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Abstract: Gene expression profiling data contains more information than is routinely extracted with
standard approaches. Here we present Fold-Change-Specific Enrichment Analysis (FSEA), a new
method for functional annotation of differentially expressed genes from transcriptome data with
respect to their fold changes. FSEA identifies Gene Ontology (GO) terms, which are shared by the
group of genes with a similar magnitude of response, and assesses these changes. GO terms found
by FSEA are fold-change-specifically (e.g., weakly, moderately, or strongly) affected by a stimulus
under investigation. We demonstrate that many responses to abiotic factors, mutations, treatments,
and diseases occur in a fold-change-specific manner. FSEA analyses suggest that there are two
prevailing responses of functionally-related gene groups, either weak or strong. Notably, some of the
fold-change-specific GO terms are invisible by classical algorithms for functional gene enrichment,
Singular Enrichment Analysis (SEA), and Gene Set Enrichment Analysis (GSEA). These are GO
terms not enriched compared to the genome background but strictly regulated by a factor within
specific fold-change intervals. FSEA analysis of a cancer-related transcriptome suggested that the
gene groups with a tightly coordinated response can be the valuable source to search for possible
regulators, markers, and therapeutic targets in oncogenic processes. Availability and Implementation:
FSEA is implemented as the FoldGO Bioconductor R package and a web-server.

Keywords: gene expression; gene ontology; enrichment analysis; transcriptomics

1. Introduction

Next-generation sequencing technologies revolutionized the field of molecular genetics, providing
whole-genome expression profiles for every aspect of life. However, with current analytical tools,
we retrieve just a small portion of information encoded in the expression profiles, and the development
of new methods is more relevant than ever.

The typical scenario of transcriptome data analysis is the identification of Differentially Expressed
Genes (DEGs), followed by a functional enrichment analysis of the gene set using Gene Ontology
(GO) [1]. For this, three classes of algorithms are used: Singular Enrichment Analysis (SEA) [2],
Gene Set Enrichment Analysis (GSEA) [3], and Modular Enrichment Analysis (MEA) [2]. As a result,
GO terms for biological processes, molecular functions, and cellular components associated with the
gene expression changes are identified. SEA and MEA identify which functionally-related groups of
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the genes are overrepresented in differentially expressed genes compared to the genome background;
GSEA does that on the entire transcriptome ranking the genes by the fold-change value. Dozens
of tools and web-servers exist implementing these algorithms for functional annotation (reviewed
in [2,4]).

The limitation of these methods is that they do not give an idea to what extent functionally
related genes are coordinated in their expression fold changes. In other words, what is the strength
of response for a particular process? To understand the impact of a process in response to a specific
factor, it is essential to know if it is weakly, moderately, or highly activated/inhibited. SEA and MEA
ignore the fold-change values, GSEA uses them only for ranking the genes. Here we suggest the
Fold-change-Specific Enrichment Analysis (FSEA), which identifies functionally-related gene groups
that change their expression with a certain strength—fold-change-specifically.

Earlier, we proposed the concept to study the magnitude of response in functionally-related gene
groups and showed that there are many GO terms that coordinatively, with certain strengths, were
activated or repressed in response to phytohormone auxin in the model plant species Arabidopsis
thaliana [5]. For example, auxin most strongly upregulates its signaling pathway but it is not the only
positive response, as many processes were upregulated moderately (e.g., “histone modifications”) and
weakly (e.g., “translation” and “gene expression” in general). Sharma and co-authors found many
GO terms that fold-change-specifically differ between drought-tolerant and drought-sensitive rice
varieties [6]. Fold-change-specific GO terms were occasionally detected in animal transcriptomes as
well, e.g., very weak but significant activation of immunity-related processes have been shown in [7].
However, the role of fold-change-specific transcriptional response has not been studied systematically,
because there were no ready-to-use tools.

Here we provide FSEA formal description, adjust and validate the statistical procedures, and
implement it as a FoldGO R package and a web-server (https://webfsgor.sysbio.cytogen.ru/). FoldGO
application on a cancer-related transcriptome demonstrates that both FSEA/SEA or FSEA/GSEA
algorithms should be applied to understand better biological processes underlying cancerogenesis
and beyond.

2. Materials and Methods

2.1. Datasets for FSEA Testing and Application

2.1.1. Real Datasets for FSEA Application

We used 30 randomly chosen microarray and RNA-Seq datasets from the GEO database [8] in
Homo sapiens and Arabidopsis thaliana (Table S1) on different treatments, conditions, and mutants. Here,
as an example, we discuss FSEA the results for one of the datasets, RNA-Seq experiment GSE70466,
on the comparison of gene expression between a primary prostate epithelial cell line (HPrEC) and a
prostate adenocarcinoma cell line (LNCaP). Starting with raw data, RNA-Seq reads were mapped on
the reference Homo sapiens genome assembly GRCh38 using STAR aligner [9] followed by quantification
with the Rsubread package [10]. Differential expression analysis was conducted using the edgeR
package [11].

Oncogenes identification was performed via The Network of Cancer Genes (NCG) database
(http://ncg.kcl.ac.uk/query.php) [12].

2.1.2. Simulated Datasets for FSEA Testing

False-positive. To estimate the proportion of false-positive FSEA results, we shuffled two of the
real datasets (GSE71334 and GSE70466). To disrupt the relations between the GO terms and the fold
change values, the gene identifiers were shuffled 2000 times. FSEA was applied to each of the 2000
shuffled datasets. Then we calculated the proportion of datasets in which at least one fold-specific GO
term passed the FDR threshold of 0.05.

https://webfsgor.sysbio.cytogen.ru/
http://ncg.kcl.ac.uk/query.php
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Sensitivity assessment. To simulate the datasets with a specific correlation structure of the fold
changes, we created the multidimensional normal distribution, which consists of the following groups:

• Six groups of DEGs of different sizes (5, 10, 20, 30, 40, and 50 genes) with the fold-change mean
equals to 1 (µ = 1) and with the strong correlation within each group (correlation coefficient
(ρ) > 0.7). These gene sets simulate pseudo-GO terms;

• One group of DEGs (µ = 1) of 100 genes without any correlation (ρ ~ 0);
• One group of non-DEGs (µ = 0) of 700 genes without any correlation (ρ ~ 0).

Then 100 gene sets were sampled from the obtained multidimensional normal distribution.

2.2. FSEA Method Formal Description

As an input data, the FSEA method uses a set of genes G = G1, . . . . . . , Gn and corresponding
absolute logarithmic values of fold changes (logFC) X = X1, . . . . . . , Xn. The initial set of genes
is sorted by the Fold Change (FC) values G(1), . . . . . . , G(n), so that X(1) < X(2) < . . . < X(n)

∣∣∣X(1) =

min(X1, . . . . . . , Xn), X(n) = max(X1, . . . . . . , Xn). Further, the sorted set of genes G is divided into k
quantiles Q1, . . . . . . , Qk, so that for each Qi = Gi, 1, . . . . . . , Gi, m the following conditions are satisfied:

1. Xi, j < f
(

i
k

)
;

2. Xi, j ≥ f
(

i−1
k

)
, in case of i > 1;

3. Xi, j ≥ min(X1, . . . . . . , Xn), in case of i = 1,

where Xi, j is the fold change value for Gi, j
∣∣∣i ∈ {1, . . . , k}, j ∈ {1, . . . , m} , and f is a function, which takes a

fraction of the FC values below the boundary of the corresponding quantile as an argument, and returns

the FC value corresponding to the boundary of the quantile. Next,
k∑

n=2
n variants for the combinations

of neighboring quantiles ∪ j
n=iQn are generated, where i, j ∈ {1, . . . , k}, i < j, i , 1 ∧ j , k.

Further, for each GO term from a preliminarily prepared set GO = GO1, . . . . . . , GOs, where

GOi =
{
Gi,1, . . . . . . , Gi,t

}∣∣∣∣∀ Gi, j ∈ G, i ∈ {1, . . . , s}, j ∈ {1, . . . , t} (t is the number of genes annotated to
the GOi ) and all quantiles and unions of neighboring quantiles, the enrichment is estimated using
Fisher’s exact test for the contingency table (Table 1).

Table 1. The contingency table for Fisher’s exact test to estimate the enrichment of a Gene Ontology
(GO) term in a gene set that responds to a stimulus within specific fold-change interval Q.

Qr + Qr − Total

GOi + A B A + B
GOi− C D C + D

Total A + C B + D N

In Table 1, A = |GOi ∩Qr|, B = |GOi\Qr|, C = |Qr\GOi|, D =
∣∣∣G\(Qr ∪GOi)

∣∣∣, i ∈ {1, . . . , s}, r ∈
{1, . . . , k}. For each GO term, the quantile or union of neighboring quantiles with the minimal p-value

is selected. Then the multiple testing correction is applied with the number of tests equal to s ∗
k∑

n=2
n,

where s is the number of all GO terms under study, and k is the number of quantiles. Every GO term,
where the p-value passed the multiple testing correction threshold, is considered as fold-change-specific.
The fold-change interval with a minimal p-value was considered as the magnitude of response.

2.3. FSEA Implementation

The FSEA method has been implemented as a FoldGO R package [13] and deposited in the
Bioconductor repository (http://bioconductor.org/packages/release/bioc/html/FoldGO.html) along with

http://bioconductor.org/packages/release/bioc/html/FoldGO.html
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detailed documentation and examples. The FoldGO R package allows the user to apply both SEA
and FSEA to any transcriptome dataset. FoldGO provides the output in both table and chart views
depicting the relationship between the fold-change-specific GO terms and specifying their strength
of response.

Since the R package requires basic programming knowledge, to make FSEA available for a broader
audience, we also implemented it as the web-server FoldGO (https://webfsgor.sysbio.cytogen.ru/).
The FoldGO web-server provides a web interface and REST API for remote calculations. The frontend
and backend parts of the web-server are implemented using Vue.JS JavaScript and Spring Java
frameworks correspondingly. Detailed tutorials for the FoldGO web server and the R package are
provided online.

2.4. Comparison of FSEA with GSEA and SEA

GSEA and SEA were performed using fgsea [14] and topGO [15] R packages correspondingly
with Homo sapiens GO annotation (presented in the org.Hs.eg.db R package [16]). GSEA was used with
the number of permutations set to 10,000 and fold-change values as a ranking metric. For both SEA
and GSEA, the FDR threshold was set to 0.05.

3. Results

3.1. FSEA Description

We developed the FSEA method to supplement classical GO enrichment analysis (e.g., SEA or
GSEA) with the estimate of the magnitude of response for different functional gene groups. FSEA aims
to find the relationship between the function of genes and the changes in their expression levels. It is
important to highlight that FSEA tests an alternative null hypothesis compared to SEA and GSEA.
While SEA and GSEA evaluate if there is a bias in the expression of a functionally-related gene group
relative to the whole genome background; FSEA analyzes only differentially expressed genes and
assesses if there is a bias in their expression towards a certain range of fold-changes.

FSEA utilizes fold-change values from a transcriptome dataset and computes whether DEGs
responding within certain fold-change intervals are enriched with particular GO terms. An algorithm
behind FSEA consists of two steps (see formal description in Section 2.2). In the first step, FSEA sorts
the lists of upregulated and downregulated DEGs (uDEGs and dDEGs) according to their fold-change
values (Figure 1A). Then FSEA divides the sorted lists into n-quantiles (where n is defined by a user)
and generates gene sublists for all combinations of neighboring quantiles (hereinafter fold-change
intervals). In the second step, FSEA employs gene ontology data for the selected species and estimates
for each GO term its enrichment within each fold-change interval compared to the whole uDEGs and
dDEGs lists (Table 1). Significance of enrichment is evaluated by Fisher’s exact test with post hoc
multiple testing correction procedure (see Section 2.2). GO terms enriched in a specific fold-change
interval that passed the multiple testing correction threshold are considered as fold-change-specific
and the gene sets annotated to them are regarded as coordinatively regulated with a certain strength
by the factor under investigation.

The FSEA method was implemented as the FoldGO Bioconductor R package and as the FoldGO
web-server for a set of model species.

https://webfsgor.sysbio.cytogen.ru/
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Figure 1. Fold-change-Specific Enrichment Analysis (FSEA) validation. (A) Fold-change-specific 
intervals generated for significantly activated genes (uDEGs, Upregulated Differentially Expressed 
Genes) in 5-quantile FSEA in the analysis of 30 randomly chosen transcriptome datasets (Table S1). 
Rectangles denote the fold-change intervals (14 in total). The numbers are the percentages of fold-
change-specific Gene Ontology (GO) terms related to the fold-change interval among all fold-
change-specific GO terms detected in all intervals. (B) Portion of false-positive results. The line chart 
shows the fraction of false-positive FSEA results (FPR; False Positive Rate) depending on the 
amount of Differentially Expressed Genes (DEGs) and the number of n-quantiles. (C) Assessment of 
FSEA method sensitivity. The line chart shows the percent of correlated gene groups recognized by 
FSEA depending on the amount of genes in a group and the number of n-quantiles. (D,E). The 
numbers of fold-change-specific GO terms detected in downregulated DEGs (D) and upregulated 
DEGs (E) of 30 randomly chosen transcriptome datasets (Table S1). GO terms from three GO 
vocabularies highlighted by different colors: biological processes (BP, red), cellular components 
(CC, green) and molecular function (MF, blue). X-axis is the number of the dataset, listed in 

Figure 1. Fold-change-Specific Enrichment Analysis (FSEA) validation. (A) Fold-change-specific
intervals generated for significantly activated genes (uDEGs, Upregulated Differentially Expressed
Genes) in 5-quantile FSEA in the analysis of 30 randomly chosen transcriptome datasets (Table
S1). Rectangles denote the fold-change intervals (14 in total). The numbers are the percentages
of fold-change-specific Gene Ontology (GO) terms related to the fold-change interval among all
fold-change-specific GO terms detected in all intervals. (B) Portion of false-positive results. The line
chart shows the fraction of false-positive FSEA results (FPR; False Positive Rate) depending on the
amount of Differentially Expressed Genes (DEGs) and the number of n-quantiles. (C) Assessment of
FSEA method sensitivity. The line chart shows the percent of correlated gene groups recognized by
FSEA depending on the amount of genes in a group and the number of n-quantiles. (D,E). The numbers
of fold-change-specific GO terms detected in downregulated DEGs (D) and upregulated DEGs (E) of 30
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randomly chosen transcriptome datasets (Table S1). GO terms from three GO vocabularies highlighted
by different colors: biological processes (BP, red), cellular components (CC, green) and molecular
function (MF, blue). X-axis is the number of the dataset, listed in Supplementary Materials Table S1.
(F,G) The percentage of GO terms defined as fold-change-specific in certain intervals relative to the
total number of fold-change-specific GO terms detected in the test datasets (Table S1). The percentages
in A and F–G match for upregulated genes.

3.2. FSEA Validation

To assess the adequacy of the FSEA statistical procedures for identification of fold-change-specific
GO terms we applied two tests.

First, we estimated the portion of false-positive results. For this, we took a real dataset [17] for
which FSEA identified more than one hundred fold-change-specific GO terms. In order to disrupt
the relations between the GO annotation and the genes expression values, the gene identifiers were
shuffled to generate 2000 gene expression datasets. FSEA identified just a few fold-change-specific GO
terms over all shuffled datasets in total, with most of the shuffled datasets having no significant results.
We performed this procedure for different numbers of n-quantiles (n = 2...10) and varying amounts
of DEGs from 100 to 1000 with a step of 100 genes (see Section 2.1.2). As a result, for any n-quantile
and any quantity of DEGs we observed a fraction of false-positive results less than 2.5% (Figure 1B).
This suggests that FSEA is sufficiently reliable to identify fold-change-specific GO terms.

Second, to assess FSEA method sensitivity we sampled 1000 datasets from a multidimensional
normal distribution with predefined gene groups of different sizes with high correlation values (see
Section 2.1.2). Sensitivity assessment was done by varying the number of n-quantiles and the amount
of genes in generated groups. FSEA detected more than 75% of groups containing more than 10 genes
if their correlation coefficient was above 0.7 (Figure 1C). This analysis showed that FSEA is sensitive
enough to detect the functionally-related groups with a coordinated expression behavior.

After validation, we applied FSEA to real datasets for a 5-quantile analysis. As a rule, FSEA gave
only a few fold-change-specific GO terms on the datasets with an insufficient number of DEGs (less
than 100). Thus, we randomly chose 30 datasets with a representative number of DEGs (>300) from
the GEO database. FSEA found fold-change-specific GO terms in all tested datasets (Figure 1D–E).
This suggests that fold-change-specific transcriptional response is a universal feature, which therefore
should be taken into account in transcriptome analysis. The composition of fold-change-specific GO
terms was unique for each dataset. In general, GO terms from “biological processes” GO vocabulary
were detected as fold-change-specific more often, while GO terms for “molecular functions” were
rare FSEA results (Figure 1D,E). Cellular components were not that abundant but most significant
fold-change-specific GO terms (Table S3). These results are logical, as the networks behind cellular
components functioning and biological processes regulation have to be more coordinated than the
gene sets united by a molecular function.

We also analyzed which fold-change intervals engage more coordinative response (Figure 1A,F,G).
There were two polar attractors—fold-change-specific response was mainly either weak or very strong.
Scientists usually pay more attention to the genes with the highest fold changes and to the processes
they belong to. FSEA detected many processes activated or repressed weakly and this response
was largely understudied. Earlier the importance to consider small changes in RNA expression was
highlighted [7] but never studied in depth.

3.3. FSEA Performance on a Cancer-Related Dataset

To demonstrate FSEA performance, here we discuss functional annotation of one particular
dataset, namely, the differential expression data between primary prostate epithelial cell line (HPrEC)
and prostate adenocarcinoma cell line (LNCaP), representing essentially healthy and disease states,
respectively. For this dataset, we compared the outputs of FSEA (5-quantile) with other widely-used
methods for gene set enrichment analysis, SEA, and GSEA [3].
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FSEA results for the cancer-related dataset only partially overlap those detected by GSEA and
SEA (Figure 2, Table S2). As mentioned in the Section 3.1, FSEA tests another null hypothesis, so it
does not compete but complements GSEA and SEA approaches. Thus, both positive and negative
results of FSEA for a particular GO term are valuable, as they suggest if the functionally related gene
group responded to a stimulus coordinatively, within specific ranges of fold-changes, or not. Below we
discuss three groups of GO terms in more detail: identified by both FSEA and SEA, and either by SEA
or FSEA.
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(SEA) in comparison of transcriptomes between HPrEC and LNCaP cell lines (GSE70466). (A) Activation
of gene expression. (B) Inhibition of gene expression.

3.3.1. FSEA and SEA: FSEA gives an Additional Dimension to SEA Results

There are 91 GO terms for uDEGs and 370 terms for dDEGs in intersection of FSEA and SEA
outputs (Figure 2). These processes are overrepresented in DEGs compared with the whole genome
background and enriched in DEGs changing their expression within specific fold-change intervals
compared with the whole set of DEGs. The latter means that the functionally related genes alter their
expression coordinatively and with a certain magnitude of response. For example, FSEA showed a
significant association of the genes related to oxidative phosphorylation (GO:0006119) with a weak
activation (Figure 3A). It is known that prostate cancer cells have the shift in metabolism to oxidative
phosphorylation [18]. While SEA suggests that this process is influenced by cancerogenesis, FSEA
highlights that the genes related to this process are conjugately weakly activated in the LNCaP line.
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Figure 3. The response pattern of cancer-related processes identified in functional annotation of the
LNCaP cell line in comparison to the HPrEC line as overrepresented by either Singular Enrichment
Analysis (SEA) (E,F), or Fold-change-Specific Enrichment Analysis (FSEA) (G,H), or both (A–D). For
each Gene Ontology (GO) term, we provide two histograms, A, C, E and G show FSEA output.
Red-colored is the percentage of Differentially Expressed Genes (DEGs) related to the GO term
and belonging to the fold-change interval compared to all DEGs in this interval; blue-colored is
the percentage of DEGs out of the interval but related to the GO term among all DEGs out of the
interval. Five-quantile FSEA marks the following intervals: 1—very weak response, 2—weak response,
3—moderate, 4—strong, and 5—very strong. Horizontal lines with asterisks denote the interval on
which FSEA shows the significant enrichment of red-colored fractions versus blue ones. B, D, F, and H
present the SEA output with (yellow colored) the percentage of DEGs annotated to the GO term in DEGs
and (gray colored) the percentage of genes annotated to the GO term in not DEGs. Asterisks denote
enrichment of yellow-colored fractions versus gray ones. A,B. Oxidative phosphorylation (GO:0006119).
C,D. Blood vessel morphogenesis (GO:0048514). E,F. Lysine catabolic process (GO:0006554). G,H.
Regulation of phagocytosis (GO:0050764).

Another example, the GO term detected by both SEA and FSEA in dDEGs is blood vessel
morphogenesis (GO:0048514) (Figure 3C,D). FSEA identified that a notable part of genes associated
with this GO term are inhibited from moderate to very strong levels (interval 3–5 out of 5). The Network
of Cancer Genes (NCG) [12] identified as oncogenes 56 out of 182 genes, related to this GO term
and fold-change-specifically inhibited in the cancer line. Nine of them were tumor suppressors, e.g.,
FBXW7 [19] and BAX [20,21]. It is known that tumors have abnormal vasculature development [22],
FSEA results suggest that to identify the gene networks involved in various aspects of cancerogenesis,
relevant genes under strong inhibition should be explored in more detail.

There are many other meaningful fold-change-specific associations detected for this experiment
and worth studying by specialists in cancer genomics (Table S2). To sum up, FSEA provides an
insight that may help to narrow the set of candidate genes responsible for the observed phenotype by
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selecting those associated with the fold-change-specific GO term and responding within the significant
fold-change interval.

3.3.2. Functional Groups Detected by SEA but Not FSEA: Non-Coordinated Response

Identification of a GO term enrichment by SEA but not by FSEA means that coordination in gene
expression was not found for this process. Along with this, we noticed that GO terms identified only
by SEA are often presented as a redundant set of nested and mainly general GO terms representing
multicomponent processes (Table S2).

The typical profile of expression changes for functionally related gene groups that were detected
by SEA but not FSEA is shown in Figure 3E for lysine catabolic process (GO:0006554). Percentages
of DEGs annotated to this GO term have approximately uniform distribution across all fold-change
intervals. However, this does not interfere with significant enrichment of this process in uDEGs
relative to the whole genome background (Figure 3F). Indeed, increased and not coordinated lysine
degradation in prostate cancer was shown earlier, as elevated levels of some intermediate metabolites
from this process in tumor tissues were detected [23].

Another example of the process related to cancer development that was detected by SEA but
not by FSEA is the activation of the coenzyme metabolic process (GO:0006732). The critical role of
coenzymes in cancer metabolism is well known [24]. Although FSEA showed that the whole set of
genes of this multi-component process is not coordinated in the strength of response, its subgroups can
be coordinated fold-change-specifically, e.g., the nested GO term coenzyme biosynthetic process was
activated from very weak to moderate levels (Table S2).

3.3.3. Only FSEA: A Quantized Response Invisible for Classical Enrichment Analysis Methods

FSEA detected 439 and 264 GO terms but not SEA for uDEGs and dDEGs, correspondingly
(Figure 2) and many of them are cancer-related (Table S2). For example, Figure 4 demonstrates
the fold-change-specific intervals for several selected processes. Representative fold-change-specific
expression profile is shown in Figure 3G for “regulation of phagocytosis” (GO:0050764). FSEA detected
a significant bias towards very strong down-regulation of DEGs associated with this GO term. As the
dDEGs related to the process were not enriched, or even depleted, in the rest intervals SEA overlooked
this term as associated with dDEGs (Figure 3H). Phagocytosis has long been known as a process closely
connected with tumor progression and directly with organism reaction to cancer cells [25] and only
FSEA showed the ability to recognize this process as functionally relevant to the LNCaP cell line.

Another example of FSEA, but not a SEA-detected GO term, is neurotransmitter secretion
(GO:0007269) that was significantly associated with very strong activation of gene expression (Figure S1).
Recently the role of neurotransmitter signaling in tumor progression became an important focus of
cancer studies [26]. One of the examples is the ERG oncogene that causes overexpression of nicotinic
acetylcholine receptors (nAChRs) in prostate cancer cells which in turn, under nicotine treatment,
induces tumor cell proliferation. These findings show that the processes that are not enriched in the
whole DEG sets and overlooked by classical functional annotation, may show specific patterns of gene
expression changes and provide an insight into the molecular mechanisms under study.
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Figure 4. The FoldGO output data for comparison of gene expression between primary prostate
epithelial cell line (HPrEC) and prostate adenocarcinoma cell line (LNCaP). The chart provides the
fold-change intervals detected by Fold-change-Specific Enrichment Analysis (FSEA) where selected
Gene Ontology (GO) terms (the whole list is in Table S2) showed the most significant enrichment
compared to the whole Differentially Expressed Genes (DEGs) list. Bars for fold-change-specific GO
terms are painted in yellow and blue colors for up- and down-regulated processes, correspondingly.

4. Discussion

Here we formalized, validated and demonstrated the potential of Fold-change-Specific Enrichment
Analysis (FSEA) for functional annotation of transcriptome data. We developed the FoldGO
Bioconductor package and web-server (https://webfsgor.sysbio.cytogen.ru/) to perform functional
annotation with both FSEA and SEA. FoldGO can be applied to microarray and RNA-Seq datasets of
any species, which has GO annotation.

The conceptual scheme of FSEA has been proposed to study Arabidopsis thaliana root transcriptome
responded to plant hormone auxin [5]. Here we showed that fold-change-specific response is a rather
common phenomenon with a unique composition of fold-change-specific GO terms detected for each
individual transcriptome. FSEA analysis of multiple randomly chosen datasets showed that there are
two major fold-change-specific responses, either weak or strong. This suggests that the genes with
small changes in expression, which are often excluded from the analysis, are not less important than
ones with high levels of expression (Figure 1F,G, Table S1).

FSEA complements and extends classical methods of functional annotation (SEA and
GSEA), providing new and potentially valuable information about coordinated behavior of the
functionally-related genes, which resulted in the specific strength of response for this functional group.
Figure 5 schematizes the differences between functionally-related gene groups recognized by SEA,

https://webfsgor.sysbio.cytogen.ru/
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FSEA, or by both approaches. These are three different patterns of response and only generalized one
has been studied before. In particular, the GO terms that are recognized by FSEA, but not SEA does
not show a massive response, but very well coordinated one.
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Figure 5. Schematic representation of three functionally-related groups identified as overrepresented
in upregulated Differentially Expressed Genes (uDEGs) by Singular Enrichment Analysis (SEA),
Fold-change-Specific Enrichment Analysis (FSEA), or both methods. Left and right halves of the plot
refer to genes outside and inside uDEGs list, respectively. Genes annotated to the Gene Ontology (GO)
term of interest denoted as red vertical bars on the scale of ascendingly sorted fold-change values.

It is known that tumor subtypes can be defined according to their gene expression profiles [27,28].
Such classification is being used in guidelines for the treatment of early stages of specific cancer
types [27]. Since FSEA searches for connectivity between the function and the magnitude of gene
expression changes it finds the precisely regulated processes underlying the overall response and
forming its frame. Here we discussed FSEA/SEA functional annotation of RNA-Seq experiment on the
comparison of gene expression between primary prostate epithelial cell line (HPrEC) and prostate
adenocarcinoma cell line (LNCaP). FSEA found more than 1000 GO terms significantly enriched in
certain fold-change intervals, and a great part of them were not detected by classical approaches, SEA
and GSEA (Figure 2). Among these GO terms, many were firmly related to cancerogenesis, e.g., FSEA
found a slight activation in the expression of genes related to mitotic sister chromatid segregation [29]
and high levels of activation for the regulation of protein kinase C signaling [30,31] (Figure 4).

Earlier, our approach was tested by a third-party group of researchers on the study of drought
stress response in rice [6]. Authors detected differential quantitative regulation of some gene groups
under drought stress conditions. They concluded that drought-sensitive rice variety differs from
drought-tolerant ones in the compositions of fold-change-specific GO terms lists. Thus, our approach
may help to construct the roadmap for converting stress-sensitive varieties to stress-resistant ones by
revealing which functional gene sets should be strengthened or inhibited and to what degree.

In addition to gene ontology, one can use for FSEA analysis KEGG pathways [32], BIOGRID
protein interactions [33], InterPro domains [34] and other resources of data for functional annotation to
reveal more fold-change-specific features associated with DEGs. For example, in Omelyanchuk et al.
2017 [5] we showed the applicability of FSEA method to find the cis-regulatory elements enriched
within the promoters of genes having similar fold-changes in transcription.
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5. Conclusions

Many tools are available for functional annotation of transcriptome changes. However, these
methods either ignore fold-change values or use them only for gene ranking. Here we developed
FSEA, the functional annotation method that considers fold-changes in gene expression and by this
allows estimating the magnitude of response for biological processes, cellular compartments, and
molecular functions. This approach altogether with SEA was implemented in the FoldGO web-server.
Comparing FSEA with SEA showed that FSEA provides additional biologically meaningful outcomes
to classical functional annotation. FSEA results not only provide a more comprehensive annotation of
transcriptome data but also give an insight into the diversity of magnitudes in transcription response
for different functional groups.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/4/434/s1,
Figure S1: Neurotransmitter secretion process (GO:0007269) identified as overrepresented in functional annotation
of LNCaP cell line in comparison to HPrEC line by FSEA; Table S1: Metadata on 30 microarray and RNA-Seq
datasets from the GEO database [8] selected for FSEA method validation and testing; Table S2: FSEA results for
RNA-Seq experiment GSE70466 on comparison of gene expression between primary prostate epithelial cell line
(HPrEC) and prostate adenocarcinoma cell line (LNCaP); Table S3: FSEA results for 30 microarray and RNA-Seq
datasets from GEO database [8] selected for FSEA method validation; Table S4: Differential expression data for
RNA-Seq experiment GSE70466 on comparison of gene expression between primary prostate epithelial cell line
(HPrEC) and prostate adenocarcinoma cell line (LNCaP).
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