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Abstract: F-box/LR (FBXL), Leucine-rich repeats in F-box proteins, belongs to the Skp1-Cullin1-F-
box protein (SCF) E3 ligase family. FBXL genes play important roles in plant growth, such as plant
hormones, responses to environmental stress, and floral organ development. Here, a total of 518 FBXL
genes were identified and analyzed in six plant species. Phylogenetic analysis showed that AtFBXLs,
VvFBXLs, and GrFBXLs were clustered into three subfamilies (I–III). Based on the composition of
the F-box domain and carboxyl-terminal amino acid sequence, FBXL proteins were classified into
three types (Type-A/-B/-C). Whole-genome duplication (WGD) along with tandem duplications
and segmental contributed to the expansion of this gene family. The result indicates that four cotton
species are also divided into three subfamilies. FBXLs in cotton were classified into three clades by
phylogenetic and structural analyses. Furthermore, expression analyses indicated that the expression
patterns of GhFBXLs in different cotton tissues were different. The highly expressed of GH_A07G2363
in 5–8 mm anthers, indicates that this gene might play a role in the reproductive process, providing
candidate genes for future studies on cotton fertility materials. This study provides an original
functional opinion and a useful interpretation of the FBXL protein family in cotton.

Keywords: FBXL family; cotton; gene expression; phylogenetic

1. Introduction

The intracellular proteins in eukaryotes are degraded through the ubiquitin/26S protea-
some system (UPS) [1]. The substrates of UPS were recruited in the ubiquitin ligase complex
which is generated by the interaction of F-box proteins with the following: kinetochore
protein 1 suppressor (Skp1), Cullin 1 (CUL1), and Ring-Box 1 (RBX1) [2]. The 40–50 amino
acid-based F-box domain is present at the N-terminus of F-box proteins and interacts with
Skp1. The F-box proteins’ name originated from the identification of the first N-terminal
region of cyclin F [3]. The highly variable protein—protein interaction (PPI) domains such as
WD40 repeats, Kelch repeats, and Leucine-rich repeats (LRR) are present at the C-terminus
of the F-box proteins. These domains interact with their specific target molecules [4]. Several
SCF component-related F-box proteins have been identified [5,6], but the F-box protein also
functions with non-SCF complexes [7–9]. In eukaryotes such as yeast, flies, nematodes, hu-
mans, and plants, many F-box proteins have been identified in the past few years [5,6,10–14].
The subfamily “FBXL” is named for those F-box proteins which contain the LRR domain
at the C-terminus of the F-box protein and are associated with the recognition of substrate,
function, and disease association [15]. The FBXL subfamily is present in animals as well as
in plants. In mammals, FBXL2 controls the phosphatidylinositol-3-kinase (PI3K) signaling
cascade by interacting with the β-subunit of the p85 pool in the proteasomal degradation
process [16]. The FBXL2 protein also interacts with the forkhead box M1 (FoxM1) transcrip-
tion factor in gastric cancer [17], with ubiquitinates Aurora B to inhibit tumorigenesis [18].
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The over-expression of FBXL7 in mice is associated with Alzheimer’s disease [19]. These
results showed that FBXL proteins play an important role in mammals.

In plants, various kinds of FBPs have been characterized which play an important
role in regulating different cell functions like nodulation [5,6,13], cell cycle control [20–22],
photomorphogenesis [23,24], the identity of floral organs [25], self-incompatibility [26,27],
leaf senescence [28], circadian rhythms [29,30], and the stress response [31,32]. The wheat
FBXL protein “TaFBXL” interacts with the TaGPI-AP protein in the nucleus and plasma
membrane for degradation through the 26S proteasome system. It is suggested that the
TaGPI-AP protein is regulated by the TaFBXL protein [33]. In Arabidopsis, the F-box motif is
very important for vein patterning at the cotyledon because an over-expression of FBXL
produced the cotyledon with abnormal vein patterns [34]. The LRR domain in FBXL
targets the suitable substrate through PPI, which results in the degradation of ubiquitinated
proteins [35,36]. The AXR1 and HVE/CAND affect the cotyledon vein patterning through
ubiquitination [37,38]. Moreover, FBXL is only expressed in the vascular tissues suggesting
that their role may be associated with vascular tissues. The mutation in the vascular-specific
genes i.e., CVP1 and CVP2, caused the abnormal venation pattern in cotyledon [37,38].
The over-expression of the FBXL gene also exhibited an abnormal vein pattern at the
Arabidopsis cotyledon [34]. It showed that FBXL proteins have a strong association with
cotyledon vein patterning vascular tissues. Additionally, the plant-specific domain, FBD
motif, is also present at the C-terminus of the FBXL protein. Although the exact function is
unknown of the FBD motif in FBPs, FBXL proteins may be involved in the vein patterning
of cotyledon as an FBP depends on the F-box, LRRs, and FBD [34].

Cotton has a unique position among fiber-producing crops. Previously, Zhang et al.
analyzed then characterized and identified 592 F-box protein encoding genes [39]. In this
work, we present the detailed study of the F-box proteins’ subfamily FBXL in four cotton
species (Gossypium hirsutum, Gh; Gossypium barbadense, Gb; Gossypium arboreum, Ga; and
Gossypium raimondii, Gr) along with Arabidopsis thaliana (At), and Vitis vinifera (Vv). Our
results will provide the first overview of the FBXL protein family in six different plant
species which will serve as a foundation in the investigation of the FBXL function in plants
for future studies.

2. Material and Methods
2.1. Identification and Physicochemical Analysis of the FBXL Protein Family Members

This study used the same sequence database of genome and identification methods as
our previous study [40], including Gh, Gb, Ga, Gr, At, and Vv [41–45].

The original inquiry sequences were the 592 published F-box protein sequences from
G. hirsutum [46]. The FBXL genes with the F-box domain at the N-terminus and LRR at the
C-terminal were selected as the candidate gene. FBXL candidate genes were identified in
G. hirsutum, and their amino acid sequences were used as inquiry sequences to search the
homologous sequences in the protein databases of four cotton species by blastp software
(Blast+, Camacho et al., MD, USA) [47].

Furthermore, the ExPASy tool (http://web.expasy.org/, accessed on 26 September
2021) was used to analyze the physicochemical property (i.e., isoelectric point, molecular
weight, and length) of FBXLs of cotton, which were identified from the currently available
genome database. The use of the CELLO v2.5 (Yu et al., Taiwan, China) server predicated
the subcellular localization of FBXL genes [48].

2.2. Analysis of the FBXLs Conserved Motifs and Gene Structure

FBXL conserved motifs were identified using the MEME (Multiple Em for Motif
Elimination) website (http://meme-suite.org/, accessed on 1 March 2022, Bailey, et al.,
Washington, USA), where the p-value of each motif was lower than that of 1 × 10−5. FBXLs
protein domains were predicted by the SMART database (http://smart.embl-heidelberg.
de/, accessed on 1 March 2022, v2020, Letunic, et al., Heidelberg, Germany). The motif,

http://web.expasy.org/
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exon/intron structure, and conserved domain of FBXL genes in cotton were constructed by
TBtools (v1.098661, Chen et al., Guangzhou, China) [49–51].

The template file was obtained from the AlphaFold DB (AlphaFold Protein Structure
Database, https://alphafold.ebi.ac.uk, accessed on 11 May 2022, Varadi, et al., Hinxton,
UK) [52], and the SWISS-MODEL (https://swissmodel.expasy.org/, accessed on 12 May
2022, Waterhouse, et al., Basel, Switzerland) [53] was used to generate the three-dimensional
protein structure.

2.3. Sequences Alignments and Phylogenetic Analysis

The FBXL proteins’ amino acid sequences were aligned using the default parameters
of MUSCLE 3.8.31 (Robert C Edgar, CA, USA) [54]. We used MEGA 7.0 (Kumar, et al.,
Philadelphia, USA) [55] to construct the maximum likelihood (ML) tree, by finding the best
model, the bootstrap tests of 1000 replicates, the WAG + G + F model, the γ Distribution
option, and the partial deletion option.

2.4. FBXLs in Four Cotton Species Chromosome Locations and Collinearity Analysis

The TBtools software and the BLAST (basic Local Alignment Search Tool) were used to
locate the FBXL genes on the chromosomes of 4 cotton species and all the protein sequences
were incorporated into the local database [51]. The whole protein sequence was used as a
query to search the above database, and its e-value was 1 × 10−5. The results of blastp were
analyzed by MCSCAN, and a collinear block covering the whole genome was produced.
The collinear pairs belonging to the FBXL family were extracted and a collinear diagram
was drawn by the Circos and TBtools software [47,56,57].

2.5. FBXL Gene Family Duplicated Gene Pairs Calculation of Selection Pressure

Using the MEGA 7.0 and the TBtools v1.098661 software simple Ka/Ks calculator
operates according to the method published in our previous research, and finally estimated
the selection pressure of each duplicate FBXL gene pair [40,51,54,55].

2.6. Analysis of Cis-Elements Promoter Regions of GhFBXLs

The 2000 bp DNA sequences in upstream regions of GhFBXLs were obtained from
CottonFGD (https://cottonfgd.org/, accessed on 9 September 2021) as promoters [41]. We
searched and analyzed the cis-regulatory elements of the GhFBXL gene in the promoter
region through the PlantCARE website (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/, accessed on 9 September 2021) [58,59].

2.7. Analysis of GhFBXL Genes Expression

RNA-Seq data were obtained from the Cotton Omics Database (http://cotton.zju.edu.
cn/10.rnasearch.html, accessed on 15 September 2021) to analyze differentially expressed
genes under different tissues [43]. RNA-seq data were evaluated by quantitative RT-PCR
(qRT-PCR). Total RNA was extracted from roots, stems, leaves, and anthers (bud size
< 3 mm, 4–5 mm, 5–8 mm, and >8 mm) of Zhongmiansuo 100 (Gossypium hirsutum L.,
cultivated in Baibi Town, Anyang, Henan Province, China). The developmental stages of
different anthers were divided as described by Koltunow [60] and Scot [61]. All the primer
sequences are shown in Table S10. The GhActin gene was selected as the internal control
gene. The experiment was repeated 3 times, and the relative expression level of the GhFBXL
genes was calculated by the 2−∆ct method. The experimental reagents and instruments
used were referred to by Zhu et al. [40].

2.8. FBXL Proteins Gene Interaction Network Analysis

Based on the homologous genes of Arabidopsis thaliana, the multiple sequence search
of STRING network analysis was performed by STRING software (https://string-db.org/,
accessed on 19 April 2022, Szklarczyk, et al., Zurich, Switzerland) [62]. The confidence
parameter was set to 0.4 thresholds, and the interaction of the FBXL protein was analyzed.

https://alphafold.ebi.ac.uk
https://swissmodel.expasy.org/
https://cottonfgd.org/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://cotton.zju.edu.cn/10.rnasearch.html
http://cotton.zju.edu.cn/10.rnasearch.html
https://string-db.org/
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3. Results
3.1. Identification and Physicochemical Properties of FBXL Genes in Cotton

The 121, 119, 57, and 51 FBXLs genes after the blast analysis were obtained from the
genome of Gh, Gb, Ga, and Gr, respectively (Table S1). The F-box and LRR domain were
confirmed in the candidate genes through Interproscan 5 (http://www.ebi.ac.uk/interpro/,
accessed on 10 July 2021) and SMART (http://smart.embl.de/, accessed on 10 July 2021)
tools. We noticed that the tetraploid Gh contains almost double the number of FBXL genes as
its diploid parents Ga and Gr. The results suggests that mostly FBXL genes remain preserved
during polyploidization between Ga and Gr. Detailed information on physical parameters
like transcript ID, protein length (aa), location on chromosome, isoelectric point (pI), protein
weight (kDs), and predicted subcellular location of all the FBXL genes of four Gossypium
species are listed in Table S1. The molecular weight of the FBXL proteins varied from
24.53 (GH_A06G0370) to 111.067 (GH_A07G0202) kDs in Gh, from 21.61 (GB_A02G0078) to
115.04 (GB_A11G3348) in Gb from 24.65 (Ga02G0228) to 103.64 (Ga06G0927) in Ga, and from
24.62 (Gorai.003G025500) to 110.7 (Gorai.001G020200) kDs in Gri with an average molecular
weight of between 57.38~61.84 (Table S1). It can be seen that the genes in the FBXL family
have differences in their molecular weight, amino acid number, and isoelectric points, which
leads to subtle differences in the functions of genes. The predicted subcellular localization
indicates that FBXL proteins are found in almost all organelles. In addition to the nucleus
(20.69%) and plasma membrane (22.13%), other FBXL genes localize to the mitochondria,
chloroplast, cytoplasmic and extracellular organelles (Table S1).

3.2. Domain, Conserved Motif, and Gene Structure Analysis

Gene function is closely related to the domain arrangement, conserved motifs, and
gene structure. The FBXL protein family can be classified into 3 different groups based
on their functional domains in the C-terminal region (Figure 1A–C). Groups A and B of
the FBXL protein subfamily contain a different number of LRR regions at the C-terminal,
and the various LRRs accumulate together to shape the domed docking structure [63].
Group C contains LRR and plant-specific FBD domains. The FBD domain contains about
80 amino acids and its function is supposed to associate with nuclear processes [12]. We
selected three Arabidopsis orthologs genes (TIR1, FBL17, At1g13570) from Groups A, B
and C, respectively. The molecular structure file of Arabidopsis FBXL genes was downloaded
from AlphaFold, and then imported into SWISS-MODEL to build the model (Figure 1D–F).
The 3D protein structures show that one α-helix and a β-strand consisted of an LRR [64].
These three proteins are composed of different numbers of LRR; this effectively supports
the three types of our classification.

Further, in order to study the existence and conservation of homologous sequences in
the two domains, F-box and LRR or LRR/FBD, we used the online MEME tool to make
multiple sequence alignments to generate sequence logos of the two domains in the cotton
species. Among the 25 motifs identified in GhFBXL, 1 motif was found to be conserved in
22 genes of clad-I, 64 genes of clade-II, and 35 genes of clad-III (Figure 2). Motifs 1,7,10 and
17 were only found in clad-I (Figure 2). It is speculated that a certain function has been
lost in the evolutionary process. There are consistent structural domains in each category,
with semblable structural characteristics. Using the same method to analyze the motifs
of GaFBXL, and GrFBXL, they had similar motifs compared with GhFBXL, except for the
number of genes that is only about half in GhFBXL (Supplementary Figures S1 and S2).

The gene structural analysis was carried out to assess the structural evolution of each
FBXL gene in three cotton species. The presence of introns in FBXL genes ranged from 0 to
18 (Table S2). Based on introns presence, the FBXL genes can be split into four classes i.e.,
intronless, 1-intron, 2-intron, and more than 3-intron at each gene. The maximum FBXL
genes (34.9%; 80) were observed in the 2-intron class followed by the 3-intron class, which
contains 31.9 % genes. The intronless class contains the minimum number (10.5%) of intron
regions (Table S2). The distribution of exons and introns of FBXL genes are more uniform

http://www.ebi.ac.uk/interpro/
http://smart.embl.de/
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and consistent within each class. The structural differences among different FBXL classes
may be due to their unique characteristics and conservation of various components.
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(B) Gh FBXL protein Motif prediction. (C) Analysis of exon—intron and gene structure of GhFBXL
genes. (I: Grpup I; II:Group II; III: Group III).
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3.3. Phylogenetic Analysis of FBXL Genes

To elucidate the evolutionary relationship of the FBXL gene family in Gossypium
species, the maximum-likelihood approach was applied to construct the phylogenetic
tree using 1000 bootstrap replicates with AtFBXL (127), VvFBXL (43), and GrFBXL (57)
named as Group-A. The same method was used to remodel the phylogenetic tree from
GhFBXL (121), GbFBXL (119), GaFBXL (51) and GrFBXL (57), named as Group-B (Figure 3).
The phylogenetic tree analysis showed that the FBXL members were divided into three
monophyletic clades in both trees, in which FBXL family members containing the same or
similar C-terminal region fall together in one cluster. In Group-A, the number of Gh, Ga,
Gr, and Gb FBXL genes in clad-I was almost double that of those in clad-II, and clad-III,
the same distribution of At, Vv and Gr, was also observed in Group B (Table S3). The
variation in the number of FBXL distribution in each clad was found. For example, 71, 29,
and 127 FBXL members were found in clad-I, clad-II, and clad-III, respectively (Figure 3A).
The same pattern of FBXL gene distribution was also observed within the cotton species
phylogenetic tree (Figure 3B).
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analyzed regarding the phylogenetic relationship. (B) 348 FBXL genes from 4 cotton species analyzed
regarding the phylogenetic relationship. The two maximum likelihood (ML) phylogeny trees were
constructed by the MEGA 7.0 software. The bootstrap method was used and replicated 1000 times.
(I: Grpup I; II:Group II; III: Group III).

3.4. Chromosomal Location and Duplication Event of FBXL Genes

To further analyze the characteristics of the FBXL family genes, we performed a
chromosome location analysis of the four Gossypium species of the gene family and drew a
physical map of the chromosome distribution of the FBXL family genes (Supplementary
Figure S2 and Table S7). In the four Gossypium species, the FBXL family genes were
distributed on different and specific chromosomes. The number of genes on chromosomes
of Gh and Gb tended to be the same. The chromosomes D04, D09, scaffold31727_obj_D02,
and scaffold467_obj_A13 of Gh and chromosomes A09, D04, D09, and scaffold31993_obj
of Gb contain a minimum of 1 gene. Two to 8 FBXL genes in Gh and Gb range from other
chromosomes, respectively (Supplementary Figure S3). Analysis of the FBXL genes on
different chromosomes of Ga revealed that the A genome is consistent with the A genome
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chromosomes of Gh and Gb, except for chromosomes A02, A03, A04, A05, A06, A08, A09,
and A13. The distribution of the FBXL genes on chromosomes has undergone a large
number of new additions and losses. Only the number of genes on chromosomes D03, D04,
D09, D10, D11, and D12 were the same as that of the Gh and Gb D genome. There was no
correlation between chromosome length and the number of FBXL genes in the four cotton
species. These results explain the fact that longer chromosomes do not essentially contain a
maximum number of FBXL genes (Supplementary Figure S3).

Several cotton genes have been observed to be duplicated at the whole genome level
when the A-genome of Ga and the D-genome of Gr are combined to develop allotetraploid
cotton containing the AD genome. The evolution of gene families generally undergoes
three processes, namely fragment replication, whole-genome replication, and tandem repli-
cation. A joint analysis of the FBXL genes of Gh, Gb, Gr, and Ga was carried out, and the
gene duplication and collinearity between them were analyzed, which indicated that the
two tetraploid genomes of Gh and Gb are composed of two ploidy genomes (Gr and Ga)
during genetic transformation. Homologous sequences can usually be predicted by ge-
nomic collinearity analysis, and some functions of homologous sequences might be similar.
Therefore, genome-wide collinearity analysis is of great value for function prediction. The
genes connected by collinearity lines represent the same gene. Several chromosomes in
the GhAt/GhDt, GbAt/GbDt subgenome, and GaA and GrD genomes are connected by
lines of the same color, namely, the GhAt/GhDt and GbAt/GbDt subgenomes have FBXL
homologous genes in the GaA and GrD genomes (Figure 4). These findings indicate that
these genomes/subgenomes are closely related during evolution, and most of the FBXL
genes have been obtained during the evolutionary process of polyploidy. Genes located in
the same chromosome region are classified as tandem duplications (TD), while genes from
the same genome are known as whole-genome duplication (WGD)/segmental duplications
(SD). Observed were 41 FBXLs, which arepart of tandem duplicated; 152 FBXLs, which are
part of WGD/segmental duplicated, and 36 FBXLs part of other replication types among
3 cotton species (Tables S4 and S5). The tandem duplicated GaFBXL genes are located on
Chr01, Chr03, and Chr11, the GrFBXL genes on the Chr01, Chr02, Chr05, Chr07, Chr10,
and Chr 13, and the GhFBXL genes on the A01, A02, A04, A06, A07, A13, D02, D05, and
D06. It is suggested that the regularity of the tandem repetition and further verification
of the allotetraploid cotton species is derived from the evolutionary hybridization of the
diploid cotton species [57]. The number of WGD/SD FBXL genes was higher than the TD
and SD genes and our findings correlate with previous studies, which were based on the
gene duplication events in different Gh gene families [46,65].
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3.5. Ka/Ks Selective Pressure Analysis of FBXL Gene Family

The evolution dynamics of the FBXL family genes of G. hirsutum were explored through
comparative analysis of different modes of duplication. This includes the calculation of
non-synonymous substitutions/site (Ka), synonymous substitutions/site (Ks), and their
ratio (Ka/Ks) of each duplicated pair, resulting in a calculation of the divergence of cotton
FBXL gene family members. The evolution of FBXL family gene pairs of three cotton species
was carried out through the selection pressure analysis to observe whether there is selective
pressure acting on the FBXL family. In the process of evolution, the duplicated gene pair may
also deviate from its original function, which eventually leads to loss of original function
(non-functionalization), division of original function (sub-functionalization), and acquisition
of new function (new functionalization) [66]. To study whether Darwin’s positive selection
is related to FBXL gene divergence after duplication, and to determine the nature and degree
of selection pressure on these duplication gene pairs, we calculated the Ka and Ks values of
duplication gene pairs. These combinations include Gh-Gh, Gh-Gr, Gh-Ga. According to
the Ka/Ks ratio, the selection pressure of repeated gene pairs can be inferred. It is generally
believed that Ka/Ks = 1 means neutral selection (pseudogene), Ka/Ks < 1 means positive
selection effect, and Ka/Ks > 1 means purifying selection effect. A total of 80, 117, and 105
pairs of FBXL family genes in the Gh-Gh, Gh-Gr, and Gh-Ga, respectively, were observed.
The 1 pair FBXL genes in Gh-Gh, 8 pairs in Gh-Gr, and 2 pairs in Gh-Ga were under positive
selection effect while others are of purifying selection, indicating that FBXL family genes are
relatively conservative in the evolutionary process (Figure 5).
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Similarly, Gh-Gh, Gh-Gr, and Gh-Ga duplications gene pairs with Ka/Ks values from
0.99 to 0.5 were 10, 13, and 20, respectively (Table S8). The number of duplicated gene pairs
with a Ka/Ks ratio from 0.49 to 0 was 69, 96, and 83 (Table S8). Our results suggested that
these gene pairs may have undergone rapid evolution after repetition and have experienced
positive selection pressure. Since most of the Ka/Ks values were less than 1.0, we predicted
that the cotton FBXL gene family has experienced strong purification selection pressure
and limited functional differentiation after fragment replication and WGD [67] (Figure 5).

3.6. Analysis of Cis-Elements in Predicted Promoter Regions of GhFBXLs

The location in the gene promoter region of the cis-acting element can be used as
a reference for tissue specificity and stress response to different environments. The cis-
acting elements of the FBXL gene family mainly include the cis-acting regulatory elements
involved in plant growth and development, hormonal response, plant defense, and light-
responsive elements. For the sake of delve the possible managerial functions of GhFBXL
genes under hormone regulation pathways and diverse environmental stresses, the 121 GhF-
BXL genes promoter regions of 2000-bp were submitted to the online database (PlantCARE:
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 9 September
2021) for the identification of presumptive plants growth, development, abiotic stress, and
phytohormones cis-elements. To cis-elements engaged in plant development and growth,
the responded elements of light are the most abundant (39.83%) element in 121 FBXL genes

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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promoter regions (Figure 6) and were widely distributed throughout the promoter regions.
Other related cis-acting elements involved in plant development and growth include MYB,
MYB-like sequence, Myb, MYB recognition site, and Myb-binding site, occupy 17.07%.
Another category of cis-acting elements abundant in the promoter section of GhFBXL genes
was hormone-responsive elements, which the ABA-responsive and MeJA-responsive ele-
ments comprised 8.76% and 7.07% of total repeats, respectively, (Table S9). These GhFBXLs
elements were randomly spread in the promoter regions and were forecasted to participate
in plant development and growth, stress, phytohormone, and responses (Figure 6).
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3.7. Gene Expression Profiles of GhFBXLs

To infer the potential biological function of FBXLs, we investigated the expression
patterns of different FBXL genes in Gh based on the download from COTTONOMICS
(http://cotton.zju.edu.cn/, accessed on 15 September 2021) of the RNA-seq data. Gene
expression patterns showed that some GhFBXL genes such as GH_A06G0371, GH_A06G0372,
GH_A07G2522, GH_D05G1692, GH_D06G0349, GH_D07G2465, GH_A04G0512, GH_D01G0740,
GH_D02G2630, GH_D02G0090, GH_D11G3284, and GH_D13G1598 were significantly ex-
pressed during the later stage of fiber development (20 DPA: Day Post Anthesis, and 25 DPA
fibers). At 10 DPA fibers, remarkable alteration in the expression of two genes (GH_D11G3232
and GH_A06G0370) were observed. The GH_A13G1643 and GH_D05G3541 were promi-
nently expressed in ovule at 10 DPA. The two genes (GH_A07G2364 and GH_D07G2363)
display a significant expression in 20 DPA ovule. Four genes (GH_A01G0747, GH_D01G0748,
GH_A11G3047, and GH_D11G3076) were significantly expressed in roots and four genes
(GH_A06G0343, GH_D06G0328, GH_A10G0227, and GH_D10G0239) were significantly ex-
pressed in stems. Five genes (GH_A01G0749, GH_A08G2719, GH_A13G1638, GH_D08G1411,
and GH_D08G1648) were significantly expressed in anther, while the remaining GhFBXLs
were lowly expressed or had no expression (Figure 7).
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Using the RNA-seq database, we chose seven GhFBXL genes (GH_A06G0370,
GH_D01G0740, GH_D13G1598, GH_A07G2363, GH_A07G2364, GH_D07G2305, and
GH_D07G2307) in different segments to verify the expression profile of GhFBXLs by qRT-
PCR. The gene expression patterns assessed via qRT-PCR showed a semblable trend to
those measured by the RNA-seq data, exhibited in Figures 7 and 8. Amusingly, phylo-
genetic analysis indicated that Gorai.001G243000 and Gorai.001G243100 had the highest
homology with VIT 207s0141g00330 and AtFBL17(AT3G54650), belonging to subfamily I
(Figure 3A). Gorai.001G243000, Gorai.001G243100, Ga07G2428, Ga07G2429, GH_A07G2363,
GH_A07G2364, GH_D07G2305, GH_D07G2307, GB_A07G2452, GB_A07G2453, GB_D07G2423,
and GB_D07G2425 also belong to subfamily I (Figure 3B). Based on the above results,
GH_A07G2363, GH_A07G2364, GH_D07G2305, and GH_D07G2307 may have the same func-
tions as AtFBL17 (AT3G54650), participating in the growth and development of flowering
plants, such as twin sperm cell production, double fertilization, cell proliferation, and internal
replication [21,22].
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3.8. Gene Interaction Network of FBXLs

For the sake of analysis of the FBXL protein function, we used multiple sequences
(Figure 9A) and a protein family (Figure 9B) search to analyze the interaction network
by the STRING website (https://string-db.org/, accessed on 19 April 2022), based on
Arabidopsis homologous genes.

Using the method of the multiple sequences search, we found many plant hormone-
related proteins in the interaction network, such as AUX1, AXR3, EIL1, EIN3, IAA1, IAA12,
IAA14, IAA28, IAA7, IAA8, and JAZ1, among others. As an essential protein for male
fertility, FBL17 is closely related to SKP1 (S-phase kinase-associated protein 1) and UFO
(Protein UNUSUAL FLORAL ORGANS); it is also indirectly related to other plant hormones
such as auxin (Figure 9A). Using the method of the protein family multiple sequences
search, the generative cell mitosis signaling pathway (NOG243239) was discovered in
the center (Figure 9B), and other pathways that were pertinent to the phenotypes, such
as the regulation of cyclin-dependent protein serine/threonine kinase inhibitor activity
(NOG248406), suggesting that the FBXL protein plays a crucial part in the regulation of cell
cycle. Transcription factor E2F/dimerization partner (TDP) (KOG2577) was found around

https://string-db.org/
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the interaction network, a pivotal regulator of cell cycle progression [67]. It is speculated
that cotton FBL17 genes have similar roles in the cell cycle.
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4. Discussion

The LRR gene family is classified into different subfamilies such as NBS-LRR
(nucleotide-binding site leucine-rich repeat), LRR-RPs/LRR-RLPs (leucine-rich repeat
receptor/receptor-like proteins), LRR-RKs/RLKs (leucine-rich repeat receptor/receptor-
like kinases) and FBXL (F-box/LRR-repeat protein), based on the LRRs (leucine-rich repeats)
conserved domain presence at the C-terminus. The LRR domain plays a vital role in de-
fense mechanisms of plants. The main characteristics of LRR genes are the presence of a
20–30 aa structural domain. The F-box protein family is one of the biggest protein families
containing members from two in yeast to several hundred in different eukaryotes. The
bipartite structure is present in the F-box proteins [14]. Several F-box proteins such as SCF
components have been identified in the past few years. F-box proteins, on account of the
C-terminus motif, have been classified into three subfamilies i.e., the Fbw or FBXW sub-
family contains Kelch, Armadillo and the tetratricopeptide repeats domain at C-terminus,
the Fbx or FBXO subfamily had the proline-rich domain, and third Fbl or FBXL subfamily
comprises LRR domains at C-terminus of the F-box proteins [10,68].

FBXL is an important F-box subfamily and is reported in many plants such as Ara-
bidopsis (160), rice (61), M. truncatula (53), soybean (46), apple (34), chickpea (32), and maize
(16) [4,11]. Former research indicated that plant FBXLs’ mediated target proteins degraded
in hormonal signals and responded to developmental [12,69]. The FBXL gene family plays
a significant role in various aspects of plant growth, such as the hormone-related TIR1
and EBF1, EBF2 of FBXL gene family members in Arabidopsis [70–72], the growth and
development-related genes OE9, and the FBL17 control of cell cycle regulation and double
fertilization in Arabidopsis [21,22,28]. The information about the role of FBXLs in the life
cycle of the cotton plant is very limited, but before exploring the biological function of
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the FBXLs in cotton, its comprehensive genome-wide analysis is very important. Here,
we present a detailed report of the FBXL gene family in cotton in terms of its phylogeny
relationship, motif structure, gene structure, chromosome location, duplication events, and
expression analysis. Gene structure analysis of 160 Arabidopsis FBXL genes found in previ-
ous studies, screening sequences with F-box at the N-terminus and LRR at the C-terminus
and identified 127 Arabidopsis FBXL genes. The 127 Arabidopsis FBXL protein sequences
and 592 G. hirsutum F-box protein sequences were used as queries and they identified 121,
119, 57, and 51 FBXLs in Gh, Gb, Ga, and Gr, respectively (Figure 3). The C-terminus of
cotton FBXL protein also had the same pattern of the LRR domain as reported in yeast,
bacteria, animals, and plants. LRRs are present in various proteins but their function in
plant species is highly conserved. This provides a platform for specific PPI [70], which is
very significant for protein function because they recognized ligand or other compositions
of the docking pathway [73]. Phylogenetic analysis, motif structure and gene structure
analysis indicated that Arabidopsis TIR1 (AT3G62980) and cotton homologous genes were
located in the one branch and had similar gene structure. Arabidopsis FBL17 (AT3554650)
and cotton homologous genes also had semblable gene structure and were located in a
branch. We speculate that TIR1 and FBL17 in cotton may have the uniform function as
Arabidopsis thaliana, which can provide a basis for the study in the development and the
fusion of male and female gametes [21,22,71].

When comparing the FBXL genes with other studied plant species, we found that
FBXL gene numbers in G. hirsutum (121) and G. barbadense (119) are the second and third
largest after A. thaliana (127). The number of FBXL genes is species-specific but extraneous
with the genome scale. The large variation in the FBXLs among different plant species
is due to bountiful increases or losses of FBXLs. Gene loss and repetition events also
happened in the cotton genome, which results in the underrepresentation of the FBXLs in
cotton. The G. hirsutum is the best example of domesticated plant polyploidy and genome-
scale duplication because it is the hybrid product of G. raimondii and G. arboretum, but
slight gene loss also occurs during the cotton polyploidization. Previous studies suggested
that the WGD event is the main source of increase in the gene members of the family in
G. hirsutum. Comparison with the 121 FBXLs in the G. hirsutum genome, the 119 FBXLs in
the G. barbadense genome, 57 FBXLs in G. arboretum, and 51 in G. raimondii genome were
also observed (Figure 3), which suggested that slight change in FBXL family members also
occur as done for other families in the cotton genome after the evolution process from
diploid to tetraploid. Replication modes besides WGD contributed to the increase of the
FBXL members in cotton. The increase in the FBXL family members in cotton indicated that
the FBXL family is essential to enhance the different characters and adaptation of upland
cotton in response to various environmental factors.

Different PPI domains are present at the C-termini of the F-box, which is known
to interact with different substrates [4,11]. Domain analysis of the cotton FBXL genes
revealed the presence of three types of LRR domains such as a, b, and c at their C-terminus,
allowing their classification into three groups (Figure 1). In four cotton species, 46.26%
of the predicted genes were found in LRR domain, 30.46% genes contained type b, and
23.28% genes had type c domain (Table S6). Similarly, FBXL genes with FBD domains at
C-terminal were also observed in other species like chickpea (39), rice (9), and M. truncatula
(139) [4,74,75]. FBD is the plant-specific domain of F-box proteins. Although, the precise
function of the FBD domain is unknown but thought to be associated with a biochemical
process in the nucleus [74]. The cotyledon vein patterning may be associated with the
FBXL protein-containing, plant-specific FBD domain by setting the biochemical base for
the interplay between the protein with other unidentified cell components. Therefore, it is
suggested that FBXL may be correlated with cotyledon vein patterning [34].

The intron—exon arrangement of FBXL family members confirmed the presence of
10.48% intron-free genes in the gene family, which is also a prominent character of the
FBXL gene family as also observed in the Arabidopsis, rice, M. truncatula, soybean, apple,
chickpea, maize, respectively [4,11,74–78]. In addition, we observed that the intron—exon



Genes 2022, 13, 2194 15 of 19

structure of most of the subfamily members are the same (Figure 2), which suggests the
close structural relationship among the FBXL genes within the subfamily. The phylogenetic
tree among the cotton FBXL proteins was built to research the evolutionary relation. It
divides the FBXL proteins into three clades. The arrangement of the FBXL proteins through
phylogenetic analysis showed that FBXLs with semblable C-terminal domains co-evolved
as observed in other plant species. The identical domain arrangement was observed in
the members of each clade which suggested that they interact with a similar substrate for
function. A similar phylogenetic arrangement was observed in soybean [46], chickpea [74],
Arabidopsis [11], and rice [4] suggesting the gene family has a common evolutionary origin
in dicots and monocots.

The gene duplication event is a momentous source of increasing the number of fam-
ily members and variety of functions during the evolution process across chromosomal
segmental duplication or tandem duplication [79]. Erstwhile studies showed that the repli-
cation event is a significant method of gene family amplification [80]. Moreover, FBXLs’
expansion is also the consequence of the replication event. The duplication analysis of
the FBXL protein family revealed that 222 of 229 (96.94%) FBXL genes undergo a duplica-
tion event. The segmental/WGD duplication was observed in 152 genes (68.47%), while
41 (18.47%) genes arose through tandem duplication (Tables S4 and S5), suggesting that
segmental/WGD duplications influence surpassed tandem duplication in the FBXL gene
family expansion in cotton. A similar observation was also found in soybean [46], chick-
pea [74], Arabidopsis [11], and rice [4], indicating that plant genomes follow the same
mechanism for the duplication event of FBXL genes. The strong tendency for negative
selection in the F-box domain and positive selection in the C-terminal domain of the genes
was reported during the evolutionary process, which leads to the F-box domain having
sequence conservation and the C-terminal domain having sequence variation [81,82]. This
was also the cause for the remarkable variation in F-box protein length, as reported in
different plant species [80]. This may also be due to the amino acid gain or loss within the
F-box protein for resilient evolution to recognize different substrates.

In the upstream promoter region of the GhFBXL genes many cis-elements were found
that related to phytohormones signals and environmental stress, most of which were
Abscisic acid, Salicylic acid, and auxin; these are essential for the anaerobic induction
element (Figure 6 and Table S9). Cyclin-dependent protein serine/threonine kinase inhibitor
activity (NOG248406) and numerous phytohormones related proteins (such as AUX1, IAA1,
IAA12, etc.) and plant reproductive development-related protein (FBL17 and UFO), have
been found in the gene interaction network, which provides strong support for the role of
FBXL genes in growth and development [21,22,25].

5. Conclusions

In this study, we preliminarily analyzed the gene sequence, exon—intron structure,
conserved motifs, phylogenetic relationships, gene collinearity, Ka/Ks selective pressure,
and gene expression profiles of cotton FBXL genes. It laid the foundation for the study of
FBXL genes in cotton growth and development, such as floral organ development, male
and female gametophytes, and male sterility. Further research on TIR1, FBL17, and other
FBXL genes in cotton may reveal the auxin regulation mechanism and cultivate male sterile
lines in cotton.

Supplementary Materials: The following are available online at https://www.mdpi.com/xxx/s1.
Table S1: The characterization of four cotton species FBXL genes in this study. Table S2: The gene
structure of three cotton species FBXL genes in this study. Table S3: Phylogenetic analysis of FBXL
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among different cotton species. Table S5: Duplication types of the FBXL Gene in different Cotton
species. Table S6: The domain of four cotton species FBXL genes in this study. Table S7: The number
of FBXL genes on chromosomes among different cotton species. Table S8: Ka/Ks values of duplicated
FBXL gene pairs from three cotton species. Table S9: Analysis of GhFBXLs cis-elements. Table S10:
The primers used for qRT-PCR in this study. Table S11: Notes on nodes of FBXL proteins interaction
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