR pass 2. The top and bottom
charts show utilization in a node with and without genome index regeneration, respectively. Parts 2
and 3 are not shown in the bottom chart, since they are identical to the top chart. Measurements are
generated using the iostat profiler [24].

4.2. Pipeline Accuracy

An important aspect of scaling up a genomics pipeline is to analyze the accuracy characteristics
of the computed results. Due to dividing various intermediate files into chunks and the distribution
of the computation on multiple nodes, some of the computations might be carried out differently in
a distributed pipeline as compared to computing using a centralized pipeline. This happens primarily
at the boundaries of genomic regions, since short reads that are commonly 150 base pairs long get
sorted into different file chucks depending on their starting map position, without taking overlapping
reads in two regions into consideration.

In this section, the accuracy is evaluated by comparing the variant calls in the VCF files calculated
by a given pipeline, as compared to the VCF variants calculated by the baseline GATK pipeline.
We define pipeline accuracy using two metrics: Sensitivity and precision. In order to calculate these
two metrics, we need to measure the following parameters from the two VCF files: True positive (TP)
variants, false positive (FP) variants and false negative (FN) variants. TPs represents variants called by
both pipelines, FPs represent variants called by the scalable pipeline but not by GATK. FNs represent
variants called by GATK but not by the scalable pipeline. Using these, we can calculate sensitivity and
precision as follows:

Sensitivity =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Table 4 lists the accuracy of VCF files generated by the cluster deployment of SparkRA and
Halvade-RNA as compared with the GATK baseline in terms of precision and sensitivity. The table
shows that in general both SparkRA and Halvade have similar sensitivity and precision of about
95% and 94%, respectively. At close inspection, we find that Halvade has a slightly higher sensitivity

Genes 2020, 11, 53 14 of 15

of 0.23 percentage points than SparkRA, and a slightly higher precision of 0.04 percentage points.
This difference can be attributed to the significantly increased number of regions (29% more) created
by SparkRA (183 regions) compared to Halvade (142 regions). The increased number of regions of
SparkRA allows for the large amount of performance increase as compared to Halvade, albeit at
a minor degradation in accuracy.

Table 4. Accuracy of VCF files generated by the cluster deployment of SparkRA and Halvade-RNA as
compared with the GATK baseline in terms of sensitivity and precision. The comparison results were
generated using RTG Tools [25].

Pipeline #Regions TP FP FN Sensitivity Precision

SparkRA 183 109411 6886 6363 94.50% 94.08%
Halvade 142 109669 6850 6105 94.73% 94.12%

5. Conclusions

This paper introduced SparkRA, an RNA-seq analysis pipeline that allows for easy and efficient
scalability of the GATK RNA-seq best practices pipeline using the Apache Spark big data framework.
SparkRA scales up the computations by dividing data files into chunks that get processed in parallel
by executing multiple instances of the GATK pipeline tools. It can help scale performance of the
pipeline both on a single compute node, and on a large compute cluster. Our solution is able to limit
the imbalance in the computation time between different chunks of the data using a fast heuristic
consisting of two load balancing stages: Static and dynamic load balancing. This approach allows
for load balancing that is both fast as well as fine tuned to the input data. Experimental results show
that SparkRA is effective in utilizing CPU resources keeping CPU of all nodes active at close to 100%
utilization most of the time. SparkRA can achieve 7.8× speedup on a single node compared with
a single thread run of the GATK pipeline. On a cluster of 16 nodes, SparkRA can achieve further
speedup of 7.7× compared to a single node. Compared to existing state-of-the-art solutions, SparkRA
is about 1.2× faster, while achieving the same accuracy of results.

Author Contributions: conceptualization, Z.A.-A.; methodology, S.W. and H.M.; software, S.W.; validation, S.W.;
investigation, S.W. and H.M.; writing–original draft preparation, Z.A.-A.; writing–review and editing, Z.A.-A.;
visualization, S.W. and Z.A.-A.; supervision, Z.A.-A. and H.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The experiments in this paper have been performed on the Dutch national e-infrastructure
with support from the SURF cooperative.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Van der Auwera, G.A.; Carneiro, M.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.;
Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High-Confidence Variant Calls: The Genome
Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33.

2. Kelly, B.J.; Fitch, J.R.; Hu, Y.; Corsmeier, D.J.; Zhong, H.; Wetzel, A.N.; Nordquist, R.D.; Newsom, D.L.;
White, P. Churchill: An ultra-fast, deterministic, highly scalable and balanced parallelization strategy for
the discovery of human genetic variation in clinical and population-scale genomics. Genome Biol. 2015, 16.
[CrossRef] [PubMed]

3. Decap, D.; Reumers, J.; Herzeel, C.; Costanza, P.; Fostier, J. Halvade: Scalable sequence analysis with
MapReduce. Bioinformatics 2015, 31, 2482–2488. [CrossRef]

4. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 2008, 51,
107–113. [CrossRef]

http://dx.doi.org/10.1186/s13059-014-0577-x
http://www.ncbi.nlm.nih.gov/pubmed/25600152
http://dx.doi.org/10.1093/bioinformatics/btv179
http://dx.doi.org/10.1145/1327452.1327492

Genes 2020, 11, 53 15 of 15

5. Mushtaq, H.; Liu, F.; Costa, C.; Liu, G.; Hofstee, P.; Al-Ars, Z. SparkGA: A Spark Framework for Cost
Effective, Fast and Accurate DNA Analysis at Scale. In Proceedings of the ACM Conference Bioinformatics,
Computational Biology and Health Informatics, Boston, MA, USA, 20–23 August 2017.

6. Mushtaq, H.; Ahmed, N.; Al-Ars, Z. SparkGA2: Production-Quality Memory-Efficient Apache Spark Based
Genome Analysis Framework. PLoS ONE 2019, 14, e0224784. [CrossRef]

7. Mushtaq, H.; Al-Ars, Z. Cluster-based Apache Spark implementation of the GATK DNA analysis pipeline.
In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washington,
DC, USA, 9–12 November 2015; pp. 1471–1477.

8. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working
sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10),
Boston, MA, USA, 22–25 June 2010.

9. Hasan, L.; Al-Ars, Z. An Efficient and High Performance Linear Recursive Variable Expansion
Implementation of the Smith-Waterman Algorithm. In Proceedings of the IEEE Engineering in Medicine and
Biology Conference, Minneapolis, MN, USA, 3–6 September 2009; pp. 3845–3848.

10. Hasan, L.; Al-Ars, Z. An Overview of Hardware-based Acceleration of Biological Sequence Alignment.
In Computational Biology and Applied Bioinformatics; InTech: Rijeka, Croatia, 2011; pp. 187–202.

11. Han, Y.; Gao, S.; Muegge, K.; Zhang, W.; Bing, Z. Advanced applications of RNA sequencing and challenges.
Bioinform. Biol. Insights 2015. [CrossRef] [PubMed]

12. Piskol, R.; Ramaswami, G.; Li, J.B. Reliable identification of genomic variants from RNA-seq data. Am. J.
Hum. Genet. 2013, 4, 641–651. [CrossRef] [PubMed]

13. Cummings, B.B.; Marshall, J.L.; Tukiainen, T.; Lek, M.; Donkervoort, S.; Foley, A.R.; Bolduc, V.; dell Wa, L.;
Sandaradura, S.; O’Grady, G.L.; et al. Improving genetic diagnosis in mendelian disease with transcriptome
sequencing. Sci. Transl. Med. 2017, 9. [CrossRef] [PubMed]

14. Wu, T.D.; Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads.
Bioinformatics 2010, 26, 873–881. [CrossRef] [PubMed]

15. Wang, K.; Singh, D.; Zeng, Z.; Coleman, S.J.; Huang, Y.; Savich, G.L.; He, X.; Mieczkowski, P.; Grimm, S.A.;
Perou, C.M.; et al. Mapsplice: Accurate mapping of rna-seq reads for splice junction discovery. Nucleic Acids
Res. 2010, 38, e178. [CrossRef] [PubMed]

16. Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. Tophat2: Accurate alignment
of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36.
[CrossRef] [PubMed]

17. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R.
Star: Ultrafast universal rna-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef] [PubMed]

18. GATK. Calling Variants in RNAseq. Available online: https://software.broadinstitute.org/gatk/
documentation/article.php?id=3891 (accessed on 19 October 2019).

19. Decap, D.; Reumers, J.; Herzeel, C.; Costanza, P.; Fostier, J. Halvade-rna: Parallel variant calling from
transcriptomic data using mapreduce. PLoS ONE 2017, 12, e0174575. [CrossRef] [PubMed]

20. Engstrom, P.G.; Steijger, T.; Sipos, B.; Grant, G.R.; Kahles, A.; Rätsch, G.; Goldman, N.; Hubbard, T.J.;
Harrow, J.; Guigó, R.; et al. Systematic evaluation of spliced alignment programs for rna-seq data.
Nat. Methods 2013, 10, 1185. [CrossRef] [PubMed]

21. Wang, S. Scaling Up the GATK RNA-seq Variant Calling Pipeline with Apache Spark; Delft University of
Technology: Delft, The Netherlands, 2018.

22. ENCODE Project Consortium. An integrated encyclopedia of dna elements in the human genome. Nature
2012, 489, 57. [CrossRef] [PubMed]

23. SURFsara. Available online: https://www.surf.nl/en/research-ict (accessed on 19 October 2019).
24. iostat Linux Man Page. Available online: https://linux.die.net/man/1/iostat (accessed on 19 October 2019).
25. RTG Tools, Real Time Genomics. Available online: https://www.realtimegenomics.com/products/rtg-tools

(accessed on 19 October 2019).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0224784
http://dx.doi.org/10.4137/BBI.S28991
http://www.ncbi.nlm.nih.gov/pubmed/26609224
http://dx.doi.org/10.1016/j.ajhg.2013.08.008
http://www.ncbi.nlm.nih.gov/pubmed/24075185
http://dx.doi.org/10.1126/scitranslmed.aal5209
http://www.ncbi.nlm.nih.gov/pubmed/28424332
http://dx.doi.org/10.1093/bioinformatics/btq057
http://www.ncbi.nlm.nih.gov/pubmed/20147302
http://dx.doi.org/10.1093/nar/gkq622
http://www.ncbi.nlm.nih.gov/pubmed/20802226
http://dx.doi.org/10.1186/gb-2013-14-4-r36
http://www.ncbi.nlm.nih.gov/pubmed/23618408
http://dx.doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
https://software.broadinstitute.org/gatk/documentation/article.php?id=3891
https://software.broadinstitute.org/gatk/documentation/article.php?id=3891
http://dx.doi.org/10.1371/journal.pone.0174575
http://www.ncbi.nlm.nih.gov/pubmed/28358893
http://dx.doi.org/10.1038/nmeth.2722
http://www.ncbi.nlm.nih.gov/pubmed/24185836
http://dx.doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
https://www.surf.nl/en/research-ict
https://linux.die.net/man/1/iostat
https://www.realtimegenomics.com/products/rtg-tools
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	GATK RNA-seq
	SparkRA Execution Flow
	Static and Dynamic Load Balancing
	Static Load Balancing
	Dynamic Load Balancing

	Results
	Single-Node Performance
	Impact of Load Balancing
	Comparison with Existing Solutions

	Multi-Node Performance
	Scalability of SparkRA
	Comparison with Existing Solutions

	Discussion
	CPU Utilization
	Pipeline Accuracy

	Conclusions
	References

