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Abstract: Background: Up frameshift protein 1 (UPF1) is a key component of nonsense-mediated
mRNA decay (NMD) of mRNA containing premature termination codons (PTCs). The dysregulation
of UPF1 has been reported in various cancers. However, the expression profile of UPF1 and its
clinical significance in clear cell renal cell carcinoma (ccRCC) remains unclear. Methods: In order
to detect UPF1 expression in ccRCC and its relationship with the clinical features of ccRCC, bulk
RNA sequencing data were analyzed from The Cancer Genome Atlas (TCGA), Gene Expression
Omnibus (GEO) and ArrayExpress databases. The impact of UPF1 on the immune microenvironment
of ccRCC was evaluated by multiple immune scoring algorithms to identify the cell groups that
typically express UPF1 using ccRCC single cell sequencing (scRNA) data. In addition, genes co-
expressed with UPF1 were identified by the weighted gene correlation network analysis (WGCNA),
followed by KEGG and Reactome enrichment analysis. A series of functional experiments were
performed to assess the roles of UPF1 in renal cancer cells. Finally, pan-cancer analysis of UPF1 was
also performed. Results: Compared with normal tissues, the expression levels of UPF1 mRNA and
protein in tumor tissues of ccRCC patients decreased significantly. In addition, patients with low
expression of UPF1 had a worse prognosis. Analysis of the immune microenvironment indicated
that UPF1 immune cell infiltration was closely related and the ccRCC scRNA-seq data identified
that UPF1 was mainly expressed in macrophages. WGCNA analysis suggested that the functions of
co-expressed genes are mainly enriched in cell proliferation and cellular processes. Experimental tests
showed that knockdown of UPF1 can promote the invasion, migration and proliferation of ccRCC
cells. Lastly, pan-cancer analysis revealed that UPF1 disorders were closely associated with various
cancer outcomes. Conclusions: UPF1 may play a tumor suppressive role in ccRCC and modulate
the immune microenvironment. The loss of UPF1 can predict the prognosis of ccRCC, making it a
promising biomarker and providing a new reference for prevention and treatment.

Keywords: UPF1; clear cell renal cell carcinoma; immune microenvironment; bioinformatics; pan-cancer

1. Introduction

Renal cell carcinoma (RCC) accounts for about 2% of all malignant tumors in the
world and is the tumor with the highest mortality rate of urogenital tumors [1,2]. The most
common type of RCC is the clear cell renal cell carcinoma (ccRCC), accounting for around
75% of all renal malignancies [3]. Surgical resection is the most effective strategy for the
treatment of ccRCC. Unfortunately, distant metastases are already present in 25% to 30% of
newly diagnosed ccRCC patients [4]. Therefore, exploring the potential molecular mecha-
nism of ccRCC progress and developing effective diagnostic and prognostic biomarkers
are crucial for accurate early diagnosis, improved prognosis, and rational individualized
treatment strategies.
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Recently, the role of up-frameshift protein 1 (UPF1) in tumorigenesis has been widely
investigated. As a central protein required for the nonsense-mediated mRNA degradation
pathway (NMD), UPF1 selectively recognizes and degrades mRNAs with premature ter-
mination codon (PTC)-containing transcripts (PTCs) via a complex set of NMD factors to
halt translation, thus protecting cells from aberrant toxic transcripts [5]. Several studies
have indicated that UPF1 is downregulated and related to poor prognosis in pancreatic
adenosquamous carcinoma (PASC) [6], hepatocellular carcinoma (HCC) [7], gastric cancer
(GC) [8], inflammatory myofibroblastic tumors (IMT) [9], thyroid cancer (TC) [10], ovarian
cancer (OC) [11] and glioma [12]. Controversially, UPF1 was also found highly expressed
in glioblastoma and lung adenocarcinoma [13,14]. Notably, the relationship between UPF1
and renal cancer has not been discussed so far.

In this study, we identified that UPF1 has low expression in ccRCC and its lower
expression level can predict poorer prognosis of ccRCC patients according to a set of bioin-
formatic analyses. Further, cellular experiments proved that knockdown of UPF1 enhanced
the invasion, migration, and proliferation abilities in renal cancer cell lines. Western blot
assay showed that the phosphorylated AKT protein increased after UPF1 knockdown.
Additionally, a close relationship between UPF1 expression level and tumor immune mi-
croenvironment was explored by analyzing the GSE data of ccRCC single cell sequencing
(scRNA). Finally, the co-expressed genes of UPF1 and their roles in oncogenesis were also
identified through a pan-cancer analysis. The framework of our study is illustrated in
Figure 1.



Genes 2022, 13, 2166 3 of 18

1 
 

 
Figure 1. The flow-process diagram of the current study. (I) Expression analysis. (II) UPF1-related
immune characteristics. (III) Co-expression genes analysis. (IV) Experimental validation and explo-
ration. (V) Pan-cancer analysis of UPF1. ** p < 0.01 and *** p < 0.001
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2. Materials and Methods
2.1. Data Acquisition

The transcriptomic and clinical data of ccRCC patients were obtained from The Can-
cer Genome Atlas (TCGA-KIRC, www.cancer.gov/tcga, accessed on 10 August 2022).
The microarray expression data (GSE53757 [15] and GSE40435 [16]) and scRNA-seq data
(GSE159115 [17]) of ccRCC were obtained from the Gene Expression Omnibus (GEO,
www.ncbi.nlm.nih.gov/geo/, accessed on 10 August 2022) database, and gene expression
and clinical data of external ccRCC cohort were acquired from ArrayExpress: MTAB-1980
(https://www.ebi.ac.uk/arrayexpress, accessed on 10 August 2022).

2.2. Single-Cell RNA Sequencing Data Preprocessing

Single-cell RNA sequencing (scRNA seq) data were processed by the R package “Seu-
rat” [18]. Seurat objects were created for each sample with using the ‘CreateSeuratObject’
function. Cells with a high mitochondrial gene percentage of >15%, and gene number
detection <300 or >5000 were considered low-quality cells and discarded. Then, the “Nor-
malizeData” package was employed to normalize the data, and the ‘FindVariableFeatures’
function was performed to identify the highly variable genes. Subsequently, we determined
the different cell types with default parameters, and cells were clustered using the ‘Find-
Clusters’ function into 26 different cell clusters, which were then visualized using UMAP.
We identify differentially expressed genes (DEGs) in each cluster via the ‘FindAllMarkers’
function. Finally, a few classical markers of cell subset definition were obtained from
previous studies [19,20] and manually annotated according to marker expression.

2.3. UPF1 Expression Analysis and Survival Analysis

The expression values were processed and normalized using the published pro-
tocols [21]. The expression levels of mRNA UPF1 were examined in TCGA and GEO
cohorts, and divided into two groups based on the median expression: the high UPF1
expression group and the low UPF1 expression group. Then, the Kaplan-Meier survival
curves were analyzed by the R package “survival”. The differentially expressed genes
(DEGs) between the high UPF1 expression and low UPF1 expression group were screened
out using the R package “DESeq2”. Furthermore, an online tool called Metascape [22]
(https://metascape.org/, accessed on 15 August 2022) was utilized to perform functional
enrichment analysis on upregulated DEGs in the high UPF1 group and DEGs upregulated
in low UPF1 groups. The data of mutations were downloaded and visualized through the
“maftools” package [23].

2.4. Immunological Features of the TME in ccRCC

To explore the relationship between UPF1 and the tumor microenvironment (TME),
we systematically analyzed the immunomodulators, inhibitory immune checkpoints, and
immune cells in ccRCC samples. Briefly, we summarized and analyzed 122 immunomodu-
lators (chemokines, immune stimulators, MHCs, and receptors) [24]. Then, we used seven
distinct algorithms (ssGSEA, EPIC, MCP-counter, xCell, quanTIseq, CIBERSORTx, and
TIMER) [25–31] to determine the level of tumor-infiltrating immune cells (TIICs) infiltration
in the TME. Furthermore, the immune-related pathway from the Immport database [32]
(http://www.immport.org, accessed on 15 August 2022) and the Reactome [33] pathways
activities between the high UPF1 expression group and low UPF1 expression group were
compared by the R package “GSVA” [34].

2.5. Weighted Gene Co-Expression Network Analysis (WGCNA)

In order to explore the correlation between gene modules and UPF1 expression status
in the TCGA and GEO cohorts [35], the R package “WGCNA” was used to construct gene
co-expression networks. The independent GEO datasets GSE53757 and GSE40435 were
merged utilizing the R package “inSilicoMerging” [36], and then the “sva” R package was
used to perform batch correction on the merged data to adjust batch effects in the microarray

www.cancer.gov/tcga
www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress
https://metascape.org/
http://www.immport.org
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expression data [37], and the merged microarray was employed for WGCNA. A power of
β = 5 (scale-free R2 = 0.88) in the GEO cohort and a power of β = 16 (scale-free R2 = 0.85)
were selected as soft-threshold parameters to ensure unsigned scale-free co-expression gene
networks. The module with the highest correlation coefficient and the most significant
p value was determined as the key module, and genes in the key module were selected
for further analysis. Then, the online tool Metascape was employed to perform KEGG
and Reactome functional enrichment analysis between key modules in the TCGA and
GEO cohort. Lastly, by overlapping the key module genes in the TCGA and GEO cohorts,
UPF1-related co-expression genes were identified and their expression pattern and GO
functions were explored using the R package “clusterProfiler” [38].

2.6. Analysis of UPF1 in Pan-Cancer

TCGA provided expression data and corresponding clinical information for 31 types
of cancer. The expression status of UPF1 was analyzed and visualized by GEPIA2 [39]
(http://gepia2.cancer-pku.cn/, accessed on 15 August 2022). Then, we investigated the
correlation between UPF1 expression levels and patients’ survival for each cancer type [40].

2.7. Patients and Samples

Ten cases of snap-frozen ccRCC tissues and their corresponding adjacent non-tumor
specimens were collected from the Tumor Resource Bank of Sun Yat-sen University Cancer
Center (SYSUCC) and stored at −80 ◦C before qRT-PCR assay. Additionally, 10 formalin-
fixed, paraffin-embedded primary ccRCC specimens obtained from the Department of
Pathology in SYSUCC were used for the immunohistochemistry (IHC) assay. There was no
radiotherapy or chemotherapy before biopsy sampling in any of the patients. This study
was performed with the approval of the Ethics Committee of Sun Yat-sen University Cancer
Center (GZR2022-346).

2.8. qRT-PCR and IHC

Total RNA was extracted from 10 sets of ccRCC tissues and their adjacent non-cancer
tissues by TRIzol reagent (TIANGEN, Beijing, China). The concentration and purity of
RNA was determined with the help of UV spectrophotometer. The cDNA was ampli-
fied by reverse transcriptase. Each sample was measured in triplicate. The following
PCR primers were used for amplification: UPF1, 5′-CCTTCCCATCCAACATCTTC-3′ (for-
ward), 5′-AACATCGGTTTATCGGGTTG-3′ (reverse); GAPDH as an endogenous control,
5′-ATCAAGAAGGTGGTGAAGCAGG-3′ (forward), 5′-CGTCAAAGGTGGAGGAGTGG-3′

(reverse). The 2−∆∆CT method were used to calculated UPF1’s relative expression levels. A
rabbit anti-UPF1 antibody (1:200, Abcam, Cambridge, MA, USA) was used in IHC analyses
of UPF1. Paraffin sections were deparaffinized and hydrated in water with 3% H2O2 blocked
endogenous peroxidase. After microwave repaired, the first antibody was incubated at
37 ◦C for 1 h. The second antibody labeled with peroxidase was incubated at 37 ◦C for
45 min. Then, the colors were created with chromogenic solutions DAB [41].

2.9. Cell Culture and Transfection

The renal cancer cell lines ACHN and Caki-1 were obtained from Xinyuan Biotech
Co. Ltd. (Shanghai, China) and authenticated using short tandem repeat profiling. Cells
were cultured in RPMI-1640 (Gibco, Grand Island, NY, USA) containing 10% fetal bovine
serum (Sigma, Shanghai, China) at 37 ◦C and 5% CO2. LV3 vectors were used to clone
shRNA1 targeting UPF1. The following shRNA sequences were used: UPF1 shRNA, 5′-
CCUACCAGUACCAGAACAUTT-3′. Lipofectamine 3000 (Invitrogen, CA, USA) was used
for transfection according to the manufacturer’s guidelines.

http://gepia2.cancer-pku.cn/
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2.10. Western Blotting

The RIPA lysis buffer (Roche, Basel, Switzerland) was used to lyse cellular proteins,
and the protein concentrations were determined using BCA Protein Assay Kit (Beyotime,
Shanghai, China). The primary antibodies were incubated overnight at 4 ◦C with UPF1
(1:1000, Abcam), AKT (1:1000, CST, MA, USA) and P-AKT (1:1000, CST). Before exposure
imaging, goat anti-rabbit secondary antibodies (1:5000, Proteintech, Wuhan, China) were
incubated at room temperature for 1 h.

2.11. Cell Counting Kit-8 Assay

A CCK-8 assay (JingXin Biological Technology, Guangzhou, China) was used to
measure cell proliferation. Cells from ACHN, Caki-1, and HK2 were prepared into cell
suspensions with a density of 5 × 103 cells/mL. There were 96-well plates containing
1 × 103 cells/well, each cultured in 5% CO2 in a 37 ◦C incubator. During the second hour
of the measurement, ten microliters of CCK-8 solution was added to culture and repeated
for a total of 24, 48, 72, 96, 120, and 144 h. Microplate readers were used to measure
absorbance at 450 nm after incubation.

2.12. Migration and Invasion Assays

For in vitro migration assays, cells (4 × 104) in 200µL of serum-free medium were
seeded in the upper chambers of the Transwell plates (Corning, NY, USA) with 8 um
pores. Lower chambers were chemoattracted with FBS. After 24 h of incubation, the
cells in the upper chamber were removed. To perform in vitro invasion assays, cells
(8 × 104) were seeded in a Matrigel-coated chamber (BD Biosciences, CA, USA) with
8 mm pores present in the insert of a 24-well culture plate (BD Biosciences) and lower
chambers were chemoattracted with FBS. Upper chamber cells were removed 48 h after
incubation. Migrative and invasive cells on the lower side of the chamber were fixed with
100% methanol for 10 min and stained with crystal violet for 30 min at room temperature.
Cells were counted under a microscope in four random fields per well. Experiments were
performed three times.

2.13. Statistics

The Kaplan–Meier method was used to assess OS or FPS, and a two-sided p-value of
less than 0.05 was regarded as significant. All correlation analyses were conducted using
Spearman correlation analysis. Statistics were performed using GraphPad Prism 9.0, with
statistical significance defined as a p-value less than 0.05. Depending on the experiment,
t-tests were either paired or unpaired.

3. Results
3.1. UPF1 Has Low Expression in ccRCCs and Was Correlated with Poor Prognosis

To explore the expression and clinical correlation of UPF1 in ccRCCs, a range of
bioinformatics databases were analyzed. We found that the UPF1 expression level was
significantly lower in ccRCC tissue samples compared with normal renal tissues at the
mRNA level (Figure 2A–D). Further analysis from TCGA databases was performed via an
alluvial diagram (Figure S1), which revealed that the mRNA level of UPF1 was relatively
lower in advanced and high-grade ccRCC tissues (Figure 2E–H). In addition, ccRCC
patients with lower UPF1 expression had a poorer overall survival (OS) (Figure 2E). A
similar relationship was shown between UPF1 expression and progression-free survival
(PFS) and disease-specific survival (DSS) of patients with ccRCC based on TCGA data
(Figure 2F,G). In an external independent cohort (MTAB-1980), a similar trend was also
observed (Figure 2H).
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Figure 2. Characteristics of UPF1 expression status in ccRCC tissue samples from databases. (A) The
expression of UPF1 based on TCGA data. (B) TCGA data (paired samples) showing UPF1 expression.
(C) GEO-based expression of UPF1 (GSE53757). (D) GEO-based expression of UPF1 (GSE40435).
(E) Relationship between UPF1 expression and T stage. (F) The relationship between UPF1 expression
and Lymph node metastasis. (G) The relationship between UPF1 expression and Pathological stage.
(H) The relationship between UPF1 expression and Histologic grade. The effect of UPF1 expression
on ccRCC patients’ overall survival (I), progression-free survival (J) and disease-specific survival (K)
based on the TCGA. (L) The effect of UPF1 expression on ccRCC patients’ overall survival based on
the MTAB-1980 cohort. * p < 0.05, ** p < 0.01 and *** p < 0.001. ns: no significance.

3.2. The Effects of UPF1 in the ccRCC Tumor Microenvironment

Recently, UPF1 has been found to be closely related to the tumor immune microenvi-
ronment [42]. We next examined the relationship between the UPF1 and immune-related
characteristics in ccRCC, which indicated that UPF1 was positively correlated with a major-
ity of immunomodulators, including chemokines, immunostimulators, MHC and receptors
(Figure 3A). A positive relationship was also found between UPF1 and immune checkpoint
inhibitors, including CD274, PVR, CEACAM1, CD276 and CD200 (Figure 3B).
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Figure 3. The effects of UPF1 in the ccRCC tumor microenvironment. (A) High-UPF1 and low-
UPF1 groups of ccRCC express different immunomodulators (chemokines, receptors, MHC, and
immunostimulators). (B) Identifying the 20 inhibitory immune checkpoints associated with UPF1.
(C) Immune cells characteristics in ccRCC of high-UPF1 and low-UPF1 groups: The outermost ring
represented the correlations between immune cell infiltration levels and UPF1 expression levels; The
second outer ring represented the p values of correlation coefficients; The third and fourth outer
rings represented the median infiltration level of immunocytes in high-UPF1 group and low-UPF1
group; The fifth and sixth outer ring represented the p value of differences between immunocyte
infiltration levels between high-UPF1 and low-UPF1 groups. The inner ring represented the according
algorithms that we employed.

To further investigate the relationship between UPF1 and immunocyte infiltration, the
ssGSEA, EPIC, MCP-counter, xCell, quanTIseq, CIBERSORTx and TIMER algorithms were
employed to compute the levels of diverse types of immunocytes base on TCGA-KIRC
data. A total of 148 cell type indexes were evaluated, and significant correlations were ob-
served between UPF1 and most immunocytes. Interestingly, more T cells and macrophage
infiltration was found in the high-UPF1 group (Figure 3C). Distinct pathway activity was
identified by “GSVA”. For pathways from the Immport database, cytokine_receptors, TGF-
β_family_member_receptor and TCR signaling pathways were activated in the high-UPF1
group, while interferons, interleukins, interferon_receptor, antimicrobials and chemokines-
related pathways were activated in the low-UPF1 group (Figure 4A). Reactome data showed
higher pathway activity in the high-UPF1 group than in the low-UPF1 group for pathways
from the database (Figure 4B).
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Figure 4. (A) Comparing high-UPF1 and low-UPF1 groups in terms of pathway enrichment. (B) Com-
paring high-UPF1 and low-UPF1 groups in terms of Reactome pathway enrichment. (C–F) Immune
cell type-specific expression of UPF1 in ccRCC.

In order to specify the immune cell types expressing UPF1, we analyzed the ccRCC
scRNA sequencing data. After the data were normalized (Figure S2), the cells were clustered
into immune cells and non-immune cells (Figure 4C,D). Immune cells were divided into five
sub-clusters, in which macrophages were the major cell type expressing UPF1 (Figure 4E,F).

3.3. Screen Key Modules and Co-Expression Genes of UPF1

Gene co-expression networks were constructed based on TCGA and GEO cohorts to
identify genes associated with UPF1 in ccRCC patients (Figure S3). For the merged GEO
data, batch effects were corrected (Figure S4). A total of 30 modules were identified in
the GEO cohort, and 16 modules were identified in the TCGA cohort. Among them, we
found that the light-yellow module in the TCGA cohort and yellow module in the GEO
cohort were most statistically correlated with UPF1 groups (Figure 5A). Then, the genes
in these two key modules were subjected to the Metascape tool for KEGG and Reactome
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enrichment analysis, and we found that these modules were both enriched in pathways
involving cell proliferation and cellular processes, i.e., signaling by WNT and endocytosis
pathways (Figure 5B).
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Subsequently, by taking the intersection of genes in the two key modules, ten UPF1-
related co-expression genes (MMS19, CABIN1, GOLGA2, ASXL1, TNPO2, BSDC1, AP2A2,
TRIM56, DCTN1, and ACTN4) were identified (Figure 6A), and the expression levels of
these genes were found to be significantly positively correlated with UPF1 (Figure 6B).
Lastly, we identified 20 GO terms that these genes were involved in, which include micro-
tubule nucleation and the peroxisome proliferator activated receptor signaling pathway
(Figure 6C).

3.4. Experiments to Validate the Expression and Functions of UPF1

The qRT-PCR results from 10 paired ccRCC samples collected from our Cancer Center
showed that UPF1 expression was significantly lower in cancer tissues than in normal
kidney tissues (p < 0.05) (Table S1, Figure 7A). These results were consistent with those
obtained from bioinformatics analysis. IHC in paraffin-embedded tumor samples from
10 ccRCC patients also showed that UPF1 protein staining was relatively weaker in the tu-
mor cells compared with that in the adjacent non-tumor kidney tissues (Table S1, Figure 7B).
Furthermore, CCK8 assay indicated that UPF1 knockdown significantly enhanced the pro-
liferation of ACHN and Caki-1 cell lines (Figure 7C,D). Moreover, after knockdown of UPF1,
the migration and invasion capacities of the ACHN and Caki-1 cells were also dramatically
enhanced (Figure 7E,F). We also knocked out UPF1 in the normal renal epithelial cell
lines HK2, and the CCK8 increment curve suggested that the knockdown of UPF1 would
also promote the proliferation of the normal renal cell line (Figure S5). In summary, our
results showed that UPF1 might inhibit the proliferation, migration and invasion abilities
of renal cancer cells. PTEN regulation was detected in the enrichment analysis of UPF1
co-expression genes. Since PTEN is the key upstream regulator of the AKT signalling
pathway, we conducted a Western blot assay and found that the phosphorylated form of
AKT obviously increased, suggesting the activation of the AKT signal pathway after UPF1
knockdown in ACHN and Caki-1 cells (Figure 7G,H).

3.5. Analysis of UPF1 in Pan-Cancer

The GEPIA2 analysis results suggested that UPF1 show low expression in various
tumors including Kidney Clear Cell Carcinoma (KIRC), Lung Adenocarcinoma (LUAD),
Ovarian Cancer (OV), Melanoma (SKCM) and Testicular Cancer (TGCT) (Figure 8A). Pan-
cancer cohorts in the TCGA datasets were divided into the high UPF1 group and low
UPF1 group, according to the median value of UPF1 expression. The results showed that
compared with high expression of UPF1, low expression of UPF1 was associated with a
poor prognosis in most cancers, including disease specific survival (DSS), overall survival
(OS) and progression free interval (PFI) (Figure 8B).
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Figure 7. Experimental validation of the role of UPF1 in ccRCC cells. (A) qRT-PCR results of UPF1
expression in normal kidney and ccRCC tissues. (B) UPF1 protein was strong positive in adjacent
nontumor tissues and weak in ccRCC tissues. (C) Western blots confirmed the changes in UPF1
expression. (D) The proliferation ability of ACHN and Caki-1 cells was measured by the CCK8 assay
after transfecting UPF1 shRNA. The migration (E) and invasion (F) of ACHN and Caki-1 cells were
performed in the control group and the si-UPF1 group. (G,H) Knockdown of UPF1 active the AKT
signal pathway in ACHN and Caki-1 cell lines. ** p < 0.01; *** p < 0.001.
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types based on UPF1 expression.

4. Discussion

NMD is an evolutionarily conserved surveillance mechanism of post-transcriptional
gene regulation in both normal and pathological processes. Aberrant transcripts containing
PTCs and mRNAs with extended 3′-UTRs are targeted by NMD for rapid elimination
to prevent the synthesis of truncated proteins that could be detrimental to the cell [43].
UPF1, an ATP-binding RNA helicase, is the core factor required for NMD in all eukaryotes.
A growing body of evidence shows that UPF1 is dysregulated in multiple tumors and
promotes cell survival during tumorigenesis [44]. UPF1 can act as a tumor suppressor
to induce apoptosis of tumor cells [45], inhibit cell proliferation [46] and weaken the cell
stemness of tumor [47]. On the contrary, UPF1 may also play an oncogenic role in cancer
by promoting proliferation, migration, invasion, apoptosis and colony-forming ability, as
well as have CSC-like characteristics [8]. However, the expression profile of UPF1 and its
role in ccRCC still remain unclear.

Our study found that UPF1 expression levels were significantly lower in ccRCC tissues
when compared with adjacent non-tumor tissues. Moreover, lower UPF1 expression was
significantly correlated with more advanced clinical stage and poorer differentiation state in
ccRCC cases. Importantly, low UPF1 expression was significantly related to worse OS, PFS
and DSS of ccRCC patients, based on multiple database analysis. To confirm the expression
level of UPF1, we collected paired ccRCC samples from our Cancer Center and performed
qRT-PCR and IHC assays, and the results were consistent with the bioinformatic analyses.

In order to investigate the potential mechanism of UPF1 in ccRCC, the GSVA algorithm
was used to screen out the most important signaling pathways by comparing Immport
and Reactome pathway activities between the low UPF1 group and the high UPF1 group,
which indicated that the high-UPF1 group was enriched in cytokine receptor interaction.
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This may suggest that UPF1 plays its anti-cancerous role through increasing the number of
cytokine receptors, as previously reported [48–50].

Next, seven independent proven algorithms were utilized to evaluate the immunocyte
proportion in each sample to comprehend the landscape of immunocyte infiltration sta-
tus of the ccRCC tumor microenvironment, and T cells and macrophages were identified
as significantly correlated with UPF1. Consistently, results from the single-cell sequenc-
ing data analysis also indicated that UPF1 was mainly expressed in the macrophages
of ccRCC patients. As previously reported, macrophages play a substantial role in im-
munomodulation [51], and a UPF1-deficiency has been reported to cause immature T cell
development [52]. All in all, UPF1 is closely related to immune cells, and further research
will help find new therapeutic targets for ccRCC. In addition, key co-expression genes
related to UPF1 were screened out by building co-expression networks, and functional
enrichment analysis implicated that they were mainly involved in the cell proliferation and
cellular processes, including the WNT and endocytosis pathways.

CcRCC cells were examined for the role of endogenous UPF1. UPF1 was silenced
in ACHN and Caki-1 cells by using specific siRNA against UPF1. A CCK8 incorporation
assay and Transwell assays confirmed that the downregulation of UPF1 promoted the
proliferation, migration and invasion of ccRCC cells. Knockdown of UPF1 in normal renal
cell line can also promote proliferation. PTEN regulation was detected in the enrichment
analysis of UPF1 co-expression genes. Since PTEN is the key upstream regulator of the AKT
signaling pathway, we conducted a Western blotting and detected that the AKT signaling
might be activated after UPF1 is knocked out. However, further experiments need to be
conducted to unveil the molecular mechanisms of UPF1 in ccRCC.

Finally, pan-cancer analysis showed that poor prognosis was associated with low
expression of UPF1. In previous studies, UPF1 was found to be significantly down regulated
in pancreatic cancer [6], hepatocellular carcinoma (HCC) [46], gastric cancer (GC) [8],
thyroid cancer (TC) [10] and glioma [12], and was verified in most cell lines of these
cancers. However, Ha and Bokhari A found that UPF1 was significantly upregulated in
LADC [14] and CRC (in MSI) [53]. We propose that there might be two main reasons for
the inconsistent expression trend of UPF1 in different cancers. Firstly, it was reported that
oxidative stress and endoplasmic reticulum (ER) stress could suppress NMD through the
phospho-eIF2α/ATF4 pathway [54]. This might explain the low expression of UPF1 in
renal cancer, which has feature enhanced oxidative stress. Secondly, tumors with high
tumor mutation burdens (TMB) tend to generate a high number of PTC-mRNAs, which
will trigger NMD and account for increased expression levels of NMD factors [53]. These
findings indicate that the expression of UPF1 is inconsistent in different cancers. However,
the mechanism of UPF1 in these cancers needs further study.

5. Conclusions

UPF1 may play a tumor suppressive role in ccRCC and is involved in the regulation
of the immune microenvironment. The loss of UPF1 can promote the progress of ccRCC,
which can be used as a promising biomarker of ccRCC and provide a new reference for
prevention and treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13112166/s1, Figure S1: Alluvial plot shows the relation-
ship between the expression of UPF1 and the clinical characteristics of ccRCC patients; Figure S2:
Normalized scRNA sequencing data for ccRCC; Figure S3: Construction of gene co expression net-
work based on TCGA and GEO queues of ccRCC; Figure S4: Correct the batch effect of ccRCC’s GEO
database; Figure S5: knocked out UPF1 in normal renal cell lines (HK2); Table S1: Characteristics for
the 24 study participants.
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