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Abstract: Among many machine learning models for analyzing the relationship between miRNAs and
diseases, the prediction results are optimized by establishing different machine learning models, and
less attention is paid to the feature information contained in the miRNA sequence itself. This study
focused on the impact of the different feature information of miRNA sequences on the relationship
between miRNA and disease. It was found that when the graph neural network used was the same
and the miRNA features based on the K-spacer nucleic acid pair composition (CKSNAP) feature were
adopted, a better graph neural network prediction model of miRNA–disease relationship could be
built (AUC = 93.71%), which was 0.15% greater than the best model in the literature based on the
same benchmark dataset. The optimized model was also used to predict miRNAs related to lung
tumors, esophageal tumors, and kidney tumors, and 47, 47, and 37 of the top 50 miRNAs related
to three diseases predicted separately by the model were consistent with descriptions in the wet
experiment validation database (dbDEMC).

Keywords: miRNA; miRNA sequence similarity; graph neural network; graph auto-encoder

1. Introduction

According to molecular biology, the entire human genome can be divided into reg-
ulatory, coding, and noncoding genes. The coding genes are the main carriers of human
genetic information, accounting for only 1.5% of the whole human genome [1–3]. Previous
studies have regarded non-coding genes as transcriptional noise in the coding process.
However, microarray experiments have found that non-coding genes can participate in cell
activities by interacting with proteins and DNA, affecting gene activation and silencing;
RNA splicing, modification, and editing; and protein translation, thus affecting various
physiological processes. MicroRNA (miRNA) is a type of non-coding, single-stranded
RNA encoded by endogenous genes. The most common role of miRNA is to directly
regulate target genes by affecting post-transcriptional gene regulation of promoters. Ab-
normal expression of miRNA can cause many human diseases, and miRNA can be used
as a drug target for disease treatment [4,5]. Therefore, the regulatory role of miRNA in
disease expression is significant for a variety of complex human physiological processes
and disease pathophysiology. However, traditional experimental methods are often limited.
To this end, it is of great significance to speed up the verification process, reduce bias in
biological experiments, and establish a method to predict the possible associations quickly
and effectively between miRNAs and disease [6].

Common biological experimental methods from the 1990s to the beginning of the 21st
century include reverse transcription-polymerase chain reaction (RT-PCR) [7], Northern
blotting [8], and microarray profiling [9]. Although these traditional methods can accurately
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detect correlations between miRNA and disease, they have their limitations. In recent years,
a more classical class of algorithm has been developed based on the assumption of similar-
ity measures [10]. This kind of algorithm is based on the assumption that miRNAs with
similar functions are also related to similar disease phenotypes and can be sequenced ac-
cordingly [11]. Jiang et al. [12] constructed an miRNA association network using probability
of interaction by target accessibility (PITA), and they proposed a hypergeometric distri-
bution prediction method based on the human miRNA network. Liu et al. [13] proposed
an miRNA–disease association prediction method by random walk on a heterogeneous
network constructed by integrating multiple data sources. Zeng et al. [14] applied a link
prediction algorithm named the structural perturbation method (SPM) on the miRNA–
disease bilayer network to predict potential miRNA–disease associations. Zhang et al. [15]
proposed a method using the correlation spectrum and the interaction network between
miRNA and target genes to calculate the miRNA–disease association score by using fast
linear neighborhood similarity-based network link inference. Mørk et al. [16] proposed
a model to calculate the similarity between miRNA and disease based on the distance
between target genes and disease genes in the PPI network. Another common method for
predicting the miRNA–disease association is based on machine-inferred code similarity
(MISIM) proposed by Wang et al. [17] Chen et al. [18] proposed a model called random
forest for miRNA–disease association (RFMDA), which integrates disease semantic simi-
larity, disease Gaussian interaction profile kernel similarity, miRNA Gaussian interaction
profile kernel similarity, and miRNA functional similarity based on MISIM to predict
miRNA–disease association. Zeng et al. [19] developed a neural network model to pre-
dict miRNA–disease associations (NNMDA). NNMDA not only aggregated the neighbor
information during the process, but also preserved the topology of the original network
at the same time. Zhou et al. [20] used similar methods to obtain miRNA and disease
similarity networks and used the gradient boosting decision tree (GBDT) algorithm to
extract more representative features. Additionally, with the recent great progress of graph
neural networks in processing graph data, prediction methods based on graph neural
networks have made breakthroughs, and the association between miRNA and disease is
more suited to using graph neural networks than other data structures.

A key step in the data preprocessing for all models is to calculate the similarity of miR-
NAs. Specifically, these methods can be divided into three types: similarity measure-based
methods, MISIM-based methods, and miRNA sequence similarity-based methods. Similar-
ity measure-based methods construct an miRNA association network using target gene
associations. However, this depends on the association between miRNA and target genes,
resulting in high false positive and false negative rates [12,15,16,21–28]. The MISIM-based
methods construct an miRNA association network using a disease semantic similarity
network [17]. It can be said that related miRNAs have related diseases, but not all miRNAs
related to similar diseases are necessarily related [18,20,28–30]. The miRNA similarity
networks of such methods have the disadvantage of being dependent on known disease
similarity networks, and this error is more pronounced for miRNAs that are associated with
fewer diseases. The sequence similarity of miRNA is also particularly important for simi-
larity networks. Previous studies have proposed enriching the miRNA similarity networks
using miRNA sequence information. Ji et al. [31] integrated various kinds of information
to construct a heterogeneous network centered on miRNA and disease, and embedded
K-mer sequence features of miRNA into this network. Ji et al. [32] proposed a method using
disease semantic similarity and miRNA sequence similarity to construct an miRNA–disease
association network; miRNA sequence similarity-based methods effectively quantify the
miRNA similarity, solving the problem that miRNA sequences cannot be directly compared
due to their different lengths. In conclusion, according to current research, there is still
room for improvement in the accuracy and effectiveness of identifying and predicting
potential associations between miRNA and disease. Therefore, we enhanced the effective
associations between miRNA and disease by using miRNA sequence information, benefit-
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ting from the advantage of graph neural networks in finding miRNA–disease associations
to construct a feature extraction method based on miRNA sequence similarity information.

In this study, we propose a method to calculate the sequence characteristics and se-
quence similarity of miRNA using five distinct miRNA sequence characteristics. Then, by
integrating disease semantic similarity, miRNA Gaussian interaction profile kernel similar-
ity, and disease Gaussian interaction profile kernel similarity, we construct a new bipartite
graph of miRNA and disease. Then, the auto-encoder of a graph neural network is used to
predict miRNA–disease association. Moreover, we evaluated prediction performance using
5-fold cross-validation. The model, using sequence similarity based on the composition of
k-spaced nucleic acid pair (CKSNAP) features and a graph neural network, achieved an
average area under the curve (AUC) of 93.71 ± 0.42%, with an accuracy of 83.69 ± 1.42%,
precision of 77.73 ± 2.29%, recall of 94.62 ± 0.97%, and F1-score of 85.31 ± 1.00%. To
further verify the performance of this model, case studies on lung, esophageal, and kid-
ney neoplasms were conducted. Respectively, the results showed that 47, 47, and 37 of
the top 50 predicted miRNAs for these neoplasms can be confirmed by the database of
Differentially Expressed MiRNAs in human Cancers (dbDEMC) [33]. In conclusion, it can
be inferred that our model is effective and accurate in identifying potential associations
between miRNA and disease.

2. Materials and Methods
2.1. Human miRNA–Disease Associations

In this study, we adopted the Human microRNA Disease Database (HMDD; v3.2) as
the benchmark dataset and directly downloaded the experimentally verified miRNA–disease
associations from https://www.cuilab.cn/hmdd (accessed on 1 September 2021) [34]. There
are 16,427 high-quality miRNA–disease associations recorded in the HMDD database,
including 877 diseases and 901 miRNAs. We adopted the adjacency matrix A to quan-
tify associations between these miRNAs and diseases. If a disease is associated with an
miRNA, the value of the element at the corresponding position of matrix A is set to 1, and
otherwise to 0.

2.2. miRNA Sequence Similarity

In this study, the attribute features of miRNAs were represented by sequence similarity
information. We downloaded miRNA sequence information from https://mirbase.org/
ftp.shtml and utilized the K-mer (k = 3), Moran, Geary, NMBroto, and CKSNAP (k = 5)
methods to obtain the sequence features of miRNAs.

K-mer: We set up a sliding window with a size of 3 and a sliding distance of 1 to
obtain occurrence frequencies for all 3-monomere units. Then, each miRNA sequence was
converted into a 64-dimensional vector based on the 64 3-monomer combinations. On this
basis, we used cosine similarity, euclidean distance, and the Pearson correlation coefficient
to calculate miRNA sequence similarity, defined as follows:

Kmer_ cos _sim(i, j) =
∑n

j=1 ∑n
i=1

N(i)
N × N(j)

N√
∑n

i=1

(
N(i)

N

)2
×
√

∑n
j=1

(
N(j)

N

)2
(1)

Kmer_euc_dist(i, j) =

√√√√√ n

∑
i=1
j=1

(
N(i)

N
− N(j)

N

)2

(2)

Kmer_pearson(i, j)

=
N ∑ N(i)

N ×
N(j)

N −∑ N(i)
N ∑ N(j)

N√
N ∑

(
N(i)

N

)2
−
(

∑ N(i)
N

)2
√

N ∑
(

N(j)
N

)2
−
(

∑ N(j)
N

)2
(3)

https://www.cuilab.cn/hmdd
https://mirbase.org/ftp.shtml
https://mirbase.org/ftp.shtml
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where i represents a nucleotide combination with a length of three, such as AAA, AAC, and
AAG; N(i) is the number of nucleotide combinations and N is the length of a nucleotide
sequence.

Moran: Moran describes miRNA by physicochemical parameters of nucleotides. The
physical and chemical properties of miRNA include Rise (RNA), Roll(RNA), Shift(RNA),
Slide(RNA), Tilt(RNA), Twist(RNA), Entropy(RNA), Adenine content, Purine(AG) con-
tent, Hydrophilicity(RNA), Enthalpy(RNA)1, GC content, Entropy(RNA)1, Hydrophilic-
ity(RNA)1, Free energy(RNA), Keto(GT) content, Free energy(RNA)1, Enthalpy(RNA),
Stacking energy(RNA), Guanine content, Cytosine content, and Thymine content. On this
basis, we calculated the miRNA sequence similarity, defined as follows:

Moran_ cos _sim(i, j) =
∑n

j=1 ∑n
i=1 Mi ×Mj√

∑n
i=1(Mi)

2 ×
√

∑n
j=1
(

Mj
)2

(4)

Moran_euc_dist(i, j) =

√√√√√ n

∑
i=1
j=1

(
Mi −Mj

)2 (5)

Moran_pearson(i, j) =
N ∑ Mi ×Mj −∑ Mi ∑ Mj√

N ∑ Mi
2 − (∑ Mi)

2
√

N ∑ Mj
2 −

(
∑ Mj

)2
(6)

where the Moran feature of miRNA are defined as follows:

M(d) =
1

N−d ∑N−d
i=1

(
Mi −M′

)(
Mi+d −M′

)
1
N ∑N

i=1
(

Mi −M′
)2 , d = 1, 2, 3, . . . , nlag (7)

M =

∑len
r=1

Mr−M√
1

len ∑len
r=1(Mr−M)2

len
(8)

where d represents the lag value of autocorrelation, and nlag represents the maximum value
of lag. In this study, the lag value d = 3 was selected; Mi is the nucleotide properties at
position i. M′ is calculated as follows:

M′ = ∑N
i=1 Mi

N
(9)

Geary: Geary uses the attribute information of nucleotides to describe the sequence
characteristics of miRNA. We calculate the miRNA sequence similarity, defined as follows:

Geary_ cos _sim(i, j) =
∑n

j=1 ∑n
i=1 G(d)i × G(d)j√

∑n
i=1(G(d)i)

2 ×
√

∑n
j=1
(
G(d)j

)2
(10)

Geary_euc_dist(i, j) =

√√√√√ n

∑
i=1
j=1

(
G(d)i − G(d)j

)2 (11)

Geary_pearson(i, j) =
N ∑ G(d)i × G(d)j −∑ G(d)i ∑ G(d)j√

N ∑ G(d)i
2 − (∑ G(d)i)

2
√

N ∑ G(d)j
2 −

(
∑ G(d)j

)2
(12)
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where the Geary feature of miRNA are defined as follows:

G(d) =
1

2(N−d) ∑N−d
i=1 (Mi −Mi+d)

2

1
N−1 ∑N

i=1

(
Mi −M′

)2 , d = 1, 2, . . . , nlag (13)

The meaning of physical and chemical indicators involving nucleotides, such as d, M,
Mi, and nlag, is the same as that in the Moran autocorrelation descriptor.

NMBroto: NMBroto is a normalized Moreau-Broto autocorrelation descriptor. The
miRNA sequence is calculated similarity, defined as follows:

NMBroto_ cos _sim(i, j) =
∑n

j=1 ∑n
i=1 NMB(d)i × NMB(d)j√

∑n
i=1(NMB(d)i)

2 ×
√

∑n
j=1
(

NMB(d)j
)2

(14)

NMBroto_euc_dist(i, j) =

√√√√√ n

∑
i=1
j=1

(
NMB(d)i − NMB(d)j

)2 (15)

NMBroto_pearson(i, j) =
N ∑ NMB(d)i × NMB(d)j −∑ NMB(d)i ∑ NMB(d)j√

N ∑ NMB(d)i
2 − (∑ NMB(d)i)

2
√

N ∑ NMB(d)j
2 −

(
∑ NMB(d)j

)2
(16)

where the NMBroto feature of miRNA is defined as follows:

NMB(d) =
∑N−d

i=1 Mi ×Mi+d

N − d
, d = 1, 2, . . . , nlag (17)

The meaning of physical and chemical indicators involving nucleotides, such as d, M,
Mi, and nlag, is the same as that in the Moran autocorrelation descriptor.

CKSNAP: CKSNAP uses k-spaced nucleic acid pairs to describe the frequency of
separating the current nucleic acid pair from any k nucleic acids. When k = 0, there are 16
pairs of nucleic acid pairs with 0 spacing (‘AA’, ‘AC’, ‘AG’, ‘AT’, ‘CA’, ‘CC’, ‘CG’, ‘CT’, ‘GA’,
‘GC’, ‘GG’, ‘GT’, ‘TA’, ‘TC’, ‘TG’, ‘TT’). The miRNA sequence was calculated similarity,
defined as follows:

CKSNAP_ cos _sim(i, j) =
∑n

j=1 ∑n
i=1 CKi × CKj√

∑n
i=1(CKi)

2 ×
√

∑n
j=1
(
CKj

)2
(18)

CKSNAP_euc_dist(i, j) =

√√√√√ n

∑
i=1
j=1

(
CKi − CKj

)2 (19)

CKSNAP_pearson(i, j) =
N ∑ CKi × CKj −∑ CKi ∑ CKj√

N ∑ CKi
2 − (∑ CKi)

2
√

N ∑ CKj
2 −

(
∑ CKj

)2
(20)

where the CKSNAP features of miRNA are defined as follows:

CK =

(
NAA
Ntotal

,
NAC
Ntotal

,
NAG
Ntotal

, . . . ,
NTT

Ntotal
,
)

16
(21)

Using five miRNA sequence features and three similarity calculation methods, 15 miRNA
sequence similarity matrices could be obtained. In the following research, all sequence
similarity matrices are called MSSM.
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2.3. Disease Semantic Similarity

Disease semantic similarity can be calculated based on the medical subject heading
(MeSH) descriptors, which are available at https://www.ncbi.nlm.nih.gov (accessed on 1
January 2021). The relationship between diseases can be represented as a directed acyclic
graph (DAG) network according to disciplines or affiliations, where the nodes represent
the MeSH descriptors of diseases, and the directed edges point from parent nodes to child
nodes [35]. We adopted DAGdi (dk) to describe semantic contribution of disease dk to
disease di. On this basis, the semantic contribution is defined as follows:

DAGdi (dk) =

{
1, i f dk = di

max
{

∆ ∗ DAGdi (d
′
k)
∣∣d′k ∈ children o f dk

}
, i f dk 6= di

(22)

where ∆ is the semantic contribution attenuation facto; this was set to 0.5 according to a
previous study [30]. The semantic contribution value will decrease with distance.

According to the semantic contribution value of disease nodes, the semantic value of
disease di was calculated as follows:

DV(di) = ∑
dk∈N(di)

DAGdi (dk) (23)

The semantic similarity between disease di and disease dk could be calculated by the
nodes shared by the two disease DAG networks. It was defined as follows:

SSM
(
di, dj

)
=

∑ dt∈N(di)∩N(dj)

(
DAGdi (dt) + DAGdj(dt)

)
DV(di) + DV

(
dj
) (24)

where the element DSSM(di, dj) represents the disease semantic similarity between di and dj.

2.4. Gaussian Interaction Profile Kernel Similarity for miRNAs and Diseases

In this study, the binary vector IP(mi) to denote the interaction profiles of miRNA
mi was defined by calculating the correlation between mi and mj. The miRNA Gaussian
interaction profile kernel similarity matrix (MGSM) could be calculated as follows:

MGSM
(
mi, mj

)
= exp

(
−σm‖IP(mi)− IP

(
mj
)
‖2
)

(25)

where σm was applied for controlling the bandwidth of the kernel, and ‖IP(mi)− IP
(
mj
)
‖2

was applied for calculating the euclidean distance of two eigenvectors. The Gaussian kernel
bandwidth control parameter was calculated as follows:

σm = σ′m/

(
1

nm

nm

∑
i=1
‖IP(mi)‖2

)
(26)

where nm represents the number of all miRNAs; σ′m was set to 1 according to a previ-
ous study [30]. Similarly, the Gaussian interaction profile kernel similarity for diseases
DGSM(di,dj) between disease di and dj could be calculated as follows:

DGSM
(
di, dj

)
= exp

(
−σd‖IP(di)− IP

(
dj
)
‖2
)

(27)

σd = σ′d/

(
1

nd

nd

∑
i=1
‖IP(di)‖2

)
(28)

where nd represents the number of all diseases, σ′d was set to 1 according to a previous
study [30].

https://www.ncbi.nlm.nih.gov
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2.5. Integrated Similarity for miRNAs and Diseases

There is a large number of sparse values in the miRNA sequence similarity and disease
semantic similarity matrices. The final integrated similarity for miRNAs and diseases was
obtained from miRNA sequence similarity, disease semantic similarity, Gaussian interaction
profile kernel similarity for miRNAs, and Gaussian interaction profile kernel similarity for
diseases. It was defined as follows:

MSim
(
mi, mj

)
=

{
MSSM

(
mi, mj

)
, i f mi and mj have sequence similarity

MGSM
(
mi, mj

)
, otherwise

(29)

DSim
(
di, dj

)
=

{
DSSM

(
di, dj

)
, i f di and dj have semantic similarity

DGSM
(
di, dj

)
, otherwise

(30)

2.6. Graph Auto-Encoder

In the present study, the prediction of the potential miRNA–disease associations was
mainly used to generate the low-dimensional embedding of node information through the
encoder based on a graph neural network, so as to realize the identification of the correlation
between miRNA and diseases by a bilinear decoder. Our model can be described in four
steps, as shown in Figure 1.

First, we constructed a bipartite graph including 877 disease nodes and 901 miRNA
nodes. For integrated similarity for miRNA, the similarity between miRNA mi and miRNA
m1, m2, . . . , m901 could be expressed as follows:

Fm(i) = (u1, u2, u3, . . . , u901) (31)

where u1, u2, u3, . . . , u901 is the integrated similarity between miRNA m(i) and miRNA m1,
m2, . . . , m901. Similarly, the integrated similarity between disease di and disease d1, d2, . . . ,
d901 could be expressed as follows:

Fd(i) = (v1, v2, v3, . . . , v877) (32)

The vectors in Fm (miRNA) and Fd (disease) were embedded into miRNA nodes
and disease nodes in the miRNA–disease bipartite graph. In this study, 16,427 known
association pairs verified by experiments were regarded as positive samples of input.
In order to balance the positive and negative samples, 16,427 negative samples were
randomly selected from the unknown associations in the subsequent experiments. In order
to project miRNA and disease feature vectors to the same vector space, we designed a
linear transformation matrix. The projection process of miRNA nodes can be described
as follows:

Hm = W∅m ·Fm (33)

where Fm is the original characteristic matrix of miRNA, W∅m is to realize the linear
transformation matrix of miRNA projection process, and Hm is the feature matrix of miRNA
projected into the new feature space. Similarly, the projection process of disease nodes can
be described as follows:

Hd = W∅d ·Fd (34)

where Fd, W∅m , and Hd are as described above.
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Second, we used the aggregator function of the auto-encoder to integrate the feature
representation of the node and its neighbor nodes, update the node with a multi-layer
perceptron, and embed the aggregated features into the original features of the node. The
aggregator function sum(·) was used to realize the feature aggregation of its neighbor nodes,
as shown in Equations (35) and (36), where sum(Hd(1), Hd(2), . . .) represents the aggregation
process of the disease nodes dj., which are the direct neighbors of the miRNA nodes mi; Dmi
is the degree value of node mi. In order to prevent numerical instability, Hs

m(i) was used for
normalization. It is the aggregation feature of the current miRNA node mi.

Hs
m(i) =

1
Dmi

sum(Hd(1), Hd(2), . . .) (35)

Dmi =
∣∣{dj

∣∣∃eij ∈ E or eji ∈ E
}∣∣ (36)

After the aggregation features of all miRNA nodes were obtained through the ag-
gregator function, the features of all nodes were embedded and connected through the
multi-layer perceptron superimposed by the L-layer, and the final embedding of nodes was
generated. We used a Leaky Rectified Linear Unit (LeakyReLU) function as the activation
function of the multilayer perceptron to avoid the phenomenon of neuron “death” when
the input was negative. It is defined as follows:

H′m(i) = LeakyReLU( f (Hm(i)⊕ Hs
m(i))) (37)

where Hm(i) is the original feature of node mi, Hs
m(i) is the aggregation feature of node

mi, H′m(i) is the updated node feature, and f (·) is the single-layer multi-layer perceptron
function. Similarly, we calculated the aggregation feature of the current disease node dj, the
degree value of node dj, and the updated node feature of disease as in Equations (38)–(40).

Hs
d(j) =

1
Dd(j)

sum(Hm(1), Hm(2), . . .) (38)

Dd(j) =
∣∣{mi

∣∣∃eij ∈ E or eji ∈ E
}∣∣ (39)

H′d(j) = LeakyReLU( f (Hd(j)⊕ Hs
d(j))) (40)

A multilayer overlay network could enhance the feature embedding of neighbor nodes
and preserve the topology of graph data, so as to enhance the expression ability of features.

Third, considering that the number of unknown associations between miRNA and
disease is much larger than the known associations, we adopted a sigmoid function as the
activation function of the decoder to predict the association score between miRNA and
disease. It is defined as follows:

Â(i, j) = sigmoid
(

HL
d (j) ∗Q

(
HL

m(i)
)T
)

(41)

where Q is the E-dimensional trainable parameter matrix, HL
d (j) is the feature embedding

of L-layer disease node dj, HL
m(i) is the feature embedding of L-layer miRNA node mi, and

Â(i, j) is the reconstructed association score matrix.
Finally, we used the deviation between the prediction score matrix and the original

characteristic matrix and used the cross-entropy loss function and back propagation algo-
rithm to optimize the model to obtain the best model parameters. It is defined as follows:

LOSS = − ∑
i,j∈y∪y−

(
A(i, j) ∗ logÂ(i, j) + (1− A(i, j)) ∗ log

(
1− Â(i, j)

))
(42)

where A(i, j) is the original characteristic matrix, and Â(i, j) is the reconstructed prediction
correlation score matrix. Due to the small proportion of known associations in the sample
data, cost-sensitive learning was used to improve the weight of positive sample loss, so as
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to improve the prediction accuracy. Furthermore, y and y- are the set of positive samples
and the set of negative samples in the incidence matrix, respectively.

2.7. Model Evaluation

Five-fold cross validation was selected to evaluate the performance of the model. We
divided the miRNA–disease associations into five sets, set one as the test set and the other
four as the training set, and received five prediction results. Accordingly, the higher the
score between miRNA and disease, the higher the possibility of a potential association
between them. In the present study, we adopted four common evaluating indicators to
evaluate the performance of the models: Accuracy (Acc), Precision (Prec), Recall, and
F1-score. Meanwhile, we plotted the receiver operating characteristic curves to intuitively
display the performance of our model and utilized the AUC to comprehensively evaluate
model performance.

3. Results
3.1. Performance Evaluation of Graph Neural Network Prediction Model Based on Single Features

Based on five sequence features, we used three different similarity calculation methods
to obtain 15 different miRNA sequence similarity matrices and constructed 15 prediction
models. The performance comparison of the prediction models based on different charac-
teristics and similarity calculation methods is shown in Figure 2. The overall prediction
performance of the model for calculating sequence feature similarity based on the Pearson
correlation coefficient was better than the other two similarity calculation methods. This
type of model obtained the optimal values in AUC, ACC, precision, and F1-score, and had
obvious advantages over the other two similarity algorithms. Comparing the performance
of the model based on five features, we found that the performance of the model based on
K-mer and CKSNAP was better than the other models. Considering that AUC could more
comprehensively evaluate model performance, the model based on CKSNAP sequence
features and the Pearson similarity calculation method obtained the highest AUC value
among the 15 models. In addition, this model was also better than other models in ACC,
precision, and F1 scores.
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Based on the comparison and analysis of model performance based on single fea-
tures, we proposed prediction models based on combined features, hoping to enhance
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the expression ability of nodes by embedding multiple features on a single node. Here,
we combined the five features in pairs to obtain 10 combined features and used different
similarity calculation methods to build 30 different prediction models based on these com-
bined features. In order to compare the performance of the two types of models more
intuitively, we classified these two types of models and calculated their average scores on
each evaluation indicator and drew the prediction performance based on single-feature
and double-feature models, as shown in Figure 3. We noticed that the evaluation indicators
of models based on combined features were lower than those of the models based on single
features. We speculate that this is because the dimensions of the combined features were
too high. Embedding more feature information into a single node also introduced too
much noise and redundant information, which led to model instability in the subsequent
experimental process, resulting in a decline in prediction performance.
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In addition, we also found that the score of the models based on combined features
depended on the score of the models based on single features. Here, we selected six groups
of models for display, as shown in Figure 4. It can be seen that the models based on single
features were better than the models based on combined features in AUC, Acc, Prec, and
F1-score. In Figure 4, the gray columns are mostly located below the other two columns.
The recall rate of models based on combined features in individual groups is higher. The
reason for this is that the combined features enrich the information range, which leads to
the improvement of recall rate. Combined features could enrich the information contained
in a single node, which would make the coverage of information and the construction of
relationship structure in the whole network more comprehensive, resulting in the improve-
ment of Recall. However, due to the high dimensions of the feature vector and too much
noise information on a single node, other evaluation indicators would decline.

Based on this, the subsequent experiments focused on performance optimization
based on single-feature models. In a preliminary study, we set project dimension to E = 256
and set encoder layers to L = 2.
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Figure 4. Example diagram of dependence of dual feature models on single feature models.
(a) is a comparison between the Pearson correlation coefficient model based on Moran feature
(blue), the Pearson correlation coefficient model based on CKSNAP feature (dark orange) and the
Pearson correlation coefficient model based on Moran+CKSNAP combined feature (gray). (b) is a
comparison between the Euclidean distance model based on Moran feature (blue), the Euclidean
distance model based on Geary feature (dark orange) and the Euclidean distance model based on
Moran+Geary combined feature (gray). (c) is a comparison between the Euclidean distance model
based on Geary feature (blue), the Euclidean distance model based on NMBroto feature (dark or-
ange) and the Euclidean distance model based on Geary+NMBroto combined feature (gray). (d) is a
comparison between the Pearson correlation coefficient model based on Kmer feature (blue), the Pearson
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correlation coefficient model based on CKSNAP feature (dark orange) and the Pearson correlation
coefficient model based on Kmer+CKSNAP combined feature (gray). (e) is a comparison between
the cosine similarity model based on Kmer feature (blue) and the cosine similarity model based
on CKSNAP feature (yellow) and the cosine similarity model based on Kmer+CKSNAP combined
feature (gray). (f) is a comparison between the Euclidean distance model based on Kmer feature
(blue), the Euclidean distance model based on Moran feature (dark orange) and the Euclidean distance
model based on Kmer+Moran combined feature (gray).

3.3. Effects of Projection Dimension and Encoder Layers on Model Performance

Here, we used the model based on CKSNAP features and the Pearson similarity
calculation method to study the influence of projection dimension and encoder layers on
prediction performance, changing the number of projection dimensions and encoder layers
to obtain the scores of different models on five evaluation indicators. Different projection
dimensions will affect the expression ability of nodes. Changing the number of encoder
layers can adjust the learning degree of neural networks to node feature information. As
can be seen from Figure 5a, with an increase in projection dimensions, the recall rate of the
model fluctuated greatly, and the change in F1 score was not obvious. The accuracy score
increased significantly with the increase of projection dimensions but dropped sharply
when the projection dimension, E, was greater than 256. According to Figure 5b, with an
increase in encoder layers, the evaluation indexes of the model showed a downward trend
as a whole; especially after L > 6, the indexes of the model declined sharply.

3.4. Performance Evaluation and Comparative Analysis of Related Models

Here, we marked the top five models in each evaluation indicator and screened out
the models with two or more markers to obtain the results shown in Figure 6. Considering
that Acc was greatly affected by the proportion of positive samples in the sample set, Acc
was not taken as the primary evaluation indicator. Precision and recall provide a single
view of the performance, whereas F1 score provides a more comprehensive view of the
performance and therefore was used for model evaluation. Therefore, considering AUC
and F1 score, we noted that the model with project dimensions E = 64 and encoder layer
L = 6 had better performance in all aspects. The receiver operating characteristic curve for
the 5-fold cross validation experiment is shown in Figure 7. At the same time, the ROC
curve of each fold can be seen in Figure S1.

In order to further evaluate the performance of this model, we compared it with six re-
lated models (PBMDA [36], LLCMDA [37], EDTMDA [38], GBDTLR [20], MCLPMDA [39],
GAEMDA [40]) for comprehensive evaluation. Considering that different studies used
different evaluation indicators, only the AUC value that could comprehensively evaluate
the performance of the model was selected for comparative analysis. Our study selected
the optimal AUC recorded in each paper for comparison, as shown in Table 1. Among the
seven models, our model obtained the highest AUC value, which was 0.15% higher than
the AUC value of the model with the second highest, GAEMDA.

Table 1. Comparative analysis of our model and related models.

Model AUC (%)

PBMDA 91.72
LLCMDA 91.90
EDTMDA 91.92
GBDTLR 92.74

MCLPMDA 93.20
GAEMDA 93.56
Our Model 93.71



Genes 2022, 13, 1759 14 of 20
Genes 2022, 13, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 5. (a) Effects of different projection dimensions on model performance; (b) influence of dif-
ferent encoder layers on model performance. 

3.4. Performance Evaluation and Comparative Analysis of Related Models 
Here, we marked the top five models in each evaluation indicator and screened out 

the models with two or more markers to obtain the results shown in Figure 6. Considering 
that Acc was greatly affected by the proportion of positive samples in the sample set, Acc 
was not taken as the primary evaluation indicator. Precision and recall provide a single 
view of the performance, whereas F1 score provides a more comprehensive view of the 
performance and therefore was used for model evaluation. Therefore, considering AUC 
and F1 score, we noted that the model with project dimensions E = 64 and encoder layer 
L = 6 had better performance in all aspects. The receiver operating characteristic curve for 
the 5-fold cross validation experiment is shown in Figure 7. At the same time, the ROC 
curve of each fold can be seen in Figure S1. 

Figure 5. (a) Effects of different projection dimensions on model performance; (b) influence of
different encoder layers on model performance.

3.5. Case Studies

In recent years, more and more research has shown that the mutation or abnormal
expression of miRNA causes many human diseases [41,42]. In order to further evaluate
the performance of our prediction algorithm, three neoplasm diseases were selected for
independent case studies—lung neoplasm, esophageal neoplasm, and kidney neoplasm—
as it done in the reported method using the same dataset. We deleted the specific diseases
of the case study from the training samples to remove bias from the experiments. We used
the remaining miRNAs and diseases to construct test samples and ranked them according
to the prediction scores. We compared the top 50 prediction results with the dbDEMC
databases to obtain the prediction results.
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Lung neoplasm is a malignant neoplasm disease occurring in lung parenchyma and
stroma [43]. Lung cancer is one of the diseases with the fastest growth rate of morbidity
and mortality. It has become the most common cause of death in malignant tumors;
the prediction results of our model for miRNA related to lung neoplasm are shown in
Table 2. It can be seen that 47 of the top 50 miRNAs could be verified in the dbDEMC
database. Esophageal neoplasm is a malignant neoplasm disease that occurs in esophageal
epithelial tissue [44–46]. Approximately 300,000 people die of esophageal cancer every
year in the world. China is one of the high incidence areas of esophageal cancer in the
world; the prediction results of our model for miRNA related to esophageal neoplasm
are shown in Table 3. It can be seen that 47 of the top 50 miRNAs could be verified in
the dbDEMC database. Kidney neoplasm is a common neoplasm disease in the urinary
system. The pathological structure of kidney neoplasm is complex, and the cause of disease
is variable [47]. Finding a new entry point for diagnosis is of great significance for the
timely targeting of patients. The prediction results of our model are shown in Table 4. It
can be seen that 37 of the top 50 miRNAs could be verified in the dbDEMC database.
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Table 2. Lung neoplasm associated miRNA Top 50 predicted by hmdd v3.2.

miRNA dbDEMC miRNA dbDEMC

hsa-mir-586 Confirmed hsa-mir-329-5p Confirmed
hsa-mir-208b-5p Confirmed hsa-mir-1264 Confirmed
hsa-mir-376b-5p Confirmed hsa-mir-618 Confirmed
hsa-mir-3613-5p Confirmed hsa-mir-599 Confirmed
hsa-mir-4775 Confirmed hsa-mir-517c-3p Unconfirmed
hsa-mir-544a Confirmed hsa-mir-384 Confirmed
hsa-mir-450a-5p Confirmed hsa-mir-581 Confirmed
hsa-mir-376c-5p Confirmed hsa-mir-578 Confirmed
hsa-mir-376a-5p Confirmed hsa-mir-19b-2-5p Confirmed
hsa-mir-190a-5p Confirmed hsa-mir-552-5p Confirmed
hsa-mir-875-5p Confirmed hsa-mir-5590-5p Confirmed
hsa-mir-3682-5p Confirmed hsa-mir-450a-1-3p Confirmed
hsa-mir-302f Confirmed hsa-mir-454-5p Confirmed
hsa-mir-5586-5p Confirmed hsa-mir-942-5p Confirmed
hsa-mir-450b-5p Confirmed hsa-mir-548l Confirmed
hsa-mir-576-5p Confirmed hsa-mir-548k Confirmed
hsa-mir-4295 Confirmed hsa-mir-1185-5p Confirmed
hsa-mir-1282 Confirmed hsa-mir-548am-5p Confirmed
hsa-mir-5009-5p Confirmed hsa-mir-613 Confirmed
hsa-mir-655-5p Confirmed hsa-mir-1248 Confirmed
hsa-mir-16-2-3p Confirmed hsa-mir-544b Confirmed
hsa-mir-548d-5p Confirmed hsa-mir-3913-5p Confirmed
hsa-mir-1179 Confirmed hsa-mir-548c-5p Confirmed
hsa-mir-876-5p Confirmed hsa-mir-570-5p Unconfirmed
hsa-mir-1206 Unconfirmed hsa-mir-651-5p Confirmed
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Table 3. Esophageal neoplasm associated miRNA Top 50 predicted by hmdd v3.2.

miRNA dbDEMC miRNA dbDEMC

hsa-mir-1179 Confirmed hsa-mir-450b-5p Confirmed
hsa-mir-1206 Confirmed hsa-mir-4775 Confirmed
hsa-mir-1264 Confirmed hsa-mir-493-5p Confirmed
hsa-mir-1282 Confirmed hsa-mir-495-5p Confirmed
hsa-mir-135a-5p Confirmed hsa-mir-5009-5p Confirmed
hsa-mir-136-5p Confirmed hsa-mir-517c-3p Confirmed
hsa-mir-16-2-3p Confirmed hsa-mir-544a Confirmed
hsa-mir-190a-5p Confirmed hsa-mir-545-5p Confirmed
hsa-mir-196a-5p Confirmed hsa-mir-548d-5p Confirmed
hsa-mir-199b-5p Confirmed hsa-mir-552-5p Unconfirmed
hsa-mir-19b-2-5p Confirmed hsa-mir-5586-5p Confirmed
hsa-mir-202-5p Confirmed hsa-mir-5590-5p Confirmed
hsa-mir-208b-5p Confirmed hsa-mir-576-5p Confirmed
hsa-mir-29a-5p Confirmed hsa-mir-578 Confirmed
hsa-mir-329-5p Unconfirmed hsa-mir-581 Confirmed
hsa-mir-3613-5p Confirmed hsa-mir-586 Confirmed
hsa-mir-3682-5p Confirmed hsa-mir-599 Confirmed
hsa-mir-376a-2-5p Confirmed hsa-mir-618 Confirmed
hsa-mir-376a-5p Confirmed hsa-mir-655-5p Confirmed
hsa-mir-376c-5p Confirmed hsa-mir-7-5p Confirmed
hsa-mir-384 Confirmed hsa-mir-875-5p Confirmed
hsa-mir-4295 Confirmed hsa-mir-876-5p Confirmed
hsa-mir-4423-5p Confirmed hsa-mir-95-5p Confirmed
hsa-mir-450a-1-3p Unconfirmed hsa-mir-9-5p Confirmed
hsa-mir-450a-5p Confirmed hsa-mir-29b-1-5p Confirmed

Table 4. Kidney neoplasm associated miRNA Top 50 predicted by hmdd v3.2.

miRNA dbDEMC miRNA dbDEMC

hsa-mir-105-5p Confirmed hsa-mir-449a Confirmed
hsa-mir-1179 Confirmed hsa-mir-449c-5p Confirmed
hsa-mir-1204 Confirmed hsa-mir-4775 Confirmed
hsa-mir-1244 Confirmed hsa-mir-4795-5p Unconfirmed
hsa-mir-1264 Confirmed hsa-mir-517c-3p Confirmed
hsa-mir-1267 Confirmed hsa-mir-5193 Unconfirmed
hsa-mir-1282 Confirmed hsa-mir-520h Unconfirmed
hsa-mir-1284 Confirmed hsa-mir-543 Confirmed
hsa-mir-1322 Confirmed hsa-mir-548c-5p Unconfirmed
hsa-mir-135b-5p Confirmed hsa-mir-5692b Unconfirmed
hsa-mir-136-5p Confirmed hsa-mir-576-5p Confirmed
hsa-mir-147b-5p Unconfirmed hsa-mir-577 Confirmed
hsa-mir-149-5p Confirmed hsa-mir-586 Confirmed
hsa-mir-18b-5p Confirmed hsa-mir-606 Confirmed
hsa-mir-202-5p Confirmed hsa-mir-616-5p Confirmed
hsa-mir-212-5p Confirmed hsa-mir-626 Unconfirmed
hsa-mir-23c Confirmed hsa-mir-633 Confirmed
hsa-mir-3120-5p Unconfirmed hsa-mir-644a Unconfirmed
hsa-mir-3149 Confirmed hsa-mir-645 Confirmed
hsa-mir-32-5p Unconfirmed hsa-mir-764 Unconfirmed
hsa-mir-340-5p Confirmed hsa-mir-889-5p Unconfirmed
hsa-mir-3662 Confirmed hsa-mir-934 Confirmed
hsa-mir-3682-5p Unconfirmed hsa-mir-942-5p Confirmed
hsa-mir-4295 Confirmed hsa-mir-943 Confirmed
hsa-mir-4443 Confirmed hsa-mir-944 Confirmed
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4. Conclusions

In the present study, we used a variety of miRNA sequence features to better re-
tain the sequence similarity information between miRNAs and used a disease–miRNA
bipartite graph to mine for potential deeper association information between miRNAs
and diseases. Under a 5-fold cross validation, the experimental results showed that the
prediction performance of the prediction algorithm based on combined features was not as
good as that based on single features, and there was a dependency between the prediction
score based on combined features and the prediction model based on corresponding single
features. We used this model for case study verification, and the prediction results of
three specific tumors also achieved a good hit rate. Therefore, our research is helpful for
researchers to quickly and effectively study the relationship between miRNAs and diseases
and plays a guiding role in research. It can save time and the cost of wet experiments to
find disease-relevant miRNAs. This method can be used to predict the miRNA associated
with a disease, and then perform wet experiment verification. Alternatively, there are
results from wet experiments, and the method could be used to provide a confidence to
refer to in experimental results. However, the analysis and discussion described in this
paper is only a small part of the research on the correlation between miRNAs and disease,
and there are more questions to be explored. For example, it could be useful to embed
more biological information in the structural association between disease and miRNA. For
example, when calculating the sequence similarity of miRNAs, we can consider introducing
the functional similarity of miRNAs, the MISIM network, and the correlation information
between miRNAs and proteins. Further work can focus on finding methods that can obtain
deep-seated network structure information without affecting the prediction performance
of the model. Finally, considering that the regulatory mechanisms of miRNA in many
complex diseases also play an important role in miRNA–disease associations, the analysis
of model performance combined with physiological influencing factors is expected to
improve future experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13101759/s1, Figure S1. Receiver operating character-
istic curve for each fold experiment. The source code can be downloaded from http://public.
aibiochem.net/DNA_RNA/Genes_Human-miRNA-disease-Associations/code.zip (accessed on 1
January 2022).
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