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Abstract: Background: Cancer cell lines are frequently used in research as in-vitro tumor models.
Genomic data and large-scale drug screening have accelerated the right drug selection for cancer
patients. Accuracy in drug response prediction is crucial for success. Due to data-type diversity and
big data volume, few methods can integrative and efficiently find the principal low-dimensional
manifold of the high-dimensional cancer multi-omics data to predict drug response in precision
medicine. Method: A novelty k-means Ensemble Support Vector Regression (kESVR) is developed
to predict each drug response values for single patient based on cell-line gene expression data.
The kESVR is a blend of supervised and unsupervised learning methods and is entirely data driven.
It utilizes embedded clustering (Principal Component Analysis and k-means clustering) and local
regression (Support Vector Regression) to predict drug response and obtain the global pattern while
overcoming missing data and outliers’ noise. Results: We compared the efficiency and accuracy of
kESVR to 4 standard machine learning regression models: (1) simple linear regression, (2) support
vector regression (3) random forest (quantile regression forest) and (4) back propagation neural
network. Our results, which based on drug response across 610 cancer cells from Cancer Cell Line
Encyclopedia (CCLE) and Cancer Therapeutics Response Portal (CTRP v2), proved to have the
highest accuracy (smallest mean squared error (MSE) measure). We next compared kESVR with
existing 17 drug response prediction models based a varied range of methods such as regression,
Bayesian inference, matrix factorization and deep learning. After ranking the 18 models based on
their accuracy of prediction, kESVR ranks first (best performing) in majority (74%) of the time. As for
the remaining (26%) cases, kESVR still ranked in the top five performing models. Conclusion: In this
paper we introduce a novel model (kESVR) for drug response prediction using high dimensional
cell-line gene expression data. This model outperforms current existing prediction models in terms
of prediction accuracy and speed and overcomes overfitting. This can be used in future to develop a
robust drug response prediction system for cancer patients using the cancer cell-lines guidance and
multi-omics data.

Keywords: cancer cell-lines; gene expression; drug response prediction

1. Introduction

Precision medicine aims to provide individually tailored cancer treatment by consider-
ing an individual’s genetic makeup, genomic makeup and clinical information. Emerging
Next Generation Sequencing (NGS) techniques and large-scale cancer screening data helps
in achieving this goal [1,2]. Databases such as the Cancer Cell Line Encyclopedia (CCLE) [2]
provides public access to genomic data over 1000 cancer cell lines by RNA sequencing
(RNA-seq; 1019 cell lines), whole-exome sequencing (326 cell lines), whole-genome se-
quencing (329 cell lines), and reverse-phase protein array (RPPA; 899 cell lines). The Cancer
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Therapeutics Response Portal (CTRP; http://portals.broadinstitute.org/ctrp/, accessed on
1 June 2019) [3,4] quantitatively measured the sensitivity of 481 small-molecule probes and
drugs. An important step of this process is to use cancer cell line models to simulate mixed
tissue and predict his/her drug response [5].

Accuracy in drug response prediction is of utmost importance in this regard. Over the
years various models have been developed for this purpose [6–9]. Contemporary models
are based on a varied range of techniques such as regression methods, Bayesian inference
methods, matrix factorization methods and deep learning methods. Some of these methods
use only gene expression data while some use combination of other omics data such as
mutation, copy number variation, methylation and so on for response prediction. Prediction
models by gene expression profiles show the best performance in all kinds of omics
analysis [10]. The detailed analysis and comparison of different methods can be found in a
paper by Chen and Zhang [11].

These models, however, only focus on a single model [12] trained over large datasets.
Without recognition of the weekly predictive local embedding data contribution, will cause
them to make incorrect decisions in facing to outliers and errors. Outliers’ and errors’
in turn, causes these models to be incapable of capturing the dataset’s true variance,
thus distorting model complexity [13]. To deal with high-dimensional genomics data,
a promising strategy is to find an effective low-dimensional subspace of the original data
and cluster samples in the reduced subspace [14], and then do a localize regression.

However, it is hard to identify the homology features which one contribution to drug
response prediction for increasingly heterogeneous datasets comprised of multi-omics data
collected from overlapping latent low-dimensional subpopulations. Principal Component
Analysis (PCA) can generate statistically uncorrelated principal components (PC) while
retaining as much as possible of the variation present in the original data set. PCA has been
used previously to delineate homogenous regions by PCs regression and applying in all
kinds of fields such as temperature [15], hydrology [16], risk [17], and animal health [18],
but have not applied in drug response prediction.

Machine learning nonlinear regression Support Vector Regression (SVR) was first
introduced by Vapnik [19] and has been a highly effective and suitable method for regres-
sion [20]; the problem of regression is to find a function surface in high dimension that
approximates mapping from an input domain (low dimension) to real values based on a
training sample. However, most existing SVR learning algorithms are limited to the param-
eters selection and slow learning for high-throughput features and large samples [21,22].

To address these challenges, a novelty k-means Ensemble Support Vector Regression
(kESVR) is developed to predict each drug response values for single patient based on
cell-line gene expression data. kESVR’s origin stems from previous work interval SVR [22],
where we separated a global nonlinear SVR predictor into interval subspaces and ran a
SVR in each interval subspace. However, kESVR is different to the interval SVR in that it
constructs a local SVR regression in each principal component embedding subspaces, where
the K-means algorithm clusters these homogenous regions and then predict associated drug
response. The prediction process function by repeatedly running the local SVR learning
algorithm on various distributions’ clustering over the whole training data, then comparing
the regression value produced by these local SVR learners to obtain a single regression value
with the best performance in accuracy and output. The last step used a boosting strategy as
literature [23] mentioned to obtain the high accuracy of any local SVR learning algorithm.

The kESVR is a blend of supervised and unsupervised learning methods while being
an entirely data driven model. It utilizes embedded clustering (PCA and k-means cluster-
ing) and local regression (Support Vector Regression) to predict drug response and obtain
the global optimal value with the smallest mean squared error (MSE) while overcoming
missing data and outliers’ noise. In contrast to classical 17 machine learning models [11]
that estimate a single, complex model (or only a few complex models), our results show
that kESVR model with PCA-compressed features make the training and validation more
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efficient in both model accuracy and computational costs, outperforming other machine
learning methods in generalization performance.

2. Materials and Methods
2.1. Materials

Molecular mRNA data from database Cancer Cell Line Encyclopedia (CCLE; https:
//portals.broadinstitute.org/ccle, accessed on 1 June 2019) [2], which include 610 gene
expression profiles with 20,531 genes [24–26] which were tested by an Affymetrix HU133
PLUS2.0 array. The 610 cancer cell lines provide 481 drug sensitivity responses in Cancer
Therapeutics Response Portal (CTRP v2, 2015; http://portals.broadinstitute.org/ctrp, ac-
cessed on 1 June 2019) [3,4] which comprises of 70 U.S. Food and Drug Administration
(FDA) approved drugs, 100 experimental compounds, and 311 small molecule probes,
about half of which has no identified protein targets. AUC (Area Under drug response
Curve) was used to assess the extent of exposure of a drug.

2.2. Method
2.2.1. Overview

k-means Ensemble Support Vector Regression (kESVR) model consists of 4 distinct
steps. In this section we provide a brief overview of the different steps comprising our
model. Figure 1 summarizes the 4 steps of our model.
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Figure 1. Overview of kESVR model.

1. Dimensional reduction: In the first step, we convert high dimensional gene expres-
sion data to low dimensional data for better handling and visualization in the subse-
quent steps.

2. Embedded Clustering: In the second step, we split the lower dimensional data into
distinct clusters based on the their labeled/given drug response value. This is the
done so that data points (cell-lines) that have similar or close drug response values
are grouped together.

3. Local regression and ensemble value selection: In the third step, we train different
instances of a machine learning (ML) model on each of the different clusters of data
points obtained in the previous step. If there are k clusters, we train k instances of the
ML model. For a given/new input, we now have k candidate ML prediction outputs
to select from. We use a score-based approach to select the best output. We base our
scoring system on the similarity of gene expression profiles between the input and
the training data to get the best prediction result.

4. Optimal drug response value prediction: In the final step, we optimize the number of
clusters k to get our model kESVR that gives the best performance (minimum Mean
Square Error).

We define the problem of drug response prediction using cell-lines gene expression
as follows: Given gene expression data GEg×n (n: number of cell lines, g: number of
genes) and drug response data Rd×n (d: number of drugs, n: number of cell lines), create a
prediction model that will accurately predict the response of each of those d drugs for both,
the known n cell-lines and unknown cell-line data.

https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
http://portals.broadinstitute.org/ctrp
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2.2.2. Generalized Description
Dimensional Reduction

Let CL = {CL1, CL2, . . . , CLN} represent N cancer cell-lines and X = {X1, X2, . . . , XN}
denote the gene expression data of CL. Let Y = {Y1, Y2, . . . , YN} represent the set of drug
response AUC values of CL for a drug D. So, Xi is the gene expression data of cell-line CLi
and Yi is the drug response of CLi. Each Xi represents the expression of G genes in the whole
genome for CLi

Xi =
(

X1
i , X2

i , . . . , XG
i

)
(1)

We use PCA [27] to perform dimensional reduction of X. Let
{

φp(X)
}

denote the
pth Principal Component of X. We select the value of p in such a manner that results in
minimum loss of information (variation of the data) and use that pth principal component
in our subsequent steps. The selection of the principal component can be written as a
minimization problem:

min
p

(
var[X]− var

[
φp(X)

])
Using the pth principal component we create the reduced data,

Z = {Z1, Z2, . . . , ZN} where Zi =
(
Yi, φp(Xi)

)
(2)

Figure 2a shows a 2-D plot of reduced dataset Z where the X-axis is the drug AUC
value and the Y-axis is the pth principal component value (in this figure p = 1). Each point
represents a cell-line. All subsequent figures will use p = 1.

Embedded Clustering

We create a set of labeled data Q using gene expression data X and drug response
data Y:

Q = {Q1, Q2, . . . , QN} where Qi =
{(

X̂i, Yi
)}

, X̂i ⊂ Xi and
∣∣X̂i
∣∣ < |Xi| (3)

Instead of the full set of genes (G) in the whole genome, we use a subset of target
genes to create our dataset Q. The elements of Q will be used subsequently in training
of support vector regressions (SVR) [19]. We train SVR S, on 75% (random selection) of
the labeled data Q. We then use the trained SVR S, to predict the drug response of all
the N cell-line gene expressions and calculate the corresponding predicted error values.
From this we create the 2-tupled dataset:

Ψ = {(Y1, e1), (Y2, e2), . . . , (YN , eN)}, (4)

where ei denotes the prediction-error obtained from S for input gene expression X̂i. The tu-
ple (Yi, ei), Zi and Qi are all different representations of the same cell-line CLi. We partition
the dataset Z into K clusters G1 . . . GK by applying K-means clustering [28] on Ψ.

Gk = {Zk} s.t. Zk ∈ Z and
K
∪

k=1
Gk = Z (5)

Figure 2b shows the plot of Ψ with drug AUC as X-axis and prediction error as Y-
axis. Each point represents a cell-lines. Figure 2c shows Ψ dataset clustered into K = 8
clusters after applying K-means clustering. Each cluster is represented by a different color.
Figure 2d shows the set of clusters G on a 2-D plane. Each color signifies a different cluster.
Figure 2d uses the same color coding as Figure 2c, to show that each color in both figures
represent the same cluster of cell-lines.
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Local Regression and Ensemble Global Value Selection

Let the data point Zj ∈ Z belong to the cluster Gk. For each cluster Gk we model a
SVR Sk:

min
wk ,αk ,δk

1
2
‖wk‖2 + αk

m

∑
j=1

δjk

s.t. Yj

[
wk

Tφp
(
Xj
)
+ βk

]
≥ 1− δjk, δjk ≥ 0, j = 1 . . . m

where wk and βk represent the classification hyperplane, δk represents the slack variable
and αk represents the hyper parameter used for Sk.

Let Y jk represent the output predicted by Sk. So, we have

Y jk =
[
wk

Tφp
(
Xj
)
+ βk

]
.

Figure 2e shows a 2-D rendering of the newly predicted value Y jk produced by input

Xj when plotted as a point
(

Y jk, φp
(
Xj
))

along with the rest of the data-points in Z.
The new value is denoted by the triangle.

Let ψK
j denote the global ensemble optimized value returned by our model kESVR

from among the K candidate prediction values generated by each SVR Sk. Let ηr
k(e, f )

represents the set of data points in cluster Gk that fall within a circle of radius r centered
at point (e, f ). That is ηr

k() indicates the set of neighbors of point (e, f ) within a circle of

radius r. So, the neighbors of predicted data point
(

Y jk, φp
(
Xj
))

can be represented as:

ηr
k

(
Y jk, φp

(
Xj
))

= {Zl} s.t. Zl ∈ Gk and EuclideanDist(Zl ,(Y jk ,φp(Xj)))
≤ r (6)

Figure 2f illustrates the concept of ηr
k(). The triangle represents the point

(
Y jk, φp

(
Xj
))

and the black circle of radius r is drawn around it. All data points within the circle represent
the set ηr

k

(
Y jk, φp

(
Xj
))

. In the example shown in Figure 2f, there are 9 points within the
radius r, so 9 neighbors.

Let SP
(
Zi, Zj

)
denote the Spearman Correlation value between the gene expression

values X̂i and X̂j of the cell-lines CLi and CLj represented by Zi and Zj respectively.
We define the β() score of the output Y jk of SVR Sk as follows:

β
(

Y jk

)
=

∑ SP
(

Zl ,
(

Y jk, φp
(
Xj
)))∣∣∣ηr

k

(
Y jk, φp

(
Xj
))∣∣∣ s.t.Zl ∈ ηr

k

(
Y jk, φp

(
Xj
))

(7)

The β() score essentially indicates how similar a data point is to its neighbors based
on their gene expression profile. If ηr

k

(
Y jk, φp

(
Xj
))

= 0 then β
(

Y jk

)
= 0. We select ψK

j as

the abscissa value of the prediction data-point, that has the highest β
(

Y jk

)
value among

all K points. Thus
ψK

j = Y jk such that β
(

Y jk

)
is max.

Optimal Drug Response Prediction

We return the best value of drug response prediction ψK
j by optimizing the parameters

p and K in the following objective function:

min
p

(
var[X]− var

[
φp(X)

])
+ min

K

N

∑
j=1

(∣∣∣Yj − ψK
j

∣∣∣2) (8)
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(
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2.2.3. Steps for Creating kESVR Model for a Specific Drug D

We execute the following steps to develop kESVR model, kESVRD for a particular
drug D, using mRNA gene expression data X and drug response data Y.

1. Perform PCA on the mRNA gene expression data X. Use the first principle component
(p = 1) and create the reduce dataset Z = {Z1, Z2, . . . , ZN} where Zi = (Yi, φ1(Xi)).

2. Create the labeled data Q from X and Y. Use 321 target genes (
∣∣X̂i
∣∣ = 321) instead of

the whole genome data for creating Q.

Q = {Q1, Q2, . . . , QN} where Qi =
{(

X̂i, Yi
)}

, X̂i ⊂ Xi and
∣∣X̂i
∣∣ = 321.



Genes 2021, 12, 844 7 of 18

Train SVR S, on Q (75% training 25% testing data) and record the predicted value
errors. From this create the 2-tupled dataset Ψ = {(Y1, e1), (Y2, e2), . . . , (YN , eN)}
where ei denotes the prediction error obtained from S for input gene expression X̂i.
Next apply K-means clustering to partition Ψ into K(=12) clusters that can then be
used to partition Z into K(=12) clusters G1 . . . G12.

3. Repeat for k=1 to 12:

a. Train k SVRs S1 . . . S12 on the clusters G1 . . . G12 (75% training, 25% testing).
b. Given an input X̂j, let Y jk represent the output predicted by Sk. Calculate the k

predicted values from the k SVRs. Then calculate β
(

Y jk

)
score for each of the

k Y jk.
c. Select the prediction value ψK

j returned by kESVR to input X̂j as the value Y jk

with the highest β
(

Y jk

)
score.

d. Calculate the Squared Error as
∣∣∣Yj − ψK

j

∣∣∣2.

e. Calculate the average Mean Square Error (MSEk) for both training and testing
data (N cell-lines).

4. Select the value of k with the lowest MSEk among MSE1, .., MSE12 values as the ideal
number of clusters of kESVRD.

5. Retain the model created using the optimal value of k (obtained in step 4) as model
kESVRD for drug D.

In case of a new gene-expression input (or from X), use the newly created kESVRD to
generate predicted drug response value of that input for drug D.

2.2.4. Simulation

We demonstrate the steps of creation of kESVR model using zebularine drug response
from CTRP on 610 cancer cells from CCLE. Figure 3 illustrates the steps for creating the
k SVRs in our model development of kESVR for drug zebularine. Figure 3a shows the
reduced dataset Z for drug zebularine. Figure 3b plots the data-points in Ψ on a 2-D plane
with real/recorded drug AUC values as the abscissa and the errors in the predicted AUC
values as the ordinate. Figure 3b is the result of applying K-means clustering on set Ψ that
produces 8 clusters. These have been color coded for ease of visualization. Each point in
both Figure 3a,b represent the cell lines. We use this clustering information to cluster set
Z into the same eight clusters (depicted by the same colors). After clustering of the data
points, we train 8 SVRs, one on each cluster. Figure 3c,d shows dataset Z using real drug
AUC values as the abscissa and the first principal component of gene expressions as the
ordinate. Z is partitioned into 8 clusters (depicted by 8 colors) after which individual SVRs
are trained for each cluster.
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(a) Dimension reduction of gene expression profiles and mapping of the latent variable PC1 and drug response of zebularine
onto 2D space. (b) Seeking local clusters by k-means algorithm for regression. (c) Construction of local SVR regression
models after clustering reduced dataset Z into 8 clusters (d) Multiple prediction candidates from the trained 8 SVRs on
the clusters.

Figure 3d shows how kESVR predicts drug response value for a given gene expression
input say X̂j. Each of the eight SVRs, returns a predicted value. These predicted values
together with the first principal component value of X̂j can be plotted as points on the
same 2-D plan containing the clustered data Z. In Figure 3d, these are represented by the
triangular points. Note that the color of each triangle matches the color of its generating
SVR/cluster. We calculate the β() score for each point. Our kESVR model returns the value
(the triangle) with the highest β() score. The idea of the β() score is quite intuitive. While
the ordinate value (φ1

(
X̂j
)
) remains the same for all 8 triangular point, it is the predicted
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value of each SVR (abscissa value) that determines the location of the triangular point
and hence the number of neighbors. To temper the impact of the size of the training set
of an SVR (overall density of a cluster), we use the average Spearman correlation value
which makes sure that higher similarity of X̂j with the genetic profile of a cluster favors the
selection of the corresponding predicted value. In other words, if a cluster Gi (cell-lines
profiles) is more similar to the input X̂j than others, then that similarity will be reflected in
its β() score.

2.2.5. Implementation

The entire model is implemented using R. We use the caret package [29] to invoke the
individual Support Vector Regression models with radial basis function kernel.

3. Results
3.1. Comparison with Standard ML Models

We use 610 cancer cell lines from CCLE and 481 drug response of those cell lines from
CTRP for testing our kESVR model. We test the performance of kESVR on 5 random drugs
(zebularine, azacytidine, myricetin, BRDK64610608 and nelarabine) out of the 481 drugs
from CTRP. We compare kESVR with 4 other machine learning models: (i) Linear regression
(LR), (ii) Back Propagation Neural network (BPNN), (iii) Support Vector Regression (SVR)
and (iv) Quantile Regression Forest (QRF). For each model the labeled dataset Q of 610 cell-
lines is split into training and testing (75/25) set. We use the average Mean Square Error
(MSE) for both the training and testing dataset are our performance metric. Our kESVR
uses 5-fold cross-validation to return the average MSE value for a drug. Table 1, shows the
optimal value of k that kESVR uses for each of the drugs. Table 2 compares the average
MSE value of each model for the 5 drugs. It is evident that kESVR has the lowest MSE
value, making it the best performing model among all the models.

Table 1. Optimal k-value for kESVR model.

Drug Optimal k

zebularine 8
azacitidine 7
myricetin 8

BRDK64610608 8
nelarabine 12
SB743921 1
paclitaxel 8
daporinad 8

neopeltolide 1
docetaxel 1

Table 2. Model comparison for 5 random drugs.

Drug
Avg. (Training + Testing) MSE

LR BPNN SVR QRF kESVR

zebularine 36.490 1.078 1.039 1.001 0.336
azacitidine 188.773 0.983 1.028 1.001 0.307
myricetin 117.890 0.902 0.905 0.984 0.301

BRDK64610608 49.670 0.987 1.018 1.078 0.350
nelarabine 42.137 1.010 1.093 1.090 0.450

We also compare the model setup time across all the models for each drug. Table 3
shows kESVR takes longer time than LR, SVR or QRF for the model to be setup but its
prediction accuracy makes up for the extra time taken in setup.
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Table 3. Model setup time for 5 random drugs.

Drug
Model Setup Time (in sec)

LR BPNN SVR QRF kESVR

zebularine 2.390 9417.563 30.328 3342.786 10,934.530
azacitidine 2.419 8830.332 29.412 3603.740 7787.4456
myricetin 2.487 15,179.391 30.088 3375.857 8259.927

BRDK64610608 2.493 13,580.990 29.556 3329.557 8442.622
nelarabine 2.335 14,683.006 27.803 3608.870 7334.934

We next compare the performance of kESVR against the same 4 models for 5 drugs
that have the highest variance in drug AUC values amongst the 481 drugs. These 5 drugs
are SB743921, paclitaxel, daporinad, neopeltolide and docetaxel. The idea is to see how well
kESVR handles large variance of AUC value for a particular drug across the 610 cell-lines.
We use the same metric for evaluation. Table 4 shows that except for drug neopeltolide,
our model kESVR performs the best again. Now for 3 drugs, kESVR and SVR seem to have
the same MSE value. The reason for this can be found in Table 1.

Table 4. Model comparison for 5 drugs with maximum variance.

Drug
Avg. (Training + Testing) MSE

LR NN SVR QRF kESVR

SB743921 674.143 3.496 3.095 3.238 3.095
paclitaxel 98.3038 3.442 3.067 3.070 2.472
daporinad 137.176 3.458 3.206 3.140 2.082

neopeltolide 118.476 3.256 3.358 3.443 3.358
docetaxel 110.085 3.360 2.856 3.074 2.856

Table 1 shows the optimal k-value that kESVR uses for each drug. It can be seen that
for 3 drugs the value of k is 1. That is, for those drugs after trying out different value of
k, kESVR finds k = 1 to be the optimal value. A value of k = 1 essentially means a single
SVR, hence the similarity of MSE values in Table 4. Table 5 like Table 3 shows that kESVR
model takes more time than 3 out of the 4 drugs but has higher accuracy than them.

Table 5. Model setup time for 5 drugs with maximum variance.

Drug
Model Setup Time (in sec)

LR BPNN SVR QRF kESVR

SB743921 2.271 10,361.546 27.447 3563.221 8918.989
paclitaxel 2.088 9439.555 27.139 3497.768 8575.110
daporinad 2.316 11,495.089 26.572 2391.248 7637.791

neopeltolide 1.617 2132.497 7.937 570.632 2738.013
docetaxel 1.650 2849.202 11.419 1139.292 4266.580

Tables 6 and 7 gives a glimpse of the performance of our model for drug Zebularine.
Table 6 shows that k = 8 produces the lowest average MSE value which is why it is selected
as the optimal k-value. Table 7 illustrates that our model does not suffer from over-fitting.
Detailed results for all 10 drugs can be found in the Supplementary File: Tables S1–S10.
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Table 6. Selection of optimal k value for kESVR model development of drug zebularine.

DRUG Zebularine

k Avg. (Training + Testing) MSE

1 1.039
2 0.815
3 0.749
4 0.568
5 0.621
6 0.483
7 0.423
8 0.336
9 0.357

10 0.351
11 0.405
12 0.579

Table 7. 5-fold cross-validation results for kESVR model (k = 8) of drug zebularine.

DRUG Zebularine

Fold Training Set MSE Testing Set MSE Avg. (Training + Testing) MSE

1 0.203 0.335 0.269
2 0.063 0.706 0.384
3 0.207 0.618 0.413
4 0.227 0.276 0.252
5 0.316 0.404 0.360

We further compare the goodness of fit of our kESVR model with the 4 models using
the R-squared metric. For each drug, we treat the entire data of that drug as our test
dataset and use the trained 5 models to generate predicted values for the test data. We then
calculate the R-squared value (R2 = 1− (residual sum of squares)/(total sum of squares))
for each drug and model. It can be seen from Table 8, that for 7 out of the 10 drugs, kESVR
has the best fit (>=0.7) among all 5 models. For 3 drugs, the optimal value of k used by
kESVR is 1 (Table 6), which is why the R-squared value of kESVR and SVR is the same.

Table 8. Model Fitness Comparison using R-squared values.

Drug
R—Squared Value

LR BPNN SVR QRF kESVR

zebularine −0.094 −0.00047 0.284 0.693 0.778
azacitidine −0.267 −4.5 × 10−5 0.139 0.691 0.789
myricetin −0.25 −0.000681 0.082 0.698 0.772

BRDK64610608 0.072 −0.000809 0.093 0.698 0.802
nelarabine −0.152 −4.2 × 10−5 0.119 0.627 0.700
SB743921 0.263 −0.002453 0.66 0.795 0.66
paclitaxel 0.093 −6.0 × 10−6 0.415 0.764 0.853
daporinad −0.262 −0.000608 0.382 0.768 0.903

neopeltolide −11789.886 −0.00368 0.385 0.781 0.385
docetaxel −301.018 −0.001727 0.644 0.788 0.644
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3.2. Comparison with Existing Drug Response Prediction Models

We next compare our kESVR model to contemporary drug response prediction com-
putational methods. A paper by Chen and Zhang [11] evaluates and compares the perfor-
mance of 17 representative methods for drug response prediction developed in the past
five years. These include models based on regression and their generalizations, Bayesian
inference methods, matrix-factorization methods, random forest, kernel rank learning and
deep convolutional neural networks. They assess the performances of these 17 methods
using four large public datasets in nine metrics. We use one of the four datasets (CCLE)
and one of the metrics (RMSE) used in their paper [11] to compare the methods in terms
of prediction accuracy. To ensure fairness of comparison, we use the exact same curated
data and the exact same steps that their paper use to generate the Root Mean Square
Error (RMSE) values. This curated data contains expression profiles for 385 cancer cell
lines and drug response AUC values for 23 drugs. To generate the RMSE value for each
drug d, we use five-fold cross-validation; split the data into 5 parts, train the model with
4 parts of data and use the remaining 1 part as test data. After 5-folds, we get the RMSE
value for the whole data. We repeat the process for 10 iterations to get the average RMSE
value for the drug d. In this manner, we generate the RMSE values for all 23 drugs and
compare them with those generated by the other 17 methods. The complete comparison
table can be found in the Supplementary File: Table S11. We rank the performance of
the 18 methods in terms of RMSE (lower RMSE means better rank) for all 23 drugs in
Supplementary File: Table S12. It is evident from the performance rank table that kESVR
places in the top 5 positions for all 23 drugs and holds the first rank for 17 out of 23 drugs.
That is, for 17 drugs kESVR out-performs all other methods and for the remaining 6 drugs
it performs better than at least 12 methods. In their paper, Chen and Zheng conclude that
4 methods: DualNets [30], Kernelized rank recommendation (KRR) [31], pairwise mul-
tiple kernel learning (pairwiseMKL) [32] and similarity-regularized matrix factorization
(SRMF) [33] are the best among the 17 methods in terms of prediction accuracy. These
4 methods consistently out-perform the other 13 methods. So, we inspect the performance
of kESVR against these 4 methods. The full rank table for kESVR and the 4 methods is
provided in Supplementary File: Table S13. We plot the RMSE values of kESVR along with
those 4 methods in Figure 4. From the plot and the rank table we see that kESVR is the best
performing model for 17 out of 23 drugs. In case of the 6 drugs, where it does not rank first,
the lowest rank it gets is third and consistently out-performs DualNets and KRR.
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6 drugs, kESVR places in the top 3 position among the 5 models.

4. Discussion

kESVR is a data driven model. That is, it does not require any external input of
parameter values. kESVR calculates all of its parameters (k, r, parameters of individual
SVRs) from the input data directly. This makes this model highly robust.

kESVR uses PCA in its first step. This leads to the creation of the reduced dataset Z
(Equation (2)). At this step, there are several principal components to choose from, for our
model creation. The decision to use the first principal component for this step stems from
the fact that the first principal component retains the maximum percentage of variation
in the reduced data set. Graphically this means, it gives a better visualization/separation
(Figure 2a) of the distinct data points on the 2-D plot that is used in the subsequent steps.

The embedded clustering step employs K-means clustering on the dataset Ψ (Equa-
tion (4)) in order to cluster the cell-lines into groups. We use K-means for two reasons,
firstly we plan to cluster cell-lines that produce similar prediction errors and secondly since
Ψ is a set of 2-tuple data. These clusters then train separate SVRs to reduce the prediction
errors. Typically, K-means method itself is prone to producing different clusters each
time due to the randomized nature of its initiation. However, in this particular scenario,
we observe that even after running multiple times, with this data K-means always produce
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the same set of centroids. Traditionally, optimal value of k is determined by using metrics
such as Silhouette value [34] or Calinski-Harabasz index [35]. However, such methods are
not applicable in case of kESVR as our main objective is not to determine how well the
data-points are clustered. Clustering is an intermediate step, that plays an important role
in the performance of kESVR. That is, the performance metric MSE is dependent on the
choice of k. In that respect the choice of value of k, is data driven. As our final objective
is to minimize the value of MSE (Equation (8)), kESVR loops through different values of
k, and selects the optimal one that gives the lowest MSE value. Figure 5 illustrates how
the optimal value of k varies according to metric used for evaluation. Here we use the
model for drug zebularine. Figure 5a uses the Calinski-Harabasz index, Figure 5b uses the
average Silhouette value and Figure 5c uses the average (Training+Testing) MSE values to
get optimal k for drug zebularine. Accordingly, the suggested optimal value of k turn out
to be 11, 3 and 8 respectively. From Table 6, we known that only k = 8 gives the lowest
average MSE value (best kESVR performance). So k = 8 is selected as the optimal value.
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Computation of neighbors for any data-point using ηr
k() (Equation (6)) is dependent on

the value of r. We use the clustering information of the reduced data Z to calculate the best
value of r. Our model kESVR is data-driven. Being an ensemble method, its performance
is dependent on the size/volume of the training data being used on each individual
SVR. That is, some clusters in Z can be denser than others. Depending on the value of r,
that density of a cluster can influence the overall performance of kESVR. Figure 6 shows
how the performance of kESVR varies with r for drug zebularine.
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We can see from Figure 6a that as the value of r increases the performance of our
model deteriorates. This observation is intuitive: if a cluster is very dense (more training
instances) and the value of r is sufficiently large, then that cluster can end up dominating the
prediction value selection process and hence the overall performance. The best performance
is given when r is small. This is shown is Figure 6b. Keeping these things in mind we
calculate r as follows: We calculate the x-axis distance (AUC values) between the two
farthest points for each cluster. We sort these distances in ascending order and select r to be
smallest value. This is done in order to be fair in comparing the number of neighbors for
each cluster. If in a particular prediction instance, a value of r results in zero neighbors in
all clusters, we simply select the next higher value in the sorted list, and redo the neighbor
selection process for that instance.

kESVR uses an ensemble approach to return the final prediction value from k potential
predicted values. It uses a maximum β() score (Equation (7)) approach wherein the
potential predicted value with the highest β() score is selected as a final prediction value.
We empirically test a total of five different approaches before settling on the β() score one.
The four other approaches are:

(i) select the prediction value whose data-point has the maximum average Spearman
correlation value with all cell-lines in the training set of its parent SVR.

(ii) return a weighted average of the k prediction values using the β() scores of the
corresponding data-points as weights.

(iii) select the prediction value whose data-point has the maximum number of neigh-
bors (using ηr

k()).
(iv) return a weighted average of the k prediction data-points using the number of

neighbors (from ηr
k()) of the corresponding data-points as weights.

Our experimental comparisons show that the maximum β() score approach gives the
best accuracy performance i.e. lowest MSE values.

Lastly feature selection plays an important role in the performance of our model
kESVR. Intuitively, features indicate those genes that play a crucial role in the functioning
of a drug. Expression (high/low) of these feature genes, affects how a cell-line/patient
responds to the drug. We use genes that are known to be target genes for the drugs
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(available from public databases) as our feature genes. This contributes to the improved
performance of kESVR over other drug response prediction methods.

5. Conclusions

In this paper we introduce a novel computational model for drug sensitivity predic-
tion. We show that our model kESVR consistently outperforms existing traditional ML
tools and at least 12 recently developed drug response prediction methods in terms of
prediction accuracy. Even among the 4 good methods deemed best performing by Chen
and Zhang [11] it is the best performing model in most cases. It is a robust model that is
completely data driven and combines both supervised and unsupervised learning concepts
in its functionality.

As of now kESVR only uses gene expression data. However, as future work we plan
to extend our kESVR model, to incorporate other kinds of omics data such as mutation,
copy number variation and methylation data. Currently kESVR does not allow for feature
selection. This is something that we will be working on, so that future users can use kESVR
to get bio-markers for the drugs as well as their response prediction results. Finally, we plan
to use kESVR to create a precision medicine drug recommendation system for patients
wherein we use cancer lines and other omics data to perform drug response prediction and
drug ranking recommendation efficiently.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12060844/s1. Supplementary Table S1: 5-fold cross-validation results of kESVR on
zebularine for k = 2:12, Supplementary Table S2: 5-fold cross-validation results of kESVR on azaci-
tidine for k = 2:12, Supplementary Table S3: 5-fold cross-validation results of kESVR on myricetin
for k = 2:12, Supplementary Table S4: 5-fold cross-validation results of kESVR on BRDK64610608 for
k = 2:12, Supplementary Table S5: 5-fold cross-validation results of kESVR on nelarabine for k = 2:12,
Supplementary Table S6: 5-fold cross-validation results of kESVR on SB743921 for k = 2:12, Supple-
mentary Table S7: 5-fold cross-validation results of kESVR on paclitaxel for k = 2:12, Supplementary
Table S8: 5-fold cross-validation results of kESVR on daporinad for k = 2:12, Supplementary Table S9:
5-fold cross-validation results of kESVR on neopeltolide for k = 2:12, Supplementary Table S10: 5-fold
cross-validation results of kESVR on docetaxel for k = 2:12, Supplementary Table S11: Comparison of
RMSE values of kESVR with 17 other methods across 23 drugs on curated CCLE dataset, Supple-
mentary Table S12: Performance rank of kESVR with 17 representational methods across 23 drugs
on curated CCLE dataset, Supplementary Table S13: Performance rank of kESVR, DualNets, KRR,
pairwiseMKL and SRMF across 23 drugs on curated CCLE dataset
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