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Abstract: Insulin is a powerful pleiotropic hormone that affects processes such as cell growth, energy
expenditure, and carbohydrate, lipid, and protein metabolism. The molecular mechanisms by which
insulin regulates muscle metabolism and the underlying defects that cause insulin resistance have not
been fully elucidated. This study aimed to perform a microarray data analysis to find differentially
expressed genes. The analysis has been based on the data of a study deposited in Gene Expression
Omnibus (GEO) with the identifier “GSE22309”. The selected data contain samples from three types
of patients after taking insulin treatment: patients with diabetes (DB), patients with insulin sensitivity
(IS), and patients with insulin resistance (IR). Through an analysis of omics data, 20 genes were found
to be differentially expressed (DEG) between the three possible comparisons obtained (DB vs. IS,
DB vs. IR, and IS vs. IR); these data sets have been used to develop predictive models through
machine learning (ML) techniques to classify patients with respect to the three categories mentioned
previously. All the ML techniques present an accuracy superior to 80%, reaching almost 90% when
unifying IR and DB categories.

Keywords: microarray; expression estimation; pathway analysis; machine learning

1. Introduction

Diabetes (DB) is a chronic disease that is characterized by presenting a set of metabolic
disorders related to the appearance of chronic hyperglycemia, as well as alterations in
the metabolism of carbohydrates, fats, and proteins, due to the existence of problems in
the secretion and/or action of insulin [1]. This is because the pancreas does not produce
insulin in a sufficient quantity or because the body itself is not capable of adequately using
the insulin it generates, and consequently, the glucose is not assimilated by the cells and
remains in the blood, where an increase in its concentration occurs [2]. DM has a high
prevalence and incidence in the population and can cause significant health problems,
leading to serious complications such as cardiovascular disease, stroke, blindness, and
amputation of lower limbs, among others. In the case of gestational diabetes, it can cause
problems during pregnancy, both for the mother and the fetus or newborn.

Some of the complications caused by diabetes can be avoided or delayed by developing
preventive actions and good control. Although some risk factors cannot be modified, it is
possible to develop preventive actions that avoid or delay their impact on the development
of the pathology.

Currently, the prevalence of diabetes is increasing worldwide. About 463 million
adults between the ages of 20 and 79 have diabetes. This represents 9.3% of the world
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population in this age group. The total number is projected to rise to 578 million (10.2%) by
2030 and 700 million (10.9%) by 2045. By 2030 and 2045, spending is forecast to reach USD
825 billion and USD 845 billion, respectively [3].

Type 2 diabetes (DM2), which accounts for 90–95% of all diabetes, is essentially char-
acterized by pancreatic β-cell dysfunction in the presence of insulin resistance. Therefore, a
compensatory increase in insulin production is required [4]. Insulin is a potent pleiotropic
hormone that affects processes such as cell growth, differentiation, apoptosis, ion flow,
energy expenditure, and carbohydrate, lipid, and protein metabolism [5]. These diverse
actions are initiated by specific binding to high-affinity receptors on the plasma membrane
of target cells [6,7], which then activate both a metabolic signaling pathway through PI-3
kinase and a mitogenic pathway through Ras/MAPK cascade. Insulin-mediated signaling
has been studied extensively with respect to early events in gene translation. However, an
understanding of the more distal events in insulin signaling involving multiple effector
systems and the integrated effects on gene expression that underlie the hormone’s multiple
actions is lacking. Nowadays, it is possible to conduct a comprehensive assessment of
differential expression in response to insulin using microarray technology. This knowl-
edge could improve the understanding of insulin action and how responses are integrated
to mediate the spectrum of hormonal effects [5]. Skeletal muscle is the primary site for
insulin-dependent glucose disposal in humans [8,9]. Insulin stimulates the uptake and use
of glucose in oxidative and storage pathways. Approximately 80% of insulin-responsive
glucose uptake affects skeletal muscles, and this tissue is the primary site of glycogen
storage, lipid oxidation, protein turnover, and thermogenesis. Insulin resistance involving
skeletal muscles is critical in the pathogenesis of human diseases, including metabolic
syndrome and type 2 diabetes, causing a large and increasing public health burden [5].
We intend to analyze the genes related to the DB, IR, and IS possibilities regarding the
insulin–diabetes binomial.

Although there are currently more sophisticated techniques, such as next-generation
sequencing (NGS), microarray data analysis has been one of the most important successes
in the interaction between statistics and bioinformatics in the last two decades [10,11].

On the other hand, in recent years, prediction techniques associated with machine
learning (ML), such as K-nearest neighbors, neural networks, support vector machines,
random forests, and cutting-edge techniques, such as deep learning (multilayer perceptron),
have been developed in order to obtain predictive models with high accuracy.

The main objective was to obtain a predictive model using ML techniques that allow
patients to be classified as IS, IR, or DB through differentially expressed gene expression
data to predict future patients who are IS, IR, or who end up being diabetic.

2. Materials and Methods

This work can be broken down into two parts. Microarray data analysis has been
one of the most important hits in the interaction between statistics and bioinformatics in
the last two decades. The analysis of microarray data can be performed in different ways
using different tools [10]. In the first part, the classic microarray data analysis is carried
out using the Bioconductor platform and the R program. The analysis has been based
on data from a study deposited in Gene Expression Omnibus (GEO) with the identifier
“GSE22309”. These data have been deposited in GEO following the MIAME20 (minimum
information about a microarray experiment) standards. In this study, the information
of the 55 patients was analyzed after having performed the technique of applying eug-
lycemic hyperinsulinemic clamps. The information based on the microarray image was
recorded in 55 files (20 files associated with IS, 20 with IR, and 15 with diabetics) type “.cel”
(Cell Intensity File); cel files are the files with the “raw data” originated after microarray
scanning and preprocessing using Affymetrix Human Genome U95A Array software [10].
Annotations for the Affymetrix Hu95A array model are found in the Bioconductor package
hgu95av2.db [12]. With this data set, a classic microarray analysis has been performed
through the R [13] Bioconductor [14] platform (https://www.bioconductor.org/) (accessed
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on 1 November 2021). After reading the file with the characteristics of the samples (tar-
gets), the steps in the microarray analysis process have been the following: (a) Quality
control of the raw data. This step is very important since bad quality data could introduce
much noise in the analysis that the normalization process could not solve; to check it, a
multiple boxplot to visualize the intensity distribution of the arrays, a histogram of the
signal density distribution, and principal component analysis were performed (Figure A1);
(b) Normalization. Before beginning with differential expression analysis, it is necessary to
make the arrays comparable among them and try to reduce and, if possible, eliminate all
the variability in the samples not owing to biological reasons. The normalization process
attempts to ensure that the intensity differences present in the arrays are due to the differ-
ential expression of genes rather than artificial biases due to technical problems. The robust
multichip analysis (RMA) [15] method was used. This process consists of three discrete
steps: background correction, normalization, and summarization); (c) Quality control of
normalized data. After performing normalization, it is interesting to perform a quality
control again to check how the data look. The same graphs as before have been performed
with normalized data (Figure A2); (d) Identification of differentially expressed genes. If
a gene is differentially expressed, there is expected to be a certain difference between the
groups; therefore, the overall variance of the gene will be greater than that of those that
do not have differential expression. Plotting the overall variability of all genes is useful to
decide which percentage of genes shows variability that can be attributed to other causes
than random variation [10] (Figure A3); (e) Filtering. Filtering out those genes whose
variability can be attributed to random variation, that is, the genes that are reasonably not
expected to be differentially expressed, has proven useful in reducing the number of tests to
be performed with the corresponding increase in power [16]. A standard filter was applied
that retains 50% of the genes with the greatest variability among those that were correctly
annotated; (f) Selection of differentially expressed genes. This consists of performing some
type of test, usually on a gene-wise basis, to compare gene expression between groups.
This can be performed using many different approaches [17]. In this case, the linear models
for the microarrays method, implemented in the “limma” package [18], were used to select
differentially expressed genes. The comparisons between groups were DB vs. IR, DB vs. IS,
and IR vs. IS. The adjusted p-value was calculated following Benjamini and Hochberg [19];
(g) Volcano plots of the genes most relevant to each were performed. A visualization of
the overall differential expression can be obtained using volcano plots. These plots show
if there are many or few genes with a large fold change and significantly expressed or
if this number is low [10] (Figure A4); (h) The genes selected as differentially expressed
were grouped to look for common expression patterns between experimental conditions
using “heatmaps” (Figure A5); (i) Lists of differentially expressed genes were annotated
in various databases (Entrez, Unigene, Gene Ontology, KEGG, etc.) using the affymetrix
microarray annotation packages available in the Bioconductor project [14]. To contribute to
the biological interpretation of the results, two types of enrichment analysis [20,21] or “gene
set analysis” were carried out, which seek to establish whether the functional categories of
the selected genes appear among these genes with more or less frequency than among all of
the genes in the genome group. If so, it indicates that the list of genes is “enriched” in these
functionalities, or what is the same as these are the processes affected by the differences;
(j) The basic enrichment analysis is used as described in the works of Falcon and Gentle-
man [20] implemented in the Bioconductor GOstats [20] package. Analyses of this type
require a minimum number of genes to be reliable, so all genes with adjusted p-values less
than 0.05 were included (without filtering by minimum “fold-change”). Additionally, the
basic enrichment analysis implemented in the ReactomePA [21] package from Bioconductor
was also performed. In this case, given the small number of differentially expressed genes
between the DB and IR categories, all genes were entered into the analysis for these two
categories. In the other two comparisons, DB vs. IS and IR vs. IS, those genes that had an
adjusted p-value less than 0.05 were included. A summary of the array process followed is
shown in Figure 1.
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Figure 1. Microarray data processing [11].

One of the main objectives of this research was to translate the findings on differen-
tially expressed genes into clinical applications. Thus, a machine learning approach was
developed to check if these genes are suitable for predicting diabetic targets. Due to this, a
second part was conducted, evaluating the prediction ability for selected genes using ML
techniques. The classic procedure was followed. At first, a principal component analysis
(PCA) was carried out with the 60 selected genes to see how they are grouped. The seven
variables with standard deviation/eigenvalues greater than or very close to 1 were selected
(max standard deviation 5.15 and min 0.995). These seven variables explained 83.4% of the
total amount of the variance (the first, 44.18%, and the second, 25.66%). These variables
were later used as an input data set to predict the target variable through a neural network.

For ML techniques, input data were randomly split into training data (train), made
up of 70% of the 55 records (38 rows), and the remaining 30% (17 rows) were used as
test data [22]. With the intention of reducing noise, each of the 60 selected genes was
normalized using the following formula:

Z =
X − min(X)

max(X)− min(X)
(1)

where X is one of the selected genes, min(X) is the minimum value, max(X) is the maximum
value, and Z is the resulting variable that was used for the ML process.

Nowadays, there are a multitude of artificial intelligence techniques [23], and due to
the difficulty of using all of them at the same time, we tried to use a representative selection
of all of them in order to classify patients into the three categories previously described
(DB, IR, or IS):

• The deep learning multilayer perceptron (MLP). It is a special type of network totally
connected to multiple individual neurons. The input layer has the same number of
inputs as the total of the predictor variables, in this case, 60. The middle layer looks
for characteristics associated with the data. In this case, two intermediate layers were
defined with 64 nodes. The output layer had the same number of outputs as the
categories to predict, in this case, three. The activation function of the last layer was
“softmax”, which converts a vector of values into a probability distribution. The loss
function was “categorical crossentropy”, and accuracy was the metrics [24];

• K-nearest neighbor (kNN). This kNN algorithm begins with a training dataset made up
of examples that are classified into several categories, as labeled by a nominal variable.
Assume that there is a test dataset containing unlabeled examples that otherwise
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have the same features as the training data. For each record in the test dataset, kNN
identifies k records in the training data that are the “nearest” in similarity, where k is
an integer specified in advance. The unlabeled test instance is assigned the class of
most of the k nearest neighbors [25]. Euclidean distance was used, and the k value
was 7;

• Artificial neural network (ANN). The ANN uses a network of artificial neurons or
nodes to solve learning problems. In this process, two neural network models were
used. In the first one, the input data were the 60 genes obtained in the ADO process;
two hidden layers were used, the first with 30 nodes and the second with 20 nodes.
In the second, the input variables were the seven variables whose eigenvalues were
higher or close to 1 in the principal components analysis carried out with the 60 genes.
In this second model, two hidden layers were also used with five and three nodes,
respectively. In both cases, the activation function was the logistic function (it is
the main activation function and is very important since it can be derived), and the
training algorithm was “backpropagation” [25];

• Support vector machine (SVM). A support vector machine (SVM) can be imagined as
a surface that defines a boundary between various data points, representing examples
plotted in multidimensional space according to their feature values. The goal of an
SVM is to create a flat boundary, called a hyperplane, which leads to fairly homoge-
neous partitions of data on either side. When the data are not linearly separable, it is
necessary to use kernels or similarity functions and specify a parameter C to minimize
the cost function. The most popular kernels are the linear and the Gaussian [25]. In this
analysis, the SVM technique was applied twice. The first has been linear (vanilladot
option), and the second the Gaussian (rbfdot option). In both cases, the parameter C
took the value 1;

• Random forest (RF). This technique combines versatility and power into a single
machine learning approach. Because the ensemble uses only a small, random portion
of the full feature set, random forests can handle extremely large datasets, where the
so-called “curse of dimensionality” might cause other models to fail. At the same
time, its error rates for most learning tasks are on par with nearly any other method.
Individuals are selected at random with replacement, thus forming different data sets.
Subsequently, a decision tree was created with each data set so that different trees
were obtained. When creating the tree, the random variables in each node of the tree,
and thus, without pruning the tree, were allowed to grow. Subsequently, the new data
were predicted using the majority vote, classified as positive if the majority of trees
predicted the observation as positive [25]. In this analysis, the random forest included
500 trees and tested seven variables in each division;

• Random forest by fivefold cross-validation (RF-5CV). The technique is RF, but in
this case, the dataset has been split into five groups. Then, four folds were used as
a training data set, and the remaining one was used for testing. This process was
repeated for each of the five folders. This random forest model had 500 trees and
tested two variables in each division.

With the intention of obtaining robust results, and not due to chance, the process
of partitioning training data, test data, and the execution of the different techniques was
repeated 1000 times, wherein a confusion matrix was calculated for each of them. The
results of each execution were stored in a cumulative confusion matrix to evaluate it at the
end of the 1000 executions. In the confusion matrix with three categories, the accuracy was
calculated. In the confusion matrix where IR and DB were joined, the accuracy, sensibility
(recall), specificity, positive predictive value (PPV or precision), and negative predictive
value (NPV) were calculated. Increasing the sensibility may decline the PPV and vice versa.
Increasing the specificity may decline the NPV and vice versa. The measurement metrics
are explained below:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)
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Sensibility/Recall =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Positive predictive value/Precision =
TP

TP + FP
(5)

Negative predictive value =
TN

TN + FN
(6)

TP, TN, FP, and FN represent True positive, True negative, False positive, and False negative,
respectively.

The workflow of this study is exhibited in Figure 2.
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3. Results

The results obtained in the process are shown sequentially. The original data set
consists of 409,600 genes from 55 patients. Figure 3a,b suggest that there may be some factor
that overlaps the differences between the groups. Since information on other covariates is
not available, it is difficult to decide whether this is the case. A common cause of the batch
effect is the date the samples are processed, but the hybridization date of all the records
was not available either. After carrying out the data normalization process with the “rma”
function, 12,626 genes from the 55 patients were selected.

After filtering the data, where 50% of the genes that present the greatest variability
have been selected and that are also correctly annotated in the Entrez database, 4380 genes
from the 55 patients were selected. After creating the design matrix and the contrast matrix,
differentially expressed genes were selected in two-to-two comparisons.

Table 1 shows the 20 genes that present the smallest adjusted p-value ordered from
lowest to highest for each comparison. These 60 genes (20 rows × 3 comparisons) have
been the ones that will be used as the input file in the ML analysis.
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Table 1. Differentially expressed genes with the smallest adjusted p-value used as predictor variables
in the ML model.

N DB vs. IR DB vs. IS IR vs. IS

1 RAB11B PCBD1 SAFB
2 TASOR PCGF1 TNFAIP1
3 FAP ATP1A3 NFIC
4 NEAT1 PRKAR2A RAB31
5 LUM ALOX12 CR1
6 VGLL1 ATP5ME NFATC1
7 IKZF1 SLC22A6 RHOBTB2
8 ACSL4 GSPT1 PLD3
9 MPDZ ACOX1 NUP188
10 XCL2 TFR2 RPS2
11 ACTL6A SETBP1 RSU1
12 CACNA1G EDA BPTF
13 EPHX1 ATP5MC1 PIN1P1
14 KRT14 PRRC2C MPP2
15 ARHGAP12 PPP2R5E ZNF473
16 OGT ATP5MC3 H4C3
17 NEDD4L EXOC6B APOA1
18 RAB11A ZNF133 ATP6V1H
19 CDC27 MAP4 MAD2L1BP
20 PDE4A SDCBP TBC1D22A

DB: diabetic patients; IR: insulin resistant patients; IS: insulin sensitivity patients.

Regarding multiple comparisons: (a) There were 294 genes differentially expressed
between DB and IR, (b) there were 1843 genes differentially expressed between DB and IS,
and (c) there were 863 genes differentially expressed between IR and IS.

Concerning the REACTOME process database, no relationships were found between
the differentially expressed genes between the DB vs. IR groups; this may be because there
were only 294 differentially expressed genes. In relation to the other two comparisons, only
genes whose adjusted p-value was less than 0.05 were taken into account.

In relation to the other two comparisons, DB vs. IS and IR vs. IS, the five main
processes related to differentially expressed genes are described in Table 2. More results
related to the microarray process are shown in Appendix A.

Table 2. Relationships between the differentially expressed genes.

DB vs. IS IR vs. IS

Signaling by ROBO receivers Eukaryotic Translation Initiation
Regulation of expression of SLITs and ROBOs Cap-dependent Translation Initiation

Eukaryotic Translation Initiation GTP hydrolysis and joining of the 60S ribosomal subunit
Cap-dependent Translation Initiation L13a-mediated translational silencing of Ceruloplasmin expression

L13a-mediated translational silencing of Ceruloplasmin expression Regulation of expression of SLITs and ROBOs

DB: diabetic patients; IR: insulin-resistant patients; IS: insulin-sensitivity patients.

In Figure 3, the networks produced by the differentially expressed genes are graphi-
cally detailed:

In relation to the prediction process with ML, once the file with the 60 genes described in
Table 1 with 55 records was obtained, the target variable (DB, IR, and IS) was added. Then,
the previously mentioned ML techniques are executed where the data set, after normalization,
has been split randomly into training and test data. After executing the data set partition
process and executing the techniques 1000 times, with the test data, a 3 × 3 confusion matrix
was constructed for each technique where the accuracy was calculated.



Genes 2023, 14, 2119 8 of 14
Genes 2023, 14, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 3. (a) Genes differentially expressed between DB vs. IS; (b) genes differentially expressed 

between IR and IS. 

In relation to the prediction process with ML, once the file with the 60 genes de-

scribed in Table 1 with 55 records was obtained, the target variable (DB, IR, and IS) was 

added. Then, the previously mentioned ML techniques are executed where the data set, 

after normalization, has been split randomly into training and test data. After executing 

the data set partition process and executing the techniques 1000 times, with the test data, 

a 3 × 3 confusion matrix was constructed for each technique where the accuracy was 

calculated. 

Subsequently, in this confusion matrix, the IR and DB categories were unified (tak-

ing into account the similarity they present), and a new 2 × 2 confusion matrix was con-

structed where the accuracy, sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV) were the measurement metrics taken into account to 

assess the performance of each technique. The results are shown in Table 3. 

Table 3. Results of applying ML techniques. 

Technique Accuracya * Accuracyb * Sens. Spec. PPV NPV 

MLP 95.42 96.31 97.65 93.94 96.58 95.8 

KNN 85.51 90.65 98.49 76.88 88.2 96.68 

ANN 88.34 92.96 96.04 87.57 93.13 92.65 

ANN-PCA 89.01 91.99 93.32 89.65 94.05 88.44 

SVM-radial 89.55 93.06 99.54 81.69 90.51 99.02 

SVM-lineal 90.99 94.53 97.09 90.04 94.47 94.64 

RF 80.97 89.57 95.14 79.8 89.2 90.35 

RF—5CV 81.92 90.29 96.11 80.05 89.44 92.14 

* Accuracya is the accuracy of the 3 × 3 confusion matrix, and accuracyb is the 2 × 2 confusion matrix 

after unified DB and IR. Sens. is sensitivity, and Spec. represents specificity. MLP: multilayer per-

ceptron technique; KNN: K-nearest neighbor; ANN: artificial neural network; ANN-PCA: artificial 

neural network using seven variables obtained from the PCA process; SVM-radial: support vector 

machine the Gaussian kernel; SVM-lineal: support vector machine using the linear kernel; RF: 

random forest technique; RF-5CV: random forest technique using 5-fold cross-validation. 

Figure 3. (a) Genes differentially expressed between DB vs. IS; (b) genes differentially expressed
between IR and IS.

Subsequently, in this confusion matrix, the IR and DB categories were unified (taking
into account the similarity they present), and a new 2 × 2 confusion matrix was constructed
where the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) were the measurement metrics taken into account to assess the
performance of each technique. The results are shown in Table 3.

Table 3. Results of applying ML techniques.

Technique Accuracya * Accuracyb * Sens. Spec. PPV NPV

MLP 95.42 96.31 97.65 93.94 96.58 95.8
KNN 85.51 90.65 98.49 76.88 88.2 96.68
ANN 88.34 92.96 96.04 87.57 93.13 92.65

ANN-PCA 89.01 91.99 93.32 89.65 94.05 88.44
SVM-radial 89.55 93.06 99.54 81.69 90.51 99.02
SVM-lineal 90.99 94.53 97.09 90.04 94.47 94.64

RF 80.97 89.57 95.14 79.8 89.2 90.35
RF—5CV 81.92 90.29 96.11 80.05 89.44 92.14

* Accuracya is the accuracy of the 3 × 3 confusion matrix, and accuracyb is the 2 × 2 confusion matrix after
unified DB and IR. Sens. is sensitivity, and Spec. represents specificity. MLP: multilayer perceptron technique;
KNN: K-nearest neighbor; ANN: artificial neural network; ANN-PCA: artificial neural network using seven
variables obtained from the PCA process; SVM-radial: support vector machine the Gaussian kernel; SVM-lineal:
support vector machine using the linear kernel; RF: random forest technique; RF-5CV: random forest technique
using 5-fold cross-validation.

As the data are quite balanced (20 IS subjects, 20 IR subjects, and 15 DB subjects),
accuracy is a good measurement metric in order to evaluate the results. The accuracya

(3 groups) is greater than 80% in all cases, being greater than 90% with the MLP and linear-
SVM techniques (95.42% and 90.99%, respectively). With these data, these two techniques
achieve the best accuracy results. It may be surprising that RF and RF-5CV techniques
are the ones that achieve the worst results in relation to accuracy. In any case, with these
data, it is possible to make predictions with an accuracy of 95.42%. There are statistically
significant differences between this result if we compare it with the accuracy of SVM-Lineal
(95.42% vs. 90.99%, p-value < 0.001). If we look at the accuracy of unifying the IR and DB



Genes 2023, 14, 2119 9 of 14

categories (two groups), it reaches 90% in all cases except RF, which is close to 90% (89.57%)
and reaching 96.31% with MLP. As before, comparing with accuracy of SVM-Lineal, we
can find statistically significant differences (96.31% vs. 94.53%, p-value < 0.001). The good
behavior of all techniques can be observed, particularly the excellent results researched
with MLP (deep learning).

Sensitivity was greater than 90% in all cases, being greater than 99.50% with the SVM-
radial technique. In relation to specificity, the results vary more; the MLP technique is the
one that presents a higher value with a value close to 94%, and the KNN technique is the
one that presents the lowest value with a value around 77%. In relation to the PPV, the
technique that presents the highest degree of success is once again MLP, with a value of
around 96.6%, and the lowest is once again KNN, with a value of around 88%. Regarding
the NPV, all the techniques present values close to 90% (ANN-PCA) or higher, with the
SVM-radial technique reaching almost perfect prediction with a 99.00% prediction. In
general, it can be stated that the accuracy achieved is very high in both cases.

Comparing our accuracy with other studies related to diabetes and machine learning,
it can be seen that our predictions are superior to these studies. The Haewon Byeon
article [26] presents an accuracy of 0.73. The Quincy A. Hathaway article [27] presents a
testing accuracy of 0.778 using the Gaussian Naïve Bayes technique (Tables 2 and 3). We
have to be cautious with these comparisons since the methodologies used are not exactly
the same.

4. Discussion

The spectrum of differentially regulated genes and the pathways in which the gene
products are involved depends, among other factors, on the disease state, the evaluated
disease phenotypes treatments, and/or the tissue or cell type evaluated [28]. Most of the
studies focusing on DM found some targets related to the pathogenesis of the disease [28–30].
In accordance, we found that DEG genes implicated in pathways known to have a relevant role
in DM onset and disease progression, as were numerous genes coding for transcription factors
found to be dysregulated. However, Reactome pathway analysis for evaluated comparisons
between DM and IS showed a significant contribution of genes in signaling mediated by
the axon guidance proteins, Roundabout (Robo) receptors. Interestingly, proteome-wide
Mendelian randomization and colocalization that evaluated the associations of blood proteins
with DM risk and diabetic complications found ROBO2 as one of the proteins associated with
the onset of DM. Another altered pathway represents the Cap-dependent translation that is
initiated by the binding of the factor eIF4E to the cap domain of mRNA and the L13a–mediated
translational silencing of ceruloplasmin expression.

Our study found differentially expressed genes among DB, IS, and IR patients, which
showed high predictive value, obtaining an accuracy, sensitivity, and specificity of around
95% using the MLP technique.

This analysis is composed of two complementary working hypotheses, and we wanted
to know if a certain number of differentially expressed genes in the comparison between
the three groups (IS, IR, and DB) in a microarray analysis would subsequently be valid
to predict the target variable composed of these three groups, using the said determined
number of differentially expressed genes as predictive variables. Once the results have
been analyzed, it can be stated that differentially expressed genes have been found between
the three groups. It has also been possible to verify their biological significance, although
in relation to the DB vs. IR comparison, no results have been obtained in the ReactomePA
database, although results have been found in the GO database. Subsequently, after
selecting the 20 differentially expressed genes for each one of the three comparisons with
the lowest-adjusted p-value, predictive models were carried out in order to check whether
these 20 genes are enough to predict with a high degree of validity of the target variable (IS,
IR, and DB). In view of the results, it can be stated that these 60 genes serve to predict the
target variable with great validity.
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However, this study has two main limitations, and we must be cautious with the results
obtained: (i) the typical problem of the Batch effect in the analysis of microarray data, (ii)
the small sample size, only 55 individuals, used to perform the analysis of microarrays,
and the subsequent use of machine learning techniques, which makes the study has little
power.

On the other hand, once we have seen the graphs and results, it is worth commenting
that the IR group is more similar to the DB group than the IS group.

5. Conclusions

In this analysis, the operation of the binomial between differentially expressed genes
was proposed through an analysis of microarray data and the subsequent verification of
the effectiveness of these data to make predictions using ML tools. Our results show that a
certain number of genes are differentially expressed and serve to create predictive models
with high validity. This would be interesting to be able to put into practice for the benefit
of patients or people at risk of diabetes.
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Appendix A

This section shows results from the microarray process that has not been included in
the Section 3. Firstly, the box plots of the intensity of the values, the signal density plot of
the data distribution, and the two-dimensional plot of the principal component analysis of
the raw data are shown in Figure A1.
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Below are the “volcano plots” for each of the comparisons. The names of the five genes
with the smallest-adjusted p-value are shown. You can see which genes are over-expressed
or under-expressed.
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Figure A4. Volcano plot of the different comparisons.

Through a “heatmap”, the expressions of each gene can be visualized, grouping them
to highlight the genes that are “up” or “down” regulated simultaneously, constituting
expression profiles. Figure A5 shows the “heatmap” with the 60 genes used in the ML
process. It can be seen that the model discriminates clearly between the IS (green), IR (blue),
and DB (red) categories.
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Figure A5. Heatmaps of differentially expressed genes grouped by similarity.

In relation to the GO database, searches have been carried out for both over-expressed
and under-expressed genes, resulting in six files in HTML format. The first three links of
each result are linked in Table A1.
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Table A1. Processes obtained from the GO database based on differentially expressed genes.

Comparison Process

DB vs. IR Over-representation
spleen development

embryonic heart tube left/right pattern formation
left/right pattern formation

DB vs. IR Under-representation
mRNA catabolic process
RNA catabolic process

translation

DB vs. IS Over-representation
mRNA metabolic process
regulation of translation

posttranscriptional regulation of gene expression

DB vs. IS Under-representation
extracellular matrix organization

extracellular structure organization
external encapsulating structure organization

IR vs. IS Over-representation
translational initiation

SRP-dependent cotranslational protein-targeting membrane
nuclear-transcribed mRNA catabolic process, nonsense-mediated decay

IR vs. IS Under-representation
external encapsulating structure organization

urogenital system development
extracellular matrix organization
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