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A major technological shift in the research community in the past decade has been the adoption
of high throughput (HT) technologies to interrogate the genome, epigenome, transcriptome, and
proteome in a massively parallel fashion [1,2]. This has provided both unique discovery opportunities
and challenges for computational and quantitative scientists in predicting phenotypic outcomes.
‘Big Data’ encompasses the collection of data sets derived from technologies and so large and complex
that their processing is impractical using traditional data processing applications. Challenges arise in
collection, analysis, mining, sharing, transfer, visualization, archival and integration of Big Data.

Genotype is one of three key factors that determine the phenotype, including inherited factors
(DNA code), epigenetic factors (DNA methylation, histone modifications RNA-associated silencing)
and non-inherited environmental factors [3]. In this special issue, there is a focus on systems level
analysis of omics data, recent developments in pathway and network biology algorithm development,
and integration of omics data with clinical and biomedical data using machine learning. The role
of chromatin in genotype-phenotype is explored. Improvements to the Gene Ontology Resource to
Facilitate More Informative Analysis and Interpretation of Alzheimer’s Disease Data is covered.

One of the pressing challenges for integrative computational biology and statistical genetics is
predicting genotype-to-phenotype maps of organisms in the context of environmental influences. As
noted in the collection perspective by Lewis Frey, genotypes and phenotypes realized in Omics data
collections are linked through the various nuclear and cellular processes that convert encoded genotype
information into a macroscale manifestation of the organism phenotype [4]. The ability to identify the
key drivers of genotype to phenotype is challenging among the multitude of interacting molecules.
Frey makes a compelling argument for the application of artificial intelligence (AI) that can automate
computable phenotypes and integrate them with genotypes. Challenges need to be overcome namely
the rapid growth of data, the inaccessibility of data through issues with incompleteness, inaccuracies,
and heterogeneity and data silos.

A review article in this collection by Núria Malats and colleagues explores the challenges that exist
with the integration of Omics and Non-Omics (OnO) Data [5]. At present few omics-based algorithms
that possess enough predictive ability are implemented in the clinic. Clinical/epidemiological data
describe most of the variation in health-related traits. Effective modeling of this with omics data is
urgently needed to increase the predictive ability of algorithms. Obstacles in OnO data integration
are the nature and heterogeneity of non-omics data, the relationship between OnO data termed
ascertainment bias, the presence of interactions, the fairness of the computational models, and the
presence of sub-phenotypes. Most data to date is focused on RNA expression data and studies have
incorporated non-omics data in a low-dimensionality manner. Integrative strategies typically adopt
one of three modeling methods: Independent, conditional, or joint modeling. Joint modeling, where
omics and non-omics data are modelled together in a supervised or unsupervised manner, are preferred
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for integrating large-scale OnO data, as they account for the correlation structure between the two data
types. Additionally, they provide greater complexity than conditional or independent modeling [5].

Data from different sources (e.g., genome, epigenome, transcriptome, proteome, metabolome)
tends to be analyzed in isolation using statistical and machine learning (ML) methods. Effective
data integration poses new computational challenges [6]. State-of-the-art ML-based approaches for
tackling five specific computational challenges associated with integrative analysis: namely the curse
of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues are reviewed
by Peipei Ping and colleagues. Anagha Joshi and colleagues review Genotype to Phenotype via
Chromatin [7]. They note that mapping mutations to causal genes and therapeutic targets to date has
been quite limited. The majority of disease-associated mutations lie in inter-genic regions. An emerging
trend is thus to focus on the epigenetic control of the disease to generate more complete functional
genomic maps. Recent studies unravelling the mechanistic understanding of epigenetic processes in
disease development and progression are reviewed [7].

This special issue presented new methodologies in the context of gene-environment, tissue-specific
gene expression and how external factors or host genetics impact the microbiome [8–10]. Wolf and
colleagues developed an analytical approach for identifying the main effects and interactions between
genetic and environmental factors linked to a disease outcome [8]. The method involves selection of
candidate genetic and/or environmental factors, utilization of a machine learning algorithm Logic Forest
to identify the salient effects and interactions in the disease, followed by confirmation of the association
between interactions identified by the algorithm using logistic regression. A case study examining
the association between SNPs and cigarette smoke exposure with risk of developing systemic lupus
erythematosus (SLE) is presented. This identified genetic and environmental risk factors, and potential
interactions between exposure to secondhand smoke as a child and genetic variation in the Integrin
alpha M (ITGAM) gene associated with increased risk of SLE [8].

Cai and colleagues exploited transcriptomic data from multiple tissues generated by the
Genotype-Tissue Expression (GTEx) project [10,11] and developed a new methodology that integrates
machine learning algorithms to identify genes widely expressed in human body tissues with
different expression signatures that can distinguish different tissue types. The approach allows
tissue classification via a 432 gene signature of quantitatively tissue-specific expression, suggesting
that these genes could also play important roles in tissue development and function [10].

Three notable dynamic interactions play a role in phenotypic outcome. The first, is the association
between the environment and the host; the second is that between the microbiome and host health or
disease state; and the third is the linkage between the environment and the microbiome. Owing to this
complexity the majority of observational and experimental study designs fail to fully assess the direct
causal roles of the microbiome. To address this Big Omics challenge, Alekseyenko and colleagues
developed a framework for multivariate omnibus distance mediation analysis (MODIMA). They
exploited the power of energy statistics, to facilitate analysis of multivariate exposure-mediator-response
triples [9].

An important resource for Big Omics data analysis is the Gene Ontology (GO, geneontology.org)
which is used when performing gene enrichment analysis. Ruth Lovering and colleagues at
University College London (UCL) describe improvements to the GO Resource to improve analysis
and interpretation of Alzheimer’s Disease data [12]. This project, funded by the Alzheimer’s Research
United Kingdom foundation and led by the UCL biocuration team, enhanced the GO resource by
developing new neurological GO terms, and annotating gene products associated with dementia.
Of the total 2055 annotations contributed for the prioritized gene products, 526 had associated proteins
and complexes with neurological GO terms. To ensure that these descriptive annotations could be
provided for Alzheimer’s-relevant gene products, over 70 new GO terms were created. This important
novel resource will benefit the scientific community and enhance the interpretation of dementia
data [12].
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Functional enrichment analyses often result in long lists of biological terms associated to proteins
that can be difficult to digest and interpret. Fiero and colleagues addressed this Big Omics data
analysis challenge via the development of Network-based Visualization for Omics (NeVOmics).This
tool provides a hypergeometric distribution test to compute significantly enriched biological terms.
It enables analysis of cluster distribution and relationship of proteins to biological processes and
pathways [13]. Even though databases such as the Cancer Cell Line Encyclopedia (CCLE), the
Cancer Therapeutics Response Portal (CTRP), and The Cancer Genome Atlas (TCGA) are available
it remains challenging for researchers to explore the relationship between drug response and the
underlying genomic features due data heterogeneity. Sung Min Ahn and colleagues address this
via the development of the Integrated Pharmacogenomic Database of Cancer Cell Lines and Tissues
(IPCT) [14]. The IPCT allows users to identify new linkages between drug responses and genomic
features. It also allows comparison of the genomic features of sensitive cell lines or small molecules
with the genomic features of tumor tissues.

30% of all genes in mammalian cells are predicted to be regulated by microRNA (miRNAs)
miRNAs. Da Silveira and Renaud and colleagues describe a new tool, “miRmapper”, which identifies
the most dominant miRNAs in a miRNA–mRNA network and recognizes similarities between miRNAs
based on commonly regulated mRNAs. The most relevant miRNAs are not necessarily those with the
greatest change in expression levels between healthy and diseased tissue. Differentially expressed
(DE) miRNAs that modulate a large number of messenger RNA (mRNA) transcripts ultimately have a
greater influence in determining phenotypic outcomes and are more important in a global biological
context than miRNAs that modulate just a few mRNA transcripts. Da Silveira and Renaud exploit this
concept to analyze data from a nonmetastatic and metastatic bladder cancer cell lines and demonstrated
that the most relevant miRNAs in a cellular context are not necessarily those with the greatest fold
change [15].

In summary, the emergence and global utilization of high throughput (HT) technologies, including
deep sequencing technologies (genomics) and mass spectrometry (proteomics, metabolomics, lipids),
has allowed geneticists, biologists, and biostatisticians to bridge the gap between genotype and
phenotype on a scale that was not possible previously. In this special issue integration strategies for
systems level analysis of Omics data, recent developments in gene ontology pathway and network
algorithm development are explored as is the integration of Omics data with clinical and biomedical data.
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