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Abstract: Genetic variability is an important causative factor for susceptibility and pathogenesis
of type 2 diabetes (T2D). Histone deacetylase, sirtuin 2 (SIRT2), plays regulatory roles in glucose
metabolism and insulin sensitivity. However, whether the SIRT2 variants or haplotypes contribute
to T2D risk remain to be elucidated. In this study, we first detected three novel polymorphisms
(P-MU1, P-MU2, and P-MU3) in the promoter of SIRT2 in the Chinese population. All pairwise sets
of the three loci were strongly in linkage disequilibrium. Next, we constructed the haplotype block
structure, and found H1-GGC and H2-CCA accounted for the most (total 91.8%) in T2D. The haplotype
combination H1-H1-GGGGCC displayed a high risk for T2D (OR = 2.03, 95% CI = 1.12–3.72). By
association analysis, we found the individuals carrying H1-H1-GGGGCC had significantly higher
fasting plasma glucose and glycated hemoglobin. The haplotype H1-GGC presented a 6.74-fold higher
promoter activity than H2-CCA, which was consistent with the correlation results. Furthermore, we
clarified the mechanism whereby the C allele of both the P-MU1 and P-MU2 loci disrupted the signal
transducer and activator of transcription 1 (STAT1) binding sites, leading to the attenuation of the
SIRT2 transcription. Together, these data suggest that the linked haplotype GGC could be considered
as a promising marker for T2D diagnosis and therapy assessment.
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1. Introduction

Epidemiological studies have revealed that the rising incidence of endocrine and metabolic
disorders, including diabetes, has significantly increased worldwide in recent years [1]. Type 2
diabetes mellitus (T2D) is an epidemic, complex, and multifactorial diabetes in human beings, and an
abnormal glucose concentration and insulin resistance are the major predictors of the pathogenesis
and development for T2D and its complications [2]. Insulin, secreted from pancreatic β cells, plays
important roles in the regulation of uricemia, lipidemia, and glycemia [3]. Accordingly, insulin
resistance can lead to elevated insulin and hyperinsulinemia in a compensatory manner. Whole
genome sequencing and genome-wide association studies have identified thousands of genetic variants
from T2D patients, some of which are associated with insulin sensitivity and secretion [4,5], suggesting
that identification of genetic heterogeneity is a crucial step in the diagnosis, prevention, and therapy of
T2D etiologies.
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Mammalian sirtuins (SIRTs) belong to a conserved family of nicotinamide adenine dinucleotide
(NAD+)-dependent histone deacetylases, in which seven homolog family members have been identified
(SIRT1-7) [6]. Continuously increasing evidence indicate that SIRTs display a diversity of metabolic
tissues and participate in a myriad of biological processes, such as energy homeostasis, oxidative stress
pathways, and metabolism [7,8]. SIRT2, localized in both the nucleus and cytoplasm, belongs to a
separate class of deacetylases (class III) that modify lysine on histone as well as many functional proteins.
Recently, SIRT2 was reported to be implicated in sustaining metabolic homeostasis, including adipocyte
differentiation, gluconeogenesis, and insulin sensitivity [9]. In T2D disorders, AKT kinase was the main
factor involved in insulin resistance. As a novel AKT interactor, SIRT2 overexpression significantly
enhanced the AKT activation and its downstream targets [10]. In addition, SIRT2 expression was
positively correlated with body mass index and high density lipoprotein cholesterol in children with
obesity and insulin resistance [11]. Defining the role of SIRT2 in the cytosolic acetylation state, SIRT2
knockout mice demonstrated an increase in body weight due to impaired insulin action, and this
effect was exacerbated in high-fat-fed mice [12]. Given the fact that SIRT2 plays a critical role in
metabolic activities, SIRT2 could be suggested as a promising causative gene for the pathogenesis and
development of T2D.

Numerous studies revealed that genetic mutations of functional genes, especially those located
in the regulatory and coding regions, may affect the gene structure and expression level, finally
contributing to the diabetic pathogenesis and susceptibility [13,14]. Haplotype blocks (multiple SNPs)
are emerging to be more effective and precise in their application of disease diagnosis and therapy
due to linkage disequilibrium of the SNPs in chromosomes compared to a single SNP [15]. In this
study, we aimed to detect the novel SNP mutation in the SIRT2 gene promoter region in the Chinese
population, and to investigate the effects of the SNP haplotype combinations on the promoter activity
and clinical characteristics of T2D patients, and finally to elucidate the molecular mechanism of the
genetic variation, which may provide convincing evidence for the extensive usage of haplotypes.

2. Materials and Methods

2.1. Study Participants

A total of 209 T2D patients from the affiliated Tianyou Hospital of Wuhan University of Science
and Technology were enrolled in the present study from May 2015 to June 2016. The clinical diabetic
conditions were diagnosed according to the criteria of the World Health Organization (WHO) National
Diabetic Group criteria of 2006, as follows: the plasma glucose concentration was ≥11.1 mmol/L after
2 h for an oral glucose tolerance test (OGTT), and the fasting plasma glucose was ≥7.0 mmol/L [16].
A total of 223 nondiabetic subjects were enrolled from the population undergoing routine health
checkups at the Hospital of Wuhan University from May 2015 to March 2016. All participants were
long-term residents in the Hubei province, and they have no second-degree or closer relationships. All
subjects gave their informed consent for inclusion before they participated in the study. This study
was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the
Ethics Committee of the affiliated Tianyou Hospital of Wuhan University of Science and Technology
(no. HCTY-2017-11-106). Genomic DNA was extracted from the peripheral leukocytes of all subjects
by phenol-chloroform extraction.

2.2. Clinical Parameters and Serum Biomarkers

Anthropometric characteristics, including height (m) and weight (kg), were measured using
standard methods [17]. Body Mass Index (BMI) was directly calculated as the ratio of the weight
divided by the square of the height. All biochemical parameters were measured according to the
standard protocols, and the biological analysis was carried out in a Hitachi 912 Autoanalyzer (Roche,
Mannheim, Germany) according to the manufacturer’s instructions. For instance, fasting plasma
glucose was analyzed by the glucose oxidase–peroxidase method. Glycerol phosphate oxidase
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peroxidase–amidopyrine and cholesterol oxidase peroxidase–amidopyrine were used to detect serum
triglycerides and total cholesterol, respectively. High density lipoprotein (HDL) cholesterol and low
density lipoprotein (LDL) cholesterol were estimated by Friedewald formula [18]. Levels of glycated
hemoglobin (HbA1c) was measured by HPLC (Bio Rad, Hercules, CA). In addition, the OGTT assay
was conducted in T2D populations for evaluating the glucose metabolism function. During the
three days preceding the OGTT, all patients undergo normal diets and avoid high sugar and high
carbohydrate intake, and then each participant sustained a 12-h overnight fasting and ingested 75 g
glucose. Whole blood samples were adopted before (0 min) and after ingesting the glucose for 60, 120,
and 180 min, respectively. Plasma glucose and insulin were measured using standard methods, as
described earlier [19]. All clinical measurements were collected and summarized in Table S1.

2.3. SNP Genotyping Assay

The extracted genomic DNA from all study cohorts was quantified using NanoDrop One
(ThermoFisher, Waltham, MA), and the concentration was diluted to 50 ng/µL. A fragment of 1675 bp
(from −1782 to −108) within the human SIRT2 gene promoter region was amplified and bi-directionally
sequenced using an ABI PRISM BigDye Terminator v3.1 Cycle Sequencing kit and an Applied
Biosystems 3730XL genetic analyzer (Applied Biosystems, Foster City, CA, USA). The sequenced PCR
products were aligned with the SIRT2 promoter sequences (NCBI, NC_000019.10) using a BLSTN
assay. The identified SNP loci were genotyped by the PCR-restriction fragment length polymorphism
(PCR-RFLP) method in this study. In detail, the Msp I-RFLP, Alu I-RFLP, and Hinf I-RFLP were
established to genotype the P-MU1, P-MU2, and P-MU3 loci of the SIRT2 gene, respectively. The
primers that were used for detecting and base remodeling are listed in Table S2. More importantly,
the accuracy of the RFLP genotyping assay was evaluated due to the concordance between duplicate
samples (up to 100% for each SNP).

2.4. Linkage Disequilibrium and Haplotype Analysis

The SNPs loci of the SIRT2 gene were screened by a minor allele frequency cutoff of 5% and analyzed
using the correlation coefficient (r2) cutoff of 0.8 for linkage disequilibrium and 0.99 for complete linkage
disequilibrium. Haploview software was used to calculate r2 and D’ as the measurements of linkage
disequilibrium extent between pairwise SNP combinations. Haplotype combination blocks of different
genotypes were determined using the SHEsis software (http://analysis.bio-x.cn/myAnalysis.php).
Haplotype frequency as a measurement of genetic distribution was directly calculated in T2D and
healthy control populations.

2.5. Promoter Activity Analysis with a Dual-Luciferase Reporter Assay

A series of promoter regions containing different SIRT2 haplotypes were amplified from the
genomic sequence of the corresponding study cohort and cloned into the luciferase reporter plasmid
pGL3-Basic (Promega, Madison, WI, USA) by the Nhe I and Hind III double digestion assay. The
constructed plasmids were transfected into 293T cells to test the transcriptional activity. In detail, the
293T cells were cultured in a 48-well plate and transfected with 400 ng DNA containing the haplotype
constructs and the internal control, pRL-TK (Promega, Madison, WI, USA), using the LipfectamineTM

3000 reagent (Invitrogen, Carlsbad, CA, USA). After transfection for 48 h, cells were collected, and the
luciferase activity was detected using the Dual-Luciferase Reporter Assay System (Promega) following
the manufacturer’s protocol. Promoter activity was determined as the values of firefly luciferase
divided by Renilla luciferase. In addition, the promoter activity also was detected when the 293T cells
were co-transfected with both a haplotype plasmid and si-STAT1 or the si-Control.

2.6. Chromatin Immunoprecipitation (ChIP) Assay

The ChIP assay was performed with the SimpleChIP Enzymatic Chromatin IP Kit from Cell
Signaling Technology (Danvers, MA, USA). The 293T cells were transfected with pGL3-Basic plasmids

http://analysis.bio-x.cn/myAnalysis.php
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containing different haplotypes. After 24 h, the cells were crosslinked by 1% formaldehyde for 10 min;
DNA was then subjected to immunoprecipitation using antibodies against SIRT2 or non-specific
IgG (Abcam). Finally, purified DNA was amplified by PCR with the primers: 5′-TGAGAATCAT
AGTTCAAGAA-3′ (P-MU1-forward) and 5′-TACTCCTAAATCTGACTTCC-3′ (P-MU1-reverse);
5′-GGAAGTCAGATTTAGGAGTA-3′ (P-MU2-forward) and 5′-TCTTCGGCTACGTCA CTGAG-3′

(P-MU2-reverse). PCR products were then detected by agarose gel electrophoresis.

2.7. Statistical Analysis

The frequencies of genotypes, alleles, and haplotypes were directly calculated in T2D and healthy
controls. Heterozygosity (He) and Polymorphism Information Content (PIC) were analyzed using
the HET program. The genotypic frequencies of each SNP were measured for deviations from
Hardy–Weinberg equilibrium within the population based on a χ2 test. The deviations of genotype
distributions between the case and control were analyzed using the Crosstab of SPSS software (version
20.0, Illinois, USA). Association analyses were carried out for all clinical traits with SNP genotypes or
haplotypes based on a general linear regression model, where the variables were adjusted for possible
confounding factors, such as age, sex, and BMI, for normalization. A P-value less than 0.05 was
considered a statistically significant difference.

3. Results

3.1. Discovery and Genotyping of the SIRT2 SNPs

Promoter variations within functional genes may contribute to the increase/decrease in promoter
activity and biological effects by altering the binding site of the transcriptional factor. In the present
study, we explored the promoter mutations of the SIRT2 gene by DNA pool sequencing, and identified
three novel SNPs, including p.-803C/G, p.-770G/C, and p.-166C/A, which were named as P-MU1,
P-MU2, and P-MU3, respectively (Figure 1A). The DNA pool sequencing maps and aligning results
with GenBank information (NC_000019.10) were displayed in Figure 2B. According to the characteristic
of the mutation locus and adjacent sequences, the three SNPs were genotyped by Msp I-RFLP, Alu
I-RFLP, and Hinf I-RFLP in all T2D and healthy control individuals, respectively (Figure 1C). The
detailed description of the introduced mutation sites and genotyping primers are shown in Table S2.

3.2. Linkage Disequilibrium and Haplotype Combination Analysis

The accuracy of imputation to the mutagenic effect is affected by the linkage disequilibrium
(LD) of nearby genetic variations or linkage among other indirect SNPs, which may provide further
insight into the relationship of several associated SNPs (haplotypes). Therefore, in our study, the LD
among the three SNPs of the SIRT2 gene was examined and evaluated by estimating the r2 and D’
values in T2D and healthy control populations. As illustrated in Figure 2A, a strong LD was observed
in the T2D group; in detail, P-MU1 and P-MU2 were highly linked according to the r2 (0.80) and
D’ (0.95), as well as the other two sets of pairwise loci ((P-MU1 vs. P-MU3, r2 = 0.82, D’ = 0.94);
(P-MU2 vs. P-MU3, r2 = 0.72, D’ = 0.94)), exhibiting strong linkage. However, the pairwise sets of the
P-MU1, P-MU2, and P-MU3 loci were not in linkage disequilibrium in the control group. In addition,
corresponding haplotype blocks were formed due to the highly linked SNPs. All possible haplotypes
were constructed, and the distribution frequencies were analyzed in the case and control groups. As
shown in Figure 2B, a total of eight haplotypes were observed in all individuals, and the frequencies of
H1-GGC and H2-CCA were 57.4% and 34.4%, respectively, which accounted for the most types (91.8%)
in T2D patients, while the haplotype frequencies of the two were 14.1% and 26.0% in the controls,
respectively. The most dominant haplotype was H5-GGA (27.1%) in the control group; however, it
presented 0.8% in T2D population. The results revealed that the LD among the three SNPs and the
haplotype distribution presented remarkably different between T2D and non-diabetic subjects.
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respectively. 

 

Figure 1. Discovery and genotyping of three SNPs in the SIRT2 promoter region. (A) Location of
the three novel SNPs found in our study. (B) Sequencing maps of the three SNPs. (C) Schematic
diagram of genotyping the P-MU1, P-MU2, and P-MU3 loci by Msp I-RFLP, Alu I-RFLP, and Hinf
I-RFLP, respectively.
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Figure 2. Linkage disequilibrium analysis and haplotype block construction of the SIRT2 variants.
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frequencies of the three loci in both T2D and controls.
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3.3. Population Genetic Analysis and T2D Risk Evaluation

Population genetic information plays an important role in the identification of genetic architectures
and multitude effects, especially for exploring the causative locus between the case and control groups.
A summary of the genotypic and allelic frequencies, He, and PIC for the three SNPs are shown in
Table 1, along with the P-value of testing their distribution against Hardy–Weinberg equilibrium.
The predominant genotypes were GG (49%), GG (46%), and AA (41%) for the P-MU1, P-MU2, and
P-MU3 loci in the T2D population, while their percentages were moderate with 28%, 24%, and 32%
in healthy controls, respectively. Further analysis demonstrated that the genotype distributions of
the P-MU1 and P-MU2 loci showed a significant difference between T2D and the controls (p < 0.01)
(Table 2). Further analysis also revealed that the three SNPs presented a moderate He and PIC in T2D
or non-diabetic populations. The P-MU1, P-MU2, and P-MU3 in T2D, as well as P-MU1 in the control,
tended to significantly differ from Hardy–Weinberg equilibrium (p < 0.01), while both P-MU2 and
P-MU3 in the healthy control group were in Hardy–Weinberg equilibrium (p > 0.05). The significantly
different distribution of the haplotype combinations was revealed between two groups (p = 0.001,
Table 2). To investigate the relationship of the SIRT2 haplotypes (three SNPs combinations) with
diabetes susceptibility, we established the risk estimation analysis and found that the individuals
carrying haplotype combinations H1-H1-GGGGCC (OR = 2.03, 95% CI = 1.12–3.72, p = 0.02) displayed
a significantly increased risk for T2D compared with H2-H2-CCCCAA (OR = 0.89, 95% CI = 0.51–3.24,
p = 0.16) and H1-H4-GCGCCC (OR = 1.37, 95% CI = 0.69–3.91, p = 0.11) (Table 2). The other haplotype
combinations in which the number of carriers was lower than five were excluded from the risk analysis
and the following studies.

Table 1. Population genetic information of the SIRT2 SNPs in T2D patients and healthy controls.

Loci Group Genotypic Frequencies
Group: T2D (209), Control (223)

Allelic
Frequencies He PIC HWE (p) 1

P-MU1
(p.-803C/G)

CC CG GG p-value C G
T2D 44 (21%) 63 (30%) 102 (49%)

0.002 **
36% 64% 0.46 0.35 <0.01

Control 76 (34%) 85 (38%) 62 (28%) 53% 47% 0.50 0.37 <0.01

P-MU2
(p.-770G/C)

GG GC CC p-value G C
T2D 95 (46%) 65 (31%) 49 (23%)

0.001 **
61% 39% 0.48 0.36 <0.01

Control 54 (24%) 100 (45%) 69 (31%) 47% 53% 0.50 0.37 >0.05 a

P-MU3
(p.-166C/A)

CC CA AA p-value C A
T2D 48 (23%) 75 (36%) 86 (41%)

0.194
41% 59% 0.48 0.37 <0.01

Control 49 (22%) 103 (46%) 71 (32%) 45% 55% 0.50 0.37 >0.05 a
1 p (HWE)-value with “a” representing a group in Hardy–Weinberg equilibrium. He, heterozygosity; PIC,
polymorphism information content. ** p < 0.01 shows a significant difference.

Table 2. Distribution differences of the SIRT2 haplotype combinations and the risk of type 2 diabetes.

Loci Haplotype
Combinations T2D (n) Control (n) p-Value 2 Odds Ratio 95% CI

p.-803C/G
p.-770G/C
p.-166C/A

H2-H2-CCCCAA 40 12 1
H1-H1-GGGGCC 85 29 0.02 * 2.03 1.12–3.72
H1-H2-GCGCCA 57 42 0.16 0.89 0.51–3.24
H1-H4-GCGCCC 7 14 0.11 1.37 0.69–3.91

p-value 1 0.001 **
1 The p-value shows the different distributions of the haplotype combinations between the T2D and control groups,
and the value was assessed by Yates’ correction of the Chi-square test. 2 The p-value shows the risk to T2D of
the haplotype combinations, and the value was assessed by a Chi-square test or Fisher’s exact test. * p < 0.05 or
** p < 0.01 shows a significant difference.

3.4. Effects of the SIRT2 Haplotype Combinations on Diabetic Characteristics

To examine the role of the linked SNP loci in diabetic pathogenesis, we assessed the associations
of the SIRT2 haplotype combinations with clinical parameters using generalized linear regression
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analysis. Two indicators, fasting plasma glucose and HbA1c, are generally used for the T2D diagnosis.
As shown in Figure 3A,B, the individuals carrying H1-H1-GGGGCC had significantly higher values of
fasting plasma glucose and HbA1c as compared to those with H2-H2-CCCCAA, H1-H2-GCGCCA,
or H1-H4-GCGCCC (p < 0.05 or p < 0.01). Next, the correlation analysis was established between
the haplotype combinations and insulin/glucose level of an OGTT test (Figure 3C,D). The plasma
glucose level of the T2D patients with H1-H1-GGGGCC was significantly higher than the ones
carrying H2-H2-CCCCAA (p < 0.05), as well as showed a high trend comparing to H1-H2-GCGCCA
or H1-H4-GCGCCC, while the most reduced insulin of the H1-H1-GGGGCC carriers were found due
to the response towards the elevated plasma glucose contents at the 60 min or 120 min timepoint of
the test. In addition, the SIRT2 haplotype combinations were not associated with total cholesterol,
triglycerides, LDL, and HDL cholesterol in T2D or the controls (p > 0.05, Tables S3 and S4).
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Figure 3. Associations of the SIRT2 haplotype combinations with clinical characteristics in T2D patients.
Effect of haplotype combinations on fasting plasma glucose (A) and glycated hemoglobin levels (B).
Effect of haplotype combinations on glucose content (C) and insulin level (D) during an OGTT test.
Data are given as the mean ± SE. * p < 0.05 or ** p < 0.01 shows a significant difference.

3.5. Genetic Variation Affects the Promoter Activity by Altering Putative Binding Site of STAT1

Given the three linked SNPs located in the promoter region of the SIRT2 gene, we performed a
dual-luciferase reporter assay to determine whether the SIRT2 promoter activity can be affected by
the haplotypes. Firstly, we constructed a series of plasmids, which were inserted into the fragments
with eight different haplotypes, respectively (Figure 4A). As shown in Figure 4B, consistent with the
above association analysis, the plasmid with haplotype H1-GGC presented the highest promoter
activity than the others, and differed up to 6.74-fold as compared to haplotype H2-CCA, which
suggested that the transcriptional activity of the SIRT2 gene was positively associated with diabetic
susceptibility. To further explore how the promoter activity was affected by the genetic variations,
we predicted the possible transcriptional factors binding to the mutation sequences, and found that
the binding sites of signal transducer and activator of transcription 1 (STAT1) were disrupted at the
P-MU1 and P-MU2 loci (Figure 5A). Next, the effects of STAT1 on the promoter activity with four
different haplotypes (combined by P-MU1 and P-MU2) were detected by a reporter assay. As shown
in Figure 5B, the haplotype Hap-GG displayed the highest promoter activity than the other three
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haplotypes. Knockdown of STAT1 can significantly reduce activity in the Hap-GG, Hap-GC, and
Hap-CG groups. However, the promoter activity of the plasmid with Hap-CC was not affected by the
STAT1 silencing. In addition, the ChIP assay was performed and validated that STAT1 could directly
bind to the promoter sequences with allele G of both the P-MU1 and P-MU2 loci (Figure 5C).
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Putative binding sites of STAT1 were disrupted by the P-MU1 and P-MU2 loci. (B) STAT1 affected the
SIRT2 promoter activity by a reporter assay. (C) STAT1 binds to promoter sequences with allele G of
the P-MU1 and P-MU2 loci by a ChIP assay. Data were given as the mean ± SE. * p < 0.05 or ** p < 0.01
shows a significant difference; n.s. represents no significance.
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4. Discussion

Genetic predisposition is considered as the most prominent factor for T2D occurrence and
development [20]. Thus, exploring the functional genetic variation, especially the specific locus
associated with T2D, can provide potential markers for clinical diagnosis and drug target design.
Dysregulation of glucose metabolism, insulin sensitivity and beta-cell function are the hallmarks of
T2D physiology and pathogenesis [21]. As a highly conserved NAD+-dependent histone deacetylase,
SIRT2 participates in many metabolic processes, such as oxidative stress, mitochondrial efficacy, and
insulin resistance [9,22]. In our study, we discovered three novel strongly linked SNP loci in the SIRT2
promoter region, and their corresponding haplotypes affected the transcriptional activity of the SIRT2
gene, finally resulting in the abnormal serum indexes (fasting plasma glucose, glycated hemoglobin
and insulin secretion) of T2D patients. Our findings expanded the possible application scope of the
SIRT2 variants in human disease.

Functional SNPs in strong linkage disequilibrium of the same chromosome are organized into
a cluster of haplotype blocks that reflect the possible hotspots of recombination [23,24]. Haplotype
structure construction has been widely performed in genomic selection and genome-wide association
studies, and is considered as a coherent way to explore the significance of SNP integration compared to
a single SNP assay [25,26]. Shen et al. established the multi-allelic haplotype association and identified
a new protective haplotype of the LRP8 gene for coronary artery disease and myocardial infarction,
which was not revealed in their previous single-SNP analysis [27]. We detected three highly linked
SNPs in the SIRT2 promoter region, and the combined haplotypes were significantly associated with
clinical indicators of T2D patients. In recent years, extensive studies were demonstrated to screen
genetic variations in the promoter regions of functional genes due to the more mutable sites of the
regulatory region than the conserved coding sequence. Promoter mutations may contribute to the
alteration of transcriptional activity, expression dose, and phenotypic characteristics [28,29]. Kwon et
al. found that the OCT3 promoter haplotype H2 significantly affected luciferase activity as well as the
metformin pharmacokinetics [30]. Our previous study reported that the T-A haplotype of the CREB1
gene exhibited maximal promoter activity, and resulted in susceptibility to T2D [14]. Consistently, in
this study, the haplotype H1-GGC of the SIRT2 gene is associated with increased transcriptional activity
and high diabetic risk. Studies, such as the effects on gene function, the mechanisms of haplotype
regulating the signaling pathway, and pathogenesis, need further investigation.

From the luciferase assay and association analysis, we conclude that the increased SIRT2 level
is positively correlated with T2D risk and development, which is attributed to the roles of the SIRT2
gene in biogenesis and functional regulation of glucose and insulin. Inhibition of SIRT2 significantly
decreased glucose output in a dose-dependent manner by hyperacetylation of PEPCK1, a critical
enzyme for gluconeogenesis [31]. Amita et al. determined the role of SIRT2 in insulin-mediated
glucose disposal in skeletal muscle cells, and revealed that downregulation of SIRT2 can improve
insulin sensitivity under insulin-resistant conditions [32]. Correspondingly, the etiological effects of the
SIRT2 haplotypes on glucose content and insulin action were verified in our study. In addition, several
genetic polymorphisms of the SIRT2 gene have been identified in Chinese populations. For instance, an
SNP locus (rs2241703) in the 3’UTR of the SIRT2 gene, which disrupted the binding site of miR-486-3p,
was associated with the risk of Parkinson’s disease [33]. Another polymorphism rs2241703 of SIRT2
was reported to affect Alzheimer’s disease [34]. For T2D, Liu et al. found three respective SNPs
increased the transcriptional activity of the SIRT2 gene [35]. Comparing to this single-SNP study, we
demonstrated the composite effect of haplotypes from three highly linked SNPs on SIRT2 transcription
and T2D risk, which suggested a promising combined application of the causative variants in T2D
diagnosis and therapy.

Promoter mutations have their most probable effects on the transcriptional activity of the
corresponding gene by altering the binding sites of regulatory enhancers or suppressors, which
consequently affect the gene expression and then result in the occurrence and development of human
disease [36]. After bioinformatics analysis and experimental verification, we found that the C allele of
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the P-MU1 an P-MU2 loci caused disruption of the binding site of STAT1, and a decreased SIRT2 level
and impaired T2D risk were observed compared to the G allele. Recently, an atlas of cis-regulatory
modules with allelic variation was generated to determine the transcription factor (TF) binding affinity
in human lymphoblastoid cell lines, and >1300 TF-binding variants were revealed in association
testing [37]. Li et al. exploited the CRISPR interference to correct the -124C>T promoter SNP of
TERT to -124C allele. This modification significantly reduced TERT transcription and induced the
senescence of gliomas cells [38], which presented the opposite results to our study for deciphering
transcriptional control. STAT1 was reported to play regulatory roles in the pathogenesis of diabetic
complications, including diabetes with cardiovascular disease and diabetic nephropathy [39,40].
Upregulated expression of STAT1 was associated with endothelial dysfunction, and was validated
as a molecular marker for maternal and fetal T2D [41]. Moreover, a previous study reported that
SIRT2 functions as an inducible factor in angiogenesis by regulating the secretion of VEGFA [42].
All these suggest that STAT1 may participate in the metabolic processes of glucose and insulin by
enhancing SIRT2 for T2D or microvascular complications. Interestingly, considering the promoter
activity differences between the pairwise sets of H2 vs. H4 and H1 vs. H5, we found that the C allele
of P-MU3 accelerated the SIRT2 transcription comparing to the A allele. However, in our study, no
putative transcription factor was predicted in the P-MU3 locus by bioinformatics analysis. In further
studies, the protein mass spectrometry assay and ChIP-seq technology may be combined to screen the
contributing enhancer or attenuator involved in the P-MU3 mutation.

In conclusion, this is the first study ascribing the effects of haplotype combinations (three
strongly linked SNPs loci) within the SIRT2 promoter region on transcriptional activity and diabetic
characteristics in the Chinese population. Divergent haplotype distributions were detected between the
T2D and healthy controls (Table S3 and Table S4). The haplotype H1-GGC significantly increased the
SIRT2 promoter activity, and the individuals carrying its homozygous combination H1-H1-GGGGCC
displayed a higher fasting plasma glucose and glycated hemoglobin, as well as a lower insulin level
than the other groups. We also proved that the variants could affect SIRT2 transcription by disrupting
the binding sites of STAT1. Further in vitro and in vivo investigations are required to fully verify
the role of the SIRT2 promoter polymorphisms using a larger-scale population. Nevertheless, our
study suggested that the haplotype H1-GGC was the induced factor for T2D susceptibility, and in the
future could be expected as a molecular marker for clinical diagnosis, therapy, and clustered genetic
assessments of T2D.
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