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Abstract: The summary-data-based Mendelian randomization (SMR) method is gaining popularity
in estimating the causal effect of an exposure on an outcome. In practice, the instrument SNP is often
selected from the genome-wide association study (GWAS) on the exposure but no correction is made
for such selection in downstream analysis, leading to a biased estimate of the effect size and invalid
inference. We address this issue by using the likelihood derived from the sampling distribution of
the estimated SNP effects in the exposure GWAS and the outcome GWAS. This likelihood takes into
account how the instrument SNPs are selected. Since the effective sample size is 1, the asymptotic
theory does not apply. We use a support for a profile likelihood as an interval estimate of the causal
effect. Simulation studies indicate that this support has robust coverage while the confidence interval
implied by the SMR method has lower-than-nominal coverage. Furthermore, the variance of the
two-stage least squares estimate of the causal effect is shown to be the same as the variance used for
SMR for one-sample data when there is no selection.
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1. Introduction

A main interest in scientific research is to study the causal effect of an exposure x on
an outcome y. When the outcome is continuous, the causal effect is the coefficient b in the
following regression model:

y = bx + u + εy, (1)

where u represents the unobserved factors and εy is normally distributed with mean 0 and
variance σ2

y . Throughout this report, all variables are centered so that the intercept is equal
to 0.

When u confounds the effect of x, the least squares estimate of b is biased. Mendelian
randomization (MR) is a modern technique for correcting this bias [1–5], thanks to the avail-
ability of the large number of genome-wide association studies (GWASs). One appealing
feature of the summary-data-based MR methods is that they don’t rely on individual-
level data.

MR is an application of instrumental variable (IV) analysis to estimate b. IV analysis is
able to control for unobserved confounders. MR uses single nucleotide polymorphisms
(SNPs) as IVs. Let g denote the genotypic score of an SNP. For an IV to be valid, it must
satisfy the following assumptions [6]:

Relevance: It is associated with the exposure x (i.e., Cov(g, x) 6= 0);

Exclusion Restriction: It affects the outcome y only through its association with the expo-
sure; and

Exchangeability: It is not associated with any confounders of the exposure–outcome
association, which implies Cov(g, y) = bCov(g, x).
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Under these assumptions, Equation (1) implies:

bgy = bbgx,

where bgy = Cov(g, y)/Var(g) and bgx = Cov(g, x)/Var(g). Since bgx and bgy can be
estimated from the exposure GWAS and the outcome GWAS, respectively, a popular
summary-data MR (SMR) estimate of b is [2]:

b̂SMR =
b̂gy

b̂gx
,

where b̂gy and b̂gx are GWAS estimates of bgy and bgx, respectively.
In practice, in order to satisfy the relevance assumption on an IV, an SNP is typically

selected from the exposure GWAS, often at the genome-wide significance level p < 5× 10−8.
Hence the selected SNPs are subject to a winner’s curse that leads to a biased effect estimate.
This is an issue that has been recognized in the MR literature for some time [7–13]. A typical
solution is to use another GWAS on the exposure to screen for IV SNPs [10,14,15]. However,
such a GWAS may not always be available. A simple correction is to transform the false
discovery rate to the z-scale [11]. An empirical study on the effect of the winner’s curse on
a Mendelian randomization study is presented in [12]. A review of methods to overcome
the winner’s curse in the context of genetic association studies is provided in [13].

As a matter of fact, many applications [2,16,17], including those contained in the
original paper that proposed SMR [2], do not use another GWAS for screening. The IV
SNPs are simply selected from the exposure GWAS and the selection bias is not corrected
for in the downstream analysis [2,18,19]. Furthermore, this approach has been generalized
to other settings [20,21].

This research is based on the sampling distribution of the estimated SNP effects on the
exposure and on the outcome. Despite the large number of subjects used in the exposure
GWAS and the outcome GWAS, there are only 4 summary statistics (i.e., two coefficient
estimates and their respective standard errors) needed for MR at an IV SNP. The standard
asymptotic theory, which requires a large sample size, does not apply since there is only
one “observation” at an SNP. To sidestep this issue, we use a support derived from a
profile likelihood as an interval estimate for b and assess its coverage probability through
simulation. Support is the set of parameter values at which the log profile likelihood is a
certain unit below the maximum log profile likelihood. It can be considered an extension of
the confidence interval. Simulation studies demonstrate that the 2-unit support has robust
coverage while the confidence interval implied by the SMR method has lower-than-nominal
coverage.

In addition, we point out that the standard error of b̂SMR derived from the delta
method is the same as the standard error derived from the standard theory on two-stage
least-squares (TSLS) regression for one-sample individual-level data in the absence of SNP
selection.

2. Materials and Methods
2.1. One-Sample Individual-Level Data

In this subsection, we consider one-sample individual-level data where the IV SNP is
not selected for its significant p-value. In this case, the delta method estimate of SE(b̂SMR)
is the same as the estimate derived from the theory on the TSLS method. The delta method
is the method used by SMR [2]. This result indicates another connection between SMR and
TSLS, in addition to the connection that b̂SMR is the same as the TSLS estimate of b. James E.
Pustejovsky proved this relationship in a blog post [22]. Below we provide a similar proof
in our current context.

Consider the following GWAS model on exposure x:

x = bgxg + εx,
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where εx correlates with the unobserved confounder u. The reduced-form equation for y is:

y = bgyg + (bεx + u + εy),

where bgy = bbgx. Let x, y, and g denote the centered vectors of n observations on x, y, and
g, respectively. Estimates of bgx and bgy can be obtained as follows: b̂gx = g′x/g′g and
b̂gy = g′y/g′g. Let P = gg′/g′g. Their second-order moments are estimated by:

V̂ar(b̂gx) =
n−1x′(I− P)x

g′g
,

V̂ar(b̂gy) =
n−1y′(I− P)y

g′g
,

Ĉov(b̂gx, b̂gy) =
n−1x′(I− P)y

g′g
.

We note that Ĉov(b̂gx, b̂gy) 6= 0.
The TSLS estimate of b is the least squares estimate of the coefficient in the regression

where the response is y and the predictor is Px:

b̂TSLS =
x′Py
x′Px

=
x′g(g′g)−1g′y
x′g(g′g)−1g′x

=
(g′g)−1g′y
(g′g)−1g′x

=
b̂gy

b̂gx
= b̂SMR.

The delta method estimate of the variance of b̂SMR is [2]:

Vdelta =
1

b̂2
gx

[
Var(b̂gy) + b̂2

TSLSVar(b̂gx)− 2b̂TSLSCov(b̂gx, b̂gy)
]
.

Since b̂2
gxg′g = x′Px, we have:

Vdelta =
1

b̂2
gx
· 1

ng′g

[
y(I− P)y + b̂2

TSLSx′(I− P)x− 2b̂TSLSx′(I− P)y
]

=
n−1(y− b̂TSLSx)′(y− b̂TSLSx)

x′Px
− n−1(y− b̂TSLSx)′P(y− b̂TSLSx)

x′Px

=
n−1(y− b̂TSLSx)′(y− b̂TSLSx)

x′Px
. (2)

The last equal sign holds because:

P(y− b̂TSLSx) = g(g′g)−1g′y− g′y
g′x
· g(g′g)−1g′x = 0,

where 0 is a vector of 0’s. The right-hand side of Equation (2) is exactly the estimated
variance of b̂TSLS defined in the standard theory on TSLS method [23]. Combining all these
results, we have Vdelta = VTSLS.

Vdelta can not be computed from GWAS summary data as there is no information
on Cov(b̂gx, b̂gy). For the same reason, TSLS can also not be computed from GWAS sum-
mary data.

However, when b̂gx and b̂gy are derived from two independent samples, Cov(b̂gx, b̂gy) = 0
and Vdelta can be computed from GWAS summary data, as is shown in the SMR method [2]. SMR
tests whether the exposure has a causal effect on the outcome using a statistic TSMR defined by:

TSMR =
b̂2

SMR
Vdelta

, (3)
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where b̂SMR = b̂2
gy/b̂2

gx and

Vdelta =
1

b̂2
gx

[
Var(b̂gy) + b̂2

SMRVar(b̂gx)
]
.

On the other hand, the TSLS method is not defined for two-samples MR although there are
some extensions [24].

2.2. Two Independent Samples with a Selected SNP

In this subsection, we consider two-sample MR where the IV SNP is selected from the
exposure GWAS. The purpose of this selection is to ensure that the IV SNP is associated
with the exposure. This practice is commonly used in empirical MR studies [2,16]. The
selection criterion for an SNP is typically |b̂gx|/SE(b̂gx) ≥ τ for a prespecified τ. For the
genome-wide significance level 5× 10−8, τ = 5.45131.

The summary statistics used in an MR analysis are b̂gx, SE(b̂gx), b̂gy, and SE(b̂gy). To
simplify notations, they will be denoted by x, σx, y, and σy, respectively, and bgx and bgy
will be denoted by µx and µy, respectively. We ignore the sampling variation in σx and σy as
they typically are derived from GWASs of very large sample sizes. A similar assumption is
made elsewhere, for instance, [25]. In these notations, x and y have the following sampling
distributions, respectively:

x ∼ CN(µx, σ2
x), y ∼ N(µy, σ2

y ),

where CN(·, ·) stands for a conditional normal given |x/σx| ≥ τ and N(·, ·) a normal
distribution. The distribution function CN(·, ·) was used to construct an approximate
conditional likelihood for estimating µx [26]. The term “approximate” comes from the fact
that the distributions of x (prior to selection) and y are approximately normal.

Let α1 = −τ − µx/σx, α2 = τ − µx/σx, and

A = Pr(x/σx ≥ τ) + Pr(x/σx ≤ −τ)

= 1−Φ(α2) + Φ(α1),

where Φ(·) is the cumulative distribution function of standard normal. The density function
of x is:

1
Aσx

φ

(
x− µx

σx

)
,

where φ(·) is the density function of standard normal. The expected value of x is:

µx +
σx

A
[φ(α2)− φ(α1)] (4)

and its variance is:

σ̃2
x = σ2

x

{
1 +

α2φ(α2)− α1φ(α1)

A
− [φ(α2)− φ(α1)]

2

A2

}
.

Note that σ̃2
x is no longer constant; its value depends on µx. When there is no selection,

τ = 0 and α1 = α2. The mean and variance reduce to µx and σ2
x , respectively.

Since x is independent of y, the likelihood function L(µx, µy) is:

L(µx, µy) = Lx(µx)Ly(µy),

where Lx(µx) and Ly(µy) are the likelihood functions based on x and y, respectively.
The likelihood function Ly(µy) is:

Ly(µy) =
1
σy

φ

(
y− µy

σy

)
.
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The MLE of µy is apparently µ̂y = y.
The likelihood function Lx(µx) is:

Lx(µx) =
1

Aσx
φ

(
x− µx

σx

)
.

Its score equation is:

x = µx +
σx

A
[φ(α2)− φ(α1)]. (5)

This equation determines the MLE µ̂x for µx. However, there is no explicit form for µ̂x. The
MLE µ̂x can be obtained by maximizing Lx(µx) numerically.

From Equations (4) and (5), x is an unbiased estimate of the mean of the conditional
normal distribution for x. However it is biased for µx as the mean shown in Equation (4) is
a nonlinear function of µx. Similar comments are made elsewhere [26].

Since σx > 0 and A > 0, Equation (5) indicates that when x > 0 µx must be positive.
Otherwise x− µx would be positive and φ(α2)− φ(α1) is negative (because α1 is closer to 0
than α2 is). There would be a contradiction. Because µx > 0 implies that the second term of
Equation (5) is positive, there is x > µ̂x > 0. Following the same logic, when x < 0, there
is x < µ̂x < 0. In either case, the naïve Wald ratio y/x underestimates b = µy/µx. The
MLE of b, denoted by b̂, is b̂ = y/µ̂x. b̂ is biased. The expectation of b̂ is E(y)E(1/µ̂x) 6= b
because E(1/µ̂x) 6= 1/µx.

Figure 1 shows the µ̂x/σx as a function of x/σx. The larger the value of x/σx, the
smaller the absolute difference |x/σx − µ̂x/σx|. When |x/σx| ≥ 7.5 (corresponding to a
p-value less than or equal to 6.38× 10−14), the absolute difference |x/σx − µ̂x/σx| is < 0.05
and seems to be negligible.

Under the null:
H0 : b = µy/µx = 0, µx 6= 0,

there is L(µx, µy) = Lx(µx)Ly(0). The MLE of µx is equal to µ̂x determined by Equation (5).
Under the alternative:

H1 : b = µy/µx 6= 0, µx 6= 0,

the MLE of µy is y and the MLE of µx is still µ̂x. The likelihood ratio statistic for testing H0
against H1 is:

T = 2 log
L(µ̂x, y)
L(µ̂x, 0)

= 2 log
Ly(y)
Ly(0)

=
y2

σ2
y
∼ χ2

1.

This is the “conditional test” we proposed previously [9]. It is more powerful than the SMR
statistic shown in Equation (3).

The SMR statistic TSMR shown in Equation (3) does not taking into account the effect
of the selection of the IV SNP on the inference. The variance of x is no longer σ2

x because x
is selected. Even if σ2

x is replaced by the variance σ̃2
x of CN(µx, σ2

x), the resulting statistic is
less powerful than the T statistic: Replacing b̂SMR by y/µ̂x and σx by σ̃x in Equation (3), a
modification of the SMR statistic would be:

T̃SMR =
y2/µ̂2

x
(σ2

y + y2/µ̂2
x · σ̃2

x)/µ̂2
x
=

y2

σ2
y + σ̃2

x · y2/µ̂2
x
<

y2

σ2
y
= T.

That is, T̃SMR is less powerful than T; p-values for both statistics are calculated from the
same distribution, which is chi-square with 1 df. The larger test statistic corresponds to the
smaller p-value.
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Figure 1. Plot of µ̂x/σx against x/σx selected under |x/σx| > 5.45131 (corresponding to p < 5× 10−8).
The vertical line is at |x/σx| = 7.5, which corresponds to a p-value of 6.38 × 10−14. The part
corresponding to x/σx < 0 is not shown since µ̂x/σx is an odd function of x/σx.

2.3. Support of Profile Likelihood

We now turn to an interval estimate for b = µy/µx. Such an estimate is not trivial since
the asymptotic theory is irrelevant as there is effectively only one observation in L(µx, uy).
For this reason, the distribution of b̂ = y/µ̂x, which is the MLE of b = µy/µx, is far from
normal. To demonstrate this point, the following simulation study is conducted.

We generate 100,000 x’s from a normal distribution with µx = 4 and σ2
x = 1 (so that

there are a reasonable amount of x’s to be selected), 7.412 of them satisfy |x| > 5.45131 and
are selected. The same number (i.e., 7.412) of y’s are generated independently from a normal
distribution with mean µy = bµx and variance σ2

y = 1. For each (x, y) pair, b̂ = y/µ̂x is
calculated. Histograms of b̂ for b = 0 and b = 2 are shown in Figure 2. For b = 0, the
mean of b̂ is 0.0073 and the median is 0.0022. The distribution has a high probability in the
neighborhood of 0. For b = 2, the distribution of b̂ seems to be bimodal and is skewed to
the right with a mean equal to 7.4755 and a median equal to 2.5700. Both values are larger
than the true value b = 2. These means and medians are also shown in Table 1 together
with results from another simulation study described later.



Genes 2023, 14, 211 7 of 12

Figure 2. Histogram of simulated b̂ = y/µ̂x, the MLE of b. Data simulation procedure is described in
the text.

We consider the profile log-likelihood function pl(b) defined by:

pl(b) = max
µx

[log Lx(µx) + log Ly(bµx)].

This function is maximized at b̂ = y/µ̂x and the maximum is equal to pl(b̂) = log L(µ̂x, y) =
log Lx(µ̂x) + log Ly(y), which is also the maximum of log L(µx, µy).

A natural interval estimate would be a 1− α profile confidence interval defined as
the set of b0 such that H0 : b = b0 is not rejected at significance level α. However, the
distribution of the log profile likelihood ratio

2
[

pl(b̂)− pl(b0)
]
= 2[log L(µ̂x, y)− pl(b0)]

is unknown for an arbitrary b0. The only exception is b0 = 0 at which

2[log L(µ̂x, y)− pl(0)] = 2
{

log
[
Lx(µ̂x)Ly(y)

]
− log

[
Lx(µ̂x)Ly(0)

]}
= 2

[
log Ly(y)− log Ly(0)

]
=

y2

σ2
y
∼ χ2

1.

Intuitively, the log partial likelihood function pl(b) can not be approximated by a quadratic
function in the vicinity of b̂ when b0 6= 0. As a result, the profile confidence interval for
b can not be constructed. An example log partial likelihood function pl(b) is shown in
Figure 3 for x/σx = 5.4599 and y/σy = 12.3155.
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Figure 3. Profile likelihood for x/σx = 5.4599 and y/σy = 12.3155. The MLE of b is b̂ = 33.416. The
lower limit of the 2-unit support is 2.146 and the upper limit is greater than 43.406. The exact value of
the upper limit is unknown due to numerical issues. It may be unbounded.

For an interval estimate of b, we use the k-unit support defined by [27]:{
b0 : pl(b̂)− pl(b0) < k

}
= {b0 : pl(b0) > log L(µ̂x, y)− k},

where k is a prespecified number. This interval consists of b0 for which pl(b0) is greater
than log L(µ̂x, y)− k. It can be regarded as a generalization of the usual confidence interval.
For instance, when b0 = 0 and k = 2,

0.95 = Pr(2[log L(µ̂x, y)− pl(0)] < 3.84)

= Pr(log L(µ̂x, y)− pl(0) < 1.92)

≈ Pr(log L(µ̂x, y)− pl(0) < 2).

This approximation worsens as |b0|moves further away from 0. For the example shown
in Figure 3 (i.e., x/σx = 5.4599 and y/σy = 12.3155), the lower limit of the 2-unit support
is 2.146 and the upper limit is greater than 43.406. The exact value of the upper limit is
unknown due to numerical issues. It may be unbounded.

By the way the support is constructed, the null H0 : b0 = 0 is rejected by the statistic
T at significance level α if and only if the k-unit support, where k = [Φ−1(1− α/2)]2/2,
contains 0.

We use a simulation study to investigate the coverage of a 2-unit support. For this
purpose, data are generated as before but more values for b, i.e., b = 0, 0.5, 1, 1.5, and 2,
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are considered. For each value of b, we compare the winner’s-0curse-corrected method
and the SMR method in terms of a point estimate of b, an interval estimate of b, and a test
of H0 : b = 0. Results are reported in Table 1. Both the winner’s-curse-corrected method
and SMR method are biased in terms of the mean and median. The SMR 95% confidence
interval, computed as b̂SMR ± 1.96× V1/2

delta, has worse coverage as b increases while the
2-unit support has rather stable coverage. In addition, the test statistic T is more powerful
than the SMR method.

Table 1. Results of simulation studies with µx = 4 and σx = σy = 1. The statistic T is T = y2/σ2
y .

b

Method 0 0.5 1 1.5 2

Winner’s-curse-corrected
Mean of b̂ 0.0073 1.8743 3.7414 5.6084 7.4755
Median of b̂ 0.0022 0.6843 1.3091 1.9327 2.5700
Coverage of 2-unit support 0.9587 0.9725 0.9803 0.9816 0.9811
Power of T for testing H0 : b = 0 0.0471 0.5217 0.9807 1.0000 1.0000

SMR
Mean of b̂SMR 0.0019 0.3424 0.6829 1.0234 1.3639
Median of b̂SMR −0.3310 0.3405 0.6795 1.0199 1.3615
Coverage of 95% CI 0.9648 0.8524 0.6511 0.4966 0.3958
Power for testing H0 : b = 0 0.0353 0.4721 0.9726 1.0000 1.0000

3. An Empirical Data Analysis

We conducted a Mendelian randomization analysis of the effect of age of menarche
on total pubertal height growth and late pubertal height growth using the winner’s-curse-
corrected method and the SMR method. Previously, we used the inverse-variance weighted
(IVW) method [5] and the MR-Egger regression method [6] on these exposures and out-
comes [15]. In that study, to avoid the winner’s curse caused by the selection of IV SNPs,
two other GWAS studies on age at menarche from an MR-Base database were used for
validation. IV SNPs were significant in the main GWAS for age at menarche but not in
the other two other GWASs which were removed. Such a procedure helps to avoid IV
SNPs that are close to the selection threshold. In this study, we use all significant IV SNPs
without further validation.

GWAS summary data were retrieved from the MR-Base database (http://www.
mrbase.org/ accessed on 27 November 2022). At the genome-wide significance level
5× 10−8, 117 instrument SNPs were selected from a previous study on age at menarche
with 182,413 females of European ancestry [28]. After pruning for linkage disequilibrium,
there are 84 SNPs left. The GWAS summary statistics on adult height were obtained from
a study with 4946 females of European ancestry [29]. Thus, the population of this study
matches that of the study on age at menarche.

For each SNP, the winner’s-curse-corrected estimate of b and a support are computed
in addition to the SMR estimate and the associated confidence interval. To correct for the 84
IV SNPs, the support is 5.9-unit since Pr(χ2

1 > 2× 5.9) = 0.05/84 and the nominal coverage
of the confidence interval is 0.9994 (=1 − 0.05/84). As discussed previously, this support
excludes 0 if and only if the T statistic is significant at the level 0.05/84. The p-value for
the winner’s-curse-corrected method is based on the T statistic. SNPs whose supports or
confidence intervals do not contain 0 are shown in Table 2.

The estimates of b from the winner’s-curse-corrected method and the SMR method
are pretty close to each other for the SNPs shown in Table 2, as are the support and the
confidence interval. This is due to the high significance of the association of these SNPs with
the age at menarche (p-values: 4.552× 10−15 for rs7514705 and rs7642134; <4.552× 10−15

for rs7759938). For both total and late pubertal height growth, the T statistic is more
significant than the TSMR statistic. For late pubertal height growth, SNP rs7514705 is
significant for the T statistic but not for the TSMR statistic.

http://www.mrbase.org/
http://www.mrbase.org/
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Table 2. Results for the effects of age at menarche on total pubertal height growth and late pubertal
height growth. To correct for the 84 IV SNPs, the support is 5.9-unit and the nominal coverage of
the CI is 0.9994(= 1− 0.05/84). This support excludes 0 if and only if the T statistic is significant
at the level 0.05/84. The p-value is for the null H0 : b = 0. It is computed from the T statistic (the
winner’s-curse-corrected method) or the TSMR statistic (the SMR method).

Winner’s-Curse-Corrected Method

SNP Gene Name b̂ ( 5.9-Unit Support) p-Value

Total pubertal height growth
rs7514705 TNNI3K 2.048 (0.889, 3.807) 8.856× 10−6

rs7642134 POU1F1 2.474 (1.264, 4.433) 1.117× 10−7

Late pubertal height growth
rs7514705 TNNI3K 1.822 (0.057, 5.091) 5.024× 10−4

rs7759938 LIN28B 0.931 (0.335, 1.571) 2.756× 10−7

SMR Method

SNP Gene Name b̂SMR (99.94% CI) p-Value

Total pubertal height growth
rs7514705 TNNI3K 2.042 (0.330, 3.754) 1.108× 10−4

rs7642134 POU1F1 2.466 (0.647, 4.284) 1.110× 10−5

Late pubertal height growth
rs7759938 LIN28B 0.931 (0.330, 1.533) 5.142× 10−7

Another empirical application on the conditional test T is the study of schizophrenia,
which was shown in our previous publication [9]. The T statistic identified some strong
candidate genes (e.g., AKT3, RGS6, and KCNN3) for schizophrenia that are missed by the
SMR method.

4. Discussion

Previously, we proposed a test statistic T for testing H0 : b = 0 [15]. The current work
extends the previous work by focusing on the point and interval estimate of the causal
effect b. Because the “sample size” for the MR analysis is 1, the standard likelihood theory
does not apply. As a result, it is not straightforward to construct a confidence interval.

We considered two extreme scenarios: one being the one-sample individual-level
data and the other being independent-sample summary data. In addition, on of these
scenarios is without the winner’s curse caused by the selection of IV SNPs and the other
suffers from the winner’s curse. For one-sample individual-level data that is free of the
winner’s curse, the SMR method is the same as the TSLS method, not only in terms of the
estimates of the causal effect size but also in terms of the variance of the estimates. For
two independent-sample summary data with a selected SNP, the SMR test for H0 : b = 0
is less powerful than the conditional test we proposed earlier [9]. Confidence intervals
derived from the SMR method have poor coverage compared to their nominal levels. In
comparison, the supports we proposed have stable coverage, at least in our simulation
studies.

There are reports (also see our empirical data analyses) showing that the winner’s
curse may not have substantial impact on the MR estimates [12]. This is because in these
cases the SNPs are strong. As indicated by Figure 1, the winner’s curse affects the relatively
weak IV SNPs most. These are the SNPs with |b̂gx/SE(b̂gx)| < 7.5 (i.e., p < 6.38× 10−14).
For the strong SNPs, there is not much difference between x and its maximum likelihood
estimate. An SNP is strong when either the effect size b or the sample size in the exposure
GWAS is, or both, are large. The three-sample design [14] also helps in making an SNP
strong by increasing the chance that the selected SNPs are highly significant. Theoretically,
however, it does not eliminate the winner’s curse as the probability that a weak SNP is
significant in the discovery GWAS and the exposure GWAS is non-zero.
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In the previous paragraph, the meaning of the term “weak” may be different than
weak instrument in the usual sense although there is no universally-accepted definition of
weak instrument. It is relative to the threshold for selecting IV SNPs. SNPs that barely pass
the threshold are always weak. In comparison, a weak instrument in the usual sense seems
to be characterized in absolute sense, for instance, the F-statistic for testing H0 : bgx = 0 is
less than 10 [30].

Although Equation (1) is on continuous traits, the proposed winner’s-curse-corrected
method works for dichotomous traits because it is based on the approximate normality on
b̂gx and b̂gy.

The current study focuses on a single SNP analysis. A major advantage of such an
analysis over multiple SNPs such as the IVW method and the MR-Egger regression method
is that it involves less assumptions. For example, the causal effects at different SNPs are
allowed to be different. An interesting topic would be to generalize the current work to the
case of using multiple SNPs simultaneously.

Our winner’s-curse-corrected method is designed for two independent (i.e., non-
overlapping) samples only. This is a limitation although it is not uncommon for method-
ology development, for instance, [14]. In practice, the study subjects for the exposure
GWAS and the outcome GWAS may overlap [12]. The likelihood function L(µx, µy) will be
different than what is presented here. The conditional test T needs to be revised and the
concept of support is still applicable. Future research on this topic is warranted.

The winner’s-curse-corrected method has been implemented in the R package iGasso.
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