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Abstract: Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation path-
way (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino
acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumu-
late toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities
involving the renal and neurological system and the development of hepatocellular carcinoma (HCC).
Nitisinone (NTBC), a potent inhibitor of the 4-hydroxyphenylpyruvate dioxygenase (HPD) enzyme,
rescues HT1 patients from severe illness and death. However, despite its demonstrated benefits, HT1
patients under continuous NTBC therapy are at risk to develop HCC and adverse reactions in the eye,
blood and lymphatic system, the mechanism of which is poorly understood. Moreover, NTBC does
not restore the enzymatic defects inflicted by the disease nor does it cure HT1. Here, the changes in
molecular pathways associated to the development and progression of HT1-driven liver disease that
remains uncorrected under NTBC therapy were investigated using whole transcriptome analyses
on the livers of Fah- and Hgd-deficient mice under continuous NTBC therapy and after seven days
of NTBC therapy discontinuation. Alkaptonuria (AKU) was used as a tyrosine-inherited metabolic
disorder reference disease with non-hepatic manifestations. The differentially expressed genes were
enriched in toxicological gene classes related to liver disease, liver damage, liver regeneration and
liver cancer, in particular HCC. Most importantly, a set of 25 genes related to liver disease and HCC
development was identified that was differentially regulated in HT1 vs. AKU mouse livers under
NTBC therapy. Some of those were further modulated upon NTBC therapy discontinuation in HT1
but not in AKU livers. Altogether, our data indicate that NTBC therapy does not completely resolves
HT1-driven liver disease and supports the sustained risk to develop HCC over time as different HCC
markers, including Moxd1, Saa, Mt, Dbp and Cxcl1, were significantly increased under NTBC.

Keywords: liver disease; hereditary tyrosinemia type 1; nitisinone; transcriptomics; alkaptonuria;
hepatocellular carcinoma; gene signature
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1. Introduction

Tyrosine inherited metabolic disorders (TIMD) are a subclass of inborn errors of amino
acid catabolism, characterized by an inherited deficiency of a functional enzyme key for the
metabolic pathway of tyrosine [1]. Tyrosine is broken down in fumarate and acetoacetate
by a five-step enzymatic pathway that is mainly present in the liver and kidney cytosol.
Each enzyme of this pathway is associated with one autosomal recessive inborn error [2,3].

Hereditary tyrosinemia type 1 (HT1, OMIM #276700) is the most severe and deadly
TIMD with an overall incidence of 1 in 100,000 newborns worldwide [2,4,5]. In this
case, the impaired enzyme of the tyrosine degradation pathway is the terminal enzyme
fumarylacetoacetate hydrolase (FAH). Loss of FAH activity results in the accumulation of
the upstream toxic intermediates fumarylacetoacetate (FAA), maleylacetoacetate (MAA)
and succinylacetone (SA) (see Figure 1). These metabolites are responsible for the severe
disruption of the intracellular metabolism of the liver and kidney. HT1 has a highly variable
clinical presentation characterized by hepatic failure with comorbidities involving the renal
and neurological system, which frequently results in death if left untreated [4,6,7]. In HT1,
the liver is the most severely affected organ and a major cause of morbidity and mortality.
The high risk of developing hepatocellular carcinoma (HCC) in HT1 patients is the most
ominous and is the highest among all metabolic disorders [2,8]. Historically, a tyrosine-
and phenylalanine-restricted diet has been applied as therapy for HT1 patients but has
proven to be inadequate as it does not overcome the chronic complications, the production
of the toxic intermediates or the development of HCC [9,10].
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Figure 1. Schematic representation of tyrosine degradation in the liver. HT1 patients lack a functional
FAH enzyme that causes the build-up of toxic tyrosine degradation products MAA and FAA, as well as
the production of SA through an alternative degradation route. In AKU patients, the HGD enzyme is
defective causing the accumulation of the toxic tyrosine metabolite HGA. NTBC provides an effective
metabolic block by inhibiting the upstream HPD enzyme. This circumvents the accumulation of the
aforementioned toxic tyrosine intermediates, rescuing patients from severe illness and even death.
Abbreviations: HT1—Hereditary tyrosinemia type 1; FAH—fumarylacetoacetate hydrolase; MAA—
maleylacetoacetate; FAA—fumarylacetoacetate; SA—succinylacetone; AKU—alkaptonuria; HGD—
homogentisate dioxygenase; HGA—homogentisic acid; NTBC—2-(2-nitro-4-trifluoromethylbenzoyl)-
1,3-cyclohexanedione; HPD—4-hydroxyphenylpyruvate dioxygenase.

Since 1992, nitisinone or 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione
(NTBC) has changed the clinical course and management of HT1 [9,11]. NTBC is a potent
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inhibitor of 4-hydroxyphenylpyruvate dioxygenase (HPD), resulting in an upstream block
of FAH in the tyrosine degradation pathway preventing the accumulation of FAA, MAA
and SA (see Figure 1) [12–14]. Although NTBC rescues HT1 patients from severe illness and
early death, late complications can persist [15–21]. In order to manage the NTBC-induced
impairments, a lifelong dietary adjustment by restriction of tyrosine and phenylalanine
is applied for HT1 patients [10,22,23]. Despite the multiple benefits of NTBC, it does not
restore the enzymatic defects inflicted by the disease nor does it cure HT1 [24]. Furthermore,
the occurrence of HCC in some HT1 patients under NTBC therapy is described, meaning
that there is still a certain residual activity in the liver even under NTBC treatment [4,25,26].
Although many efforts have already been made in understanding the origin of damages
occurring in HT1, many cellular and molecular (oncogenic) mechanisms underlying the
progression of HT1 still have to be unraveled [26].

In the present study, we want to identify changes in molecular pathways associated to
the development and progression of the liver pathogenesis of HT1 that remain uncorrected
under NTBC therapy by using gene expression profiling of Fah-deficient mouse livers under
continuous NTBC therapy. As a control of a TIMD without hepatic manifestation, we used a
homogentisate 1,2-dioxygenase (Hgd)-deficient mouse model of alkaptonuria (AKU, OMIM
#203500) also under continuous NTBC treatment. AKU is a serious, autosomal recessive,
multisystem disorder affecting 1 in 250,000 live births [12,13]. It results from a deficiency
in the HGD enzyme responsible for the formation of MAA out of homogentisic acid
(HGA). Loss of HGD function results in a blockage of the degradation of tyrosine and an
accumulation of HGA in body fluids and urine [9,27–29]. The accumulated and circulating
HGA will oxidize into benzoquinone acetic acid (BQA) and polymerize into a melanin-
like pigment (see Figure 1), which preferentially deposits in connective tissues during a
process called ochronosis. Ochronosis and thus AKU is characterized by premature arthritis,
lithiasis, cardiac valve disease, fractures, muscle and tendon ruptures and osteopenia. Other
systemic features include kidney, prostatic, salivary and gall bladder stones, renal damage
or failure, respiratory complications and auditory impairment [12,14,24,30,31]. This makes
AKU a chronically debilitating disorder with heterogeneous symptoms and although the
tyrosine pathway is mainly localized in the liver, AKU is an extrahepatic disease with
multifarious systemic symptoms. Since 2020, NTBC therapy is also the standard of care
treatment for AKU patients.

Our study aimed to acquire fundamental knowledge on the uncorrected liver disease
phenotype in continuously NTBC-treated HT1 patients. Our study focused on identifying
the molecular mechanisms and pathways that remain modulated in the livers of Fah- and
Hgd-deficient mice during continuous NTBC therapy and after NTBC discontinuation for
seven days. To accomplish this, we performed microarray-based whole transcriptome
profiling. We found that the most affected molecular pathways are those involved in
liver-specific metabolic processes (synthesis/degradation), lipid homeostasis and hepatic
cholestasis. Most importantly, we identified a set of 25 genes that discriminates HT1 livers
from AKU livers, even under continuous NTBC therapy, as such representing remnants of
an HT1-driven residual uncorrected liver disease phenotype.

2. Materials and Methods
2.1. Hereditary Tyrosinemia Type 1 Mouse Model

The Fah5981SB strain (referred to as HT1 mice), backcrossed on C57Bl/6J background
and kindly provided by Markus Grompe (Oregon Health & Science University, Portland,
OR, USA). The mice bear a single N-ethyl-N-nitrosourea-induced point mutation (G>A
loss) leading to the splicing out of exon 7 within the Fah gene, resulting in a frameshift and
subsequently the introduction of a premature stop codon at amino acid position 303. Conse-
quently, the mice produce a truncated, unstable FAH protein that is degraded, making them
a suitable model for HT1. If neonatal HT1 mice are not continuously administered NTBC,
they die of acute liver failure [32,33]. Therefore, all mice, except during the withdrawal
experiment, received through their drinking water continuous NTBC treatment (8 mg/L).
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To prevent the formation and accumulation of tyrosine and its toxic metabolites upon
NTBC therapy discontinuation, the mice were provided ad libitum with an irradiated diet
that was low in tyrosine and phenylalanine (LabDiet® 5LJ5 chow, LabDiet, St. Louis, MO,
USA), which resembles the protein-restricted diet of HT1 patients.

2.2. Alkaptonuria Mouse Model

The homozygous Hgd knockout-first allele mouse (Hgd tm1a−/−), also backcrossed
on a C57Bl/6J genetic background, is used as an animal model of human AKU (referred
to as AKU mice) [27]. AKU mice are kindly provided by George Bou-Gharios (Institute
of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK). Hgd tm1a−/−

mice contain an IRES:LacZ gene trap cassette and a promoter-driven neo cassette inserted
into the fifth Hgd intron with the sixth exon flanked by loxP sequences. Homozygous Hgd
tm1a−/− mice, therefore, show an AKU phenotype based on Hgd gene disruption while
heterozygous Hgd tm1a−/+ and homozygous Hgd tm1a+/+ mice show a normal wildtype
phenotype. Hgd tm1a−/− mice develop specific symptoms of AKU, including blackening
of urine and progressive osteoarthritis when NTBC is not administered [27]. Therefore,
similar to the aforementioned experimental conditions of the HT1 mouse model, all mice
received through their drinking water continuous NTBC treatment (8 mg/L). An irradiated
diet low in tyrosine and phenylalanine (LabDiet® 5LJ5 chow, LabDiet, St. Louis, MO, USA)
was provided.

2.3. Animal Experiments

Animal procedures were conducted at the Vrije Universiteit Brussel and were approved
by the Institutional Animal Ethics Committees (grant numbers 16-210-1 and 21-210-2).
Mice were housed in group under SPF conditions in individual cages within a regulated
environment of 19–23 ◦C and 30–70% R.H. with a 14/10-h light/dark cycle. To maintain
their health, continuous NTBC treatment (8 mg/L) was given to both mouse models, and
also to the pregnant females up until weaning, through their drinking water. The dosage
used to treat both mouse models (HT1 and AKU) was based on the standard NTBC therapy
dosage used to treat HT1 mice. As such, AKU mice can be used as a control to identify
molecular changes in the liver of HT1 mice associated to the disease itself and not inflicted
or masked by NTBC therapy. At eleven weeks of age, both mouse models (referred to as
HT1-7dNTBC (n = 3) and AKU-7dNTBC (n = 4)) had their NTBC therapy withdrawn for
seven consecutive days.

2.4. Sample Collection and Preparation

Sample collection was carried out according to the previously mentioned protocol [34].
Briefly, at 12 weeks of age, the mice of both experimental groups were anesthetized via
intraperitoneal injection of a mixture of ketamine (87.5 mg/kg Ketamidor® (Ecuphar,
Catalonia, Spain)) and xylazine (12.5 mg/kg Rompun® (Bayer, Leverkusen, Germany)).
After a ventral heart puncture, blood was collected into ethylenediaminetetraacetic acid
(EDTA)-coated microtubes (Sarstedt, Nümbrecht, Germany, K3E tube) and onto dried blood
spot (DBS) cards (Whatman 903; GE Healthcare, Chicago, IL, USA). The blood samples
were centrifuged at 1500× g for 15 min at 4 ◦C, and the serum was frozen at −80 ◦C until
further use. To prepare liver tissue for transcriptome analysis, cubes with a maximum
volume of 1 cm3 of liver tissue were collected in an RNA-protecting solution and stored at
−80 ◦C.

2.5. Dried Blood Spot Analysis

The DBS cards were analyzed as previously reported [34]. DBS cards were air-dried at
room temperature for at least 24 h prior to analysis. An HPLC 1100 Agilent system coupled
with AB Sciex API 3200 and API 4000 MS analyzers was used for analysis. In order to
quantify Tyr (m/z 238 > 102) and Phe (m/z 222 > 102), small discs were perforated from the
DBS cards and placed into a 96-microtiter plate. The DBS were eluted with methanol at
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room temperature for 20 min, and the resulting eluent was transferred into an additional
96-microtiter plate. Internal standards (IS) were added to separate wells. The dried residues
from the original microtiterplate were used for SA quantification. A standard stock solution
of labeled amino acids isotopes was added to every well of the additional microtiterplate.
The latter was dried under nitrogen at 55 ◦C, dissolved in a mixture of Butanol-HCl, and
incubated at 65 ◦C under an inert atmosphere. After the last evaporation step using a
nitrogen flow, an acetonitrile-water-formic acid mixture was added as an eluting solution
and the samples were analyzed by MS/MS via direct flow injection. Plasma Tyr and Phe
concentrations were determined using labeled IS (13C6 Phe, m/z 228 > 102 and 13C6 Tyr,
m/z 244 > 102).

SA (m/z 211 > 137) was quantified by exposing the DBS samples, the dried residues
from the first plate, to a hydrazine hydrate solution containing an IS of deuterated SA (m/z
216 > 142). The mixture was incubated for 40 min at 50 ◦C after which the resulting samples
were transferred to a new 96-microtiter plate and analyzed using MS/MS via direct flow
injection. SA plasma concentrations were calculated using a standard curve.

NTBC (m/z 330 > 218 and 330 > 126) concentrations were determined by eluting
DBS discs with pure methanol and internal standard (13C6 nitisinone, m/z 336 > 218 and
336 > 126) for 30 min at room temperature, followed by direct use of the eluents in LC/MS.
An isocratic LC method (0.5 mL/min) was used, with a Poroshell 120 EC-C18 column
(Agilent, Santa Clara, CA, USA) and acetonitrile-water mixture (85:15) with 0.05% formic
acid at 30 ◦C, to elute the sample solution. The plasma concentrations were calculated
using a standard curve.

2.6. Extraction of Total RNA

RNA samples were collected in a mixture of RNAprotect Tissue Reagent (Qiagen,
Hilden, Germany) and phosphate-buffered saline (5:1 v/v) to protect the RNA. The GenE-
lute Mammalian Total RNA Purification Miniprep kit (Sigma-Aldrich, Bornem, Belgium)
was used to extract total RNA from all samples in accordance with the manufacturer’s
instructions. The extracted RNA was quantified using a Nanodrop spectrophotometer
(Thermo Scientific, Wilmington, NC, USA).

2.7. Microarray Profiling and Analysis

For each experimental group, 100 ng RNA was extracted from liver tissue and ampli-
fied and in vitro transcribed using the Genechip Whole Transcriptome PLUS Reagent Kit
according to the manufacturer’s instructions (Applied Biosystems, Waltham, MA, USA)
as previously described [34]. The amplified RNA and synthetized single-stranded cDNA
were purified using magnetic beads, followed by hydrolysis of 15 µg ss-cDNA using RNase
H, fragmentation and labelling of, respectively, 5.5 µg and 3.5 µg ss-cDNA using Frag-
mentation Master Mix and Labelling Master Mix. The labeled cDNA was subsequently
hybridized to the Affymetrix Mouse Gene 2.0 arrays and placed in a Genechip® Hybridiza-
tion Oven-645 (Affymetrix, Santa Clara, CA, USA) rotating at 14 g at 45 ◦C for 16 h. Post
incubation, the arrays were washed on a Genechip® Fluidics Station 450 (Affymetrix) and
stained with an Affymetrix HWS kit as was indicated by the manufacturer. An Affymetrix
GeneChip® Scanner 3000 7G was used to scan the microarray chips. All chips were fur-
ther subjected to quality control by using the Affymetrix GCOS software. The datasets
were corrected, summarized and normalizes using Robust Multiarray Analysis. Transcrip-
tome Analysis Console (TAC—version 4.0—Applied Biosystems) was used to create the
heatmaps. Ingenuity Pathway Analysis software (version 2022-11) was applied to perform
transcriptomic pathway analyses and gene set enrichment was determined based on a
≥2-fold difference and Benjamini–Hochberg (B-H) p-value ≤ 0.05. The data discussed
in this manuscript have been deposited in the NCBI Gene Expression Omnibus and are
accessible through GEO Series accession number GSE225001.
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3. Results
3.1. NTBC Treated Fah-Deficient Mice Show Affected Molecular Pathways Involved in
Liver-Specific Metabolic Processes, Lipid Homeostasis and Hepatic Cholestasis Compared to
NTBC-Treated Hgd-Deficient Mice

Under continuous NTBC treatment, HT1 and AKU mice showed comparable blood lev-
els of NTBC (1.00± 0.23 µM and 0.91± 0.18 µM respectively) and tyrosine (545.4 ± 28.8 µM
and 559.6 ± 71.7 µM respectively) (Figure 2A,B). However, a low level of residual SA was
detected in the blood of HT1 mice (0.102 ± 0.035 µM) as opposed to AKU mice (not
detectable) (Figure 2C).
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Figure 2. Biochemical evaluation of the HT1 and AKU mouse models. Quantification of (A) NTBC,
(B) tyrosine and (C) succinylacetone blood levels. Data are represented as mean ± SD with * p < 0.05.
(D) Schematic representation of the comparison experiment and subsequent blood and liver sample
collection.

Whole transcriptome profiling of HT1 and AKU liver tissue indicated that 64 genes
were more than 2-fold upregulated and 29 genes more than 2-fold downregulated
(p-value ≤ 0.05) in NTBC-treated Fah-deficient livers compared to NTBC-treated Hgd-
deficient livers. Differentially regulated genes were enriched (2-fold, p-value ≤ 0.05)
in toxicological gene classes related to liver disease (Liver Hemorrhaging), liver damage
(Degeneration of Liver, Liver Damage, and Liver Necrosis/Cell Death), liver regeneration (Liver
Regeneration, and Liver Hyperplasia/Hyperproliferation) and liver cancer (HCC). Liver Hyper-
plasia/Hyperproliferation (24 genes) and HCC (7 genes) are the most prominent toxicological
gene classes with significantly modulated genes, as shown in Figure 3A,B.

Canonical pathway analyses showed that pathways involved in liver-specific metabolic
processes (FXR/RXR Activation, PXR/RXR Activation, and Aryl Hydrocarbon Receptor Signal-
ing), including the degradation and biosynthesis of amino acids (tyrosine and asparagine),
hormones (estrogen and melatonin), neurotransmitters (serotonin and catecholamines), and
other substances (ethanol, acetone, nicotine, retinol and bupropion), as well as lipid homeostasis
(Adpogenisis Pathway, and Acetate Conversion to Acetyl-CoA), cancer (SPINK1 General Cancer
Pathway, and Circadian Rhythm Signaling) and liver disease (Hepatic Cholestasis, and Acute
Phase Response Signaling) were modulated (29 genes were downregulated and 64 genes
were upregulated) in the livers of HT1 compared to AKU mice despite continuous NTBC
therapy (Figure 4A,B). The modulated genes per pathway are represented in Table S1.
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Analysis of enriched upstream regulator sequences in these differentially regulated
genes showed activation of signaling through interleukin (IL) 6 and tumor necrosis factor
(TNF) (activation z-score ≥ 2; Figure 5A). Stearoyl-CoA desaturase (SCD) signaling, which
regulates the expression of genes involved in lipogenesis and mitochondrial fatty acid
oxidation, was inhibited (activation z-score ≤ −2; Figure 5A).
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Figure 5. Upstream regulator analyses of whole transcriptome data comparing HT1 vs. AKU mouse
livers under continuous NTBC therapy, showing (A) activation states and target molecules and (B)
interactive network.

3.2. mRNA Marker Profile of the Uncorrected Liver Disease Phenotype in HT1 vs. AKU Liver and
Differential Impact of NTBC Discontinuation

The genetic signature of the uncorrected remnants of the HT1-driven liver disease
phenotype were defined. The gene expression of Hgd (65.3-fold), Moxd1 (8.5-fold), Mt1
(7.3-fold), Mt2 (6.7-fold), Saa2 (6.6-fold), Dbp (5.2-fold), Cxcl1 (4.3-fold), Asns (3.7-fold), Egr1
(3.6-fold), Saa1 (3.1-fold), Nr1d1 (3.0-fold), Nr1d2 (2.5-fold), Saa3 (2.2-fold), Rbp1 (2.2-fold),
Lpl (2.0-fold), Nqo1 (2.0-fold) and Abcg8 (2.0-fold) was significantly higher in Fah-deficient
livers compared to Hgd-deficient livers under NTBC treatment (Figure 6A). In contrast,
the gene expression level of Fah (−9.6-fold), Elovl3 (−2.9-fold), Arntl (−2.6-fold), Cyp3a41b
(−2.6-fold), Acss3 (−2.3-fold), Ddc (−2.3-fold), Fitm1 (−2.2-fold), Cyp2c38 (−2.2-fold),
Slc22a7 (−2.1-fold) and Nfil3 (−2.1-fold) was significantly lower in HT1 vs. AKU mouse
livers under NTBC treatment (Figure 6A, Table S2). Interestingly, when discontinuing
NTBC therapy for seven consecutive days in AKU mice, only the gene expression of
Saa1 (−2.5-fold) was significantly modulated (Figure 6B). The upregulation of Hgd in Fah-
deficient mice, and the downregulation of Fah confirms the gene disruption in both mouse
models. As both mouse models are not complete knock-out models, but gene disruption
models, some Affymetrix probes still bind truncated Fah and Hgd cDNA resulting in an
‘underestimation’ of the fold changes.
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Figure 6. Genetic signature representing the uncorrected HT1-driven liver disease phenotype. Spider
graphs showing differentially-expressed genes between (A) HT1 and AKU mouse livers under
continuous NTBC therapy (HT1 + NTBC vs. AKU + NTBC), (B) AKU mouse livers upon seven days
of NTBC discontinuation (AKU-7dNTBC) vs. continuously treated (AKU + NTBC) and (C) HT1
mouse livers upon seven days of NTBC discontinuation (HT1-7dNTBC) vs. continuously treated
(HT1 + NTBC). (D) Hierarchical clustering of HT1 and AKU mouse livers with and without NTBC
therapy using the generated genetic signature of the uncorrected HT1-driven liver disease phenotype
(excluding Hgd and Fah).
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In contrast, when depriving HT1 mice from NTBC treatment for seven consecutive
days, the gene expression of Nqo1 (13.3-fold), Cyp2c38 (3.5-fold), Ddc (3.1-fold) and Mt2
(2.7-fold) significantly increased more than 2-fold, whereas the expression of the genes Saa1
(−36.4-fold), Elovl3 (−35.3-fold), Saa2 (−22.7-fold), Moxd1 (−6.3-fold), Nr1d1 (−4.1-fold),
Cxcl1 (−2.8-fold) and Dbp (−2.7-fold) significantly decreased more than 2-fold (Figure 6C).

Finally, when performing hierarchical clustering using these differentially expressed
genes (excluding Hgd and Fah), a clear distinction was observed between HT1 and AKU
mouse livers, independent of NTBC treatment. Furthermore, AKU livers treated or not
with NTBC were clustered independently of the treatment condition, whereas for HT1
mouse livers, a clear difference was observed between continuously treated livers and
those livers that underwent seven days of NTBC therapy discontinuation (Figure 6D).

4. Discussion

Since 1992, NTBC therapy has changed the clinical course and the well-being of HT1
patients. Despite its efficacy in preventing severe illness and early death, some HT1 patients
may still experience late complications, such as the development of HCC, suggesting that
there persists an uncorrected residual liver disease state even under continuous NTBC
treatment. In order to characterize any potential uncorrected remnants of liver disease
in HT1 patients under NTBC therapy, we performed whole transcriptome analyses of
a preclinical mouse model of HT1 and compared it to a mouse model of AKU, another
TIMD that does not harbor any hepatic manifestation. Both mouse models served the
same genetic background and were kept under the same therapeutic conditions. The study
revealed the upregulation of several genes involved in the development and progress of
HCC, which could potentially serve as HCC markers.

Biochemical blood analyses of Fah-deficient HT1 mice under continuous NTBC therapy
demonstrated residual levels of SA, compared to Hgd-deficient AKU mice in which SA
could not be detected. This indicates that, although NTBC is a strong inhibitor of the HPD
enzyme, it does not completely block the tyrosine degradation pathway, resulting in a
residual enzymatic HPD activity in the liver. Although there are differences in metabolic
rate, bioavailability, and the tyrosine catabolic pathway, 8 mg/L NTBC resembles the
dose of 1–2 mg/kg/day for HT1 patients assuming the mice drink 3–5 mL water per
day in conjunction with the Tyr- and Phe-restricted diet [23]. Nonetheless, higher NTBC
concentrations can be used to obtain “complete” suppression of SA; however, mice can
still develop HCC [35]. SA is associated with liver damage and with induced oxidative
subcellular and tissue damage as SA leads to the accumulation of 5-aminolevulinic acid
(ALA) [36]. When comparing the livers of HT1, harboring residual blood SA levels vs. AKU
mice under continuous NTBC treatment, we observed that the differentially expressed
genes group in toxicological gene classes associated with liver disease, liver damage, liver
regeneration and liver cancer, in particular HCC. The most affected molecular pathways
were those involved in liver-specific metabolic processes, lipid homeostasis and hepatic
cholestasis. These observations point to a residual uncorrected liver disease state of HT1
mice under continuous NTBC therapy. Serum amyloid A (SAA), including SAA1, SAA2
and SAA3, are acute response proteins, mainly produced by hepatocytes and regulated
by inflammation-associated cytokines, which promote endothelial dysfunction via a pro-
inflammatory and pro-thrombotic effect and were detected to be significantly elevated in
Fah-deficient livers under NTBC treatment. Their upregulation is a remnant of residual
stress associated with residual SA levels. Its primary function is the regulation of the
homeostasis. In chronic inflammation, the driving force in tumor development, SAA levels
increase substantially as can be observed in this study. It has been reported that SAA’s
augment the toxic effect of acetaminophen in liver tissue by promoting platelet aggregation
on the cell membrane of liver sinusoidal endothelial cells [37].

Several genes involved in HCC development and prognosis were found to be signif-
icantly increased in liver tissue from NTBC-treated Fah-deficient HT1 mice compared to
Hgd-deficient AKU mice. Indeed, Asns, also known as asparagine synthetase is an enzyme
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involved in the synthesis of asparagine. The expression of Asns has been observed to be
elevated in HCC tumor tissues and closely correlates with serum α-fetoprotein (AFP) levels,
tumor size, microscopic vascular invasion, as well as tumor encapsulation [38]. As such,
Asns upregulation is a first indication that unresolved aspects of HCC development are
still ongoing, even under NTBC therapy. This is further supported by the fact that the
expression of metallothioneins (MT), Mt1 and Mt2, are modulated in Fah-deficient mouse
livers under NTBC treatment. MTs are small cysteine-rich metal-binding proteins that are
crucial for metal homeostasis and protection against heavy metal toxicity, oxidative stress
and DNA damage [39]. Recent studies have demonstrated that the abnormal expression
of MTs, such as Mt1 are able to trigger the process of carcinogenesis in various types of
human malignancies, including HCC [40]. Collectively, MTs contribute to tumor metastasis
by enhancing the invasion and migration of tumor cells and tumor microenvironment re-
modeling [40]. In the context of HCC, it was previously reported that the expression of Mt1,
Mt2 and metal transcription factor-1 (Mft1) is decreased in human HCC as compared with
periportal-HCC and normal tissues [39]. Moreover, MTs have typical circadian rhythms
and their expression depends on the differentiation status of the tumor [39]. Consequently,
the increase in expression of Mt1 and Mt2, found in Fah-deficient mouse livers under
NTBC treatment, could point to an unresolved oxidative stress response against toxic
tyrosine metabolites, which might still progress into HCC development. Interestingly, the
expression of circadian clock target genes, including nuclear orphan receptor factor protein
(Nr1d1) and Nr1d2, as well as D-box-binding protein (Dbp), was found to be upregulated
in HT1 mouse livers under NTBC therapy. Dbp encodes a transcription factor that binds
to the promoter of genes of albumin and several CYP enzymes. This is in accordance to
what is found in HCC livers as compared with periportal-HCC and normal livers [39].
Furthermore, it has been reported that the early growth response protein Egr1 and the
copper-dependent monooxygenase Moxd1, which were found to be significantly increased
in NTBC-treated HT1 livers, are correlated to the invasiveness of HCC cells and early
tumor development, respectively [41,42]. Expression of Moxd1 is also associated with poor
survival in glioblastoma, whilst when it is downregulated, it activates ER-stress causing
activation of the unfolded protein response. This latter has tumor-promoting functions [43].

NAD(P)H quinone oxidoreductase-1 (Nqo1) is a flavin-adenine dinucleotide (FAD)-
dependent flavoprotein that catalyzes the reduction of quinones and their derivatives
through the receptor NAD(P)H by loss of two electrons and as such avoid damage to
cells [44]. We found that Nqo1 expression is significantly increased in Fah-deficient mouse
liver under continuous NTBC treatment. The overexpression of Nqo1 has been observed in
HCC and enhances the vulnerability of cells to oxidative stress-induced injury. Nqo1 is also
involved in regulating the proliferative and aggressive characteristics of HCC [45–47].

In the context of liver disease, we report here several modulated genes. More specifi-
cally, we found that Abcg8 is significantly increased in HT1 livers under NTBC treatment.
This is a cholesterol transporter in the liver and bile that operates with Abcg5 as a het-
erodimeric transporter located at the canalicular membrane of hepatocytes and intestinal
enterocytes where it actively transports sterols. Loss-of-function mutations in this gene are
associated with an increased risk to develop gallstones. On the other hand, gain-of-function
variants results in an increased function of the transporter and, as a consequence, increased
biliary cholesterol levels [48]. Furthermore, Rbp1, a gene coding for retinol-binding protein
1, was also increased. Rbp1 is involved in vitamin A metabolism and is highly expressed
in hepatic stellate cells as well as in hepatic fibroblasts of fibrotic or cirrhotic livers [49].
In addition, Cxcl1 encodes CXCL1 which is a major chemoattractant for neutrophils that
binds to its receptor CXCR2 and was found increased in permanently treated HT1 mouse
livers [50]. Cxcl1 has an oncogenic role in HCC progression, as it is associated with tumor
progression and recurrence in HCC patients [51]. Thereby it leads to the activation of
signaling pathways such as PI3K/Akt, MAP kinases or phospholipase- β, resulting in the
recruitment of neutrophils to inflamed areas. This neutrophil recruitment is also observed
with the activation of the triggering receptor expressed on myeloid cells 1 (TREM-1), which
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promotes Akt activation [52,53]. Furthermore, it is also implicated in processes such as
tissue repair and tumor development [52]. Notably, CXCL1 expression is elevated in the
liver of non-alcoholic steatohepatitis (NASH) patients, but not in simple steatotic livers in
obese individuals or in high-fat diet (HFD)-fed mice [53,54]. However, in a NASH mouse
model induced by a choline-deficient amino acid-defined diet, increased Cxcl1′s hepatic
mRNA levels in a toll-like receptor 4-MyD88-dependent manner are observed, causing an
accumulated neutrophil infiltration associated with hepatic inflammation and fibrosis [55].
Interestingly, viral overexpression of CXCL1 in the liver is sufficient to trigger progression
from steatosis to steatohepatitis in HFD-fed mice by inducing hepatic neutrophil infiltration,
oxidative stress and hepatocyte apoptosis [56]. In contrast, several genes involved in lipid
metabolism, including Elovl3, Acss3 and Fitm1, were found to be significantly decreased in
Fah-deficient mouse liver tissue under NTBC therapy.

Importantly, when depriving Fah-deficient mice from NTBC for seven consecutive
days, many of the aforementioned signature genes were modulated, which, however, was
not the case in Hgd-deficient mice, supporting our conclusion that these genes are remnants
from an unresolved HT1-drive liver disease state. The study thus revealed the upregulation
of several genes that are involved in the acute phase and cancer development process, and
which could serve as potential HCC markers, such as SAA, which is an early stage marker
for acute (and chronic) inflammatory disease and CXCL1 is a prognostic indicator for poor
outcome.

5. Conclusions

This study provides the first preclinical data on residual features of a possible unre-
solved HT1-driven liver disease state under NTBC therapy. Our study revealed numerous
genes that are associated with liver disease and HCC that showed a differential expression
in HT1 mouse livers vs. AKU mouse livers under continuous NTBC therapy. Specifically,
we observed a significant increase in the expression of certain markers in the context of
HCC development, some of which were further modulated upon NTBC therapy discon-
tinuation. Altogether, we propose here a unique liver disease signature for HT1 under
NTBC treatment comprising 25 genes (excluding Fah and Hgd), which indicates that NTBC
therapy does not necessarily completely resolves HT1-driven liver disease or completely
abolishes the risk to develop HCC over time.
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mice with 2-fold cut-off.
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