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Abstract: Background: Heterozygous, large-scale deletions at 14q24.3-31.1 affecting the neurexin-3
gene have been associated with neurodevelopmental disorders such as autism. Both “de novo”
occurrences and inheritance from a healthy parent suggest incomplete penetrance and expressivity,
especially in autism spectrum disorder. NRXN3 encodes neurexin-3, a neuronal cell surface protein
involved in cell recognition and adhesion, as well as mediating intracellular signaling. NRXN3
is expressed in two distinct isoforms (alpha and beta) generated by alternative promoters and
splicing. MM/Results: Using exome sequencing, we identified a monoallelic frameshift variant
c.159_160del (p.Gln54AlafsTer50) in the NRXN3 beta isoform (NM_001272020.2) in a 5-year-old
girl with developmental delay, autism spectrum disorder, and behavioral issues. This variant was
inherited from her mother, who did not have any medical complaints. Discussion: This is the first
detailed report of a loss-of-function variant in NRXN3 causing an identical phenotype, as reported
for heterozygous large-scale deletions in the same genomic region, thereby confirming NRXN3 as a
novel gene for neurodevelopmental disorders with autism.

Keywords: NRXN3; neurodevelopmental disorder; autism; novel disease

1. Introduction

Neurexins were discovered as the major alpha-latrotoxin receptor and vertebrate-
specific toxin of the black widow spider (Latrodectus) [1]. The human neurexin family
consists of three unrelated genes (NRXN1, NRXN2, and NRXN3) [2]. Neurexins are highly
expressed in presynaptic nerve terminals and have important roles in synaptic cell adhesion
and neurotransmitter release [3].

Interestingly, in contrast to NRXN1 and NRXN3, NRXN2 unexpectedly represses
excitatory synapse assembly in the hippocampus, in which neurexins can be divided
into pro- and antisynaptogenic organizers [4]. A number of NRXN3 isoforms, alpha-type
and beta-type, are produced by the use of alternative promoters and alternative splic-
ing (https://www.uniprot.org/uniprotkb/Q9HDB5/entry, https://gtexportal.org/home/
gene/NRXN3; accessed on 1 April 2023) [5–8]. The larger, α isoform contains additional
exons on the 5’ site [9]. The more abundant β isoforms contain no EGF-like repeats (epi-
dermal growth factor like repeats), but the six laminin/neurexin/sex hormone-binding
globulin (LNS) domains, which are found in α isoforms [10]. Additionally, the NRXN1
gene can encode an even shorter neurexin γ isoform [8,11]. Extensive alternative splicing is
a hallmark of the NRXN family. Six alternative splicing sites in the α isoforms, and two
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(shared with α form) in the β isoforms give rise to more than a thousand isoforms, explain-
ing the extreme phenotypic variance in patients and mouse models [7,12,13]. Interestingly,
autoantibodies against NRXN1α and NRXN3α might also play a role in the development
of encephalitis, schizophrenia-related phenotypes, amnestic cognitive impairment, and
depressive symptoms [14–18].

Rare exonic deletions within NRXN1 (MIM #600565) at 2p16.3 are among the most fre-
quently observed copy number variations (CNVs) in autism spectrum disorder (ASD) [2,19–26].
The spectrum of heterozygous deletions in NRXN1 includes ASD, ADHD (attention deficit
hyperactivity disorder), intellectual disability, seizures, schizophrenia, mood disorders,
and congenital malformations [27]. Variants in NRXN2, although less frequent, have been
associated with autism and language delay [28,29]. Moreover, the deletion of Nrxn2 in
mice results in autism-related behaviors [30,31]. Other members of the neurexin family
are contactin-associated protein-like 1 (CNTNAP1), also termed neurexin 4, and contactin-
associated protein-like 2 (CNTNAP2). Variants in CNTNAP1 can cause hypomyelinating
neuropathy, congenital, 3 (MIM# 618186), and lethal congenital contracture syndrome 7
(MIM# 616286) [32]. For both disorders, no autistic phenotype was reported, despite de-
layed development and absent speech being described. CNTNAP2 is required for the radial
and longitudinal organization of myelinated axons (https://www.uniprot.org/uniprotkb/
Q9UHC6/entry). Variants in CNTNAP2 are reported to cause Pitt–Hopkins-like syndrome
1 (MIM#610042). This autosomal recessive syndrome is characterized by developmental
delay, speech delay, and seizures, as well as autism [33,34]. In addition, CNTNAP3-5,
which belongs to the neurexin family, was reported to be associated with autism [32].
Neurexin interaction partners such as neurolig-in 1 (NLGN1) (MIM#618830), neuroligin 3
(NLGN3) (MIM#300425), and the calcium/calmodulin-dependent serine protein kinase
(CASK) (MIM#300749, 300422) are reported in neurodevelopmental disorders and/or
autism etiology and susceptibility [35,36]. Heterozygous deletions of chromosomal region
14q24.3-31.1 involving NRXN3 have been associated with various neuropsychiatric con-
ditions (e.g., ADHD or schizophrenia) and autistic features with/without developmental
delay/intellectual disability in a total of 24 individuals from 14 families [37–40]. No other
NDD-linked genes were frequently deleted in 14q24.3.31.1 microdeletion syndrome pa-
tients. In 6/14 (43%) of the families, the deletion was dominantly inherited from one parent;
in 6/14 (43%) it was de novo, while in 2/14 (14%), the mode of inheritance was not available.
Four families showed deletions of exons of the β-isoform; two were inherited from their
fathers, and two were de novo [2,41]. The remarkable plethora of different isoforms also
partially explains the phenotypic diversity.

Several knock-out mouse models have been generated to analyze the function of
the NRXN family. Nrxn1/Nrxn2/Nrxn3 triple knock-out mice revealed that at least
two intact α-Nrxn genes are necessary for survival [3,42]. Here, brain morphology was
normal at birth; however, the mice showed an impairment of excitatory and inhibitory
synaptic transmission. Several constitutional and conditional mouse models revealed a
role of β-Nrxn3 in neurotransmitter release, excitatory postsynaptic current, induction of
action potential, AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor)
levels, synapse number, and behavior [43–46]. It was shown that in Nrxn3 conditional
knock-out mice, alternative splicing at SS2 and SS4 regulates the release probability but
not the number of inhibitory synapses in the olfactory bulb [47]. Exon 24 encodes an
evolutionarily conserved glycosylphosphatidylinositol (GPI) anchor site [48]. Importantly,
despite evidence from affected patients with copy number variations, NRXN3 is, to date, not
listed as a monogenic disease-relevant gene in OMIM (https://omim.org/entry/600567).
Recently, according to ClinVar, a total of 120 NRXN2 variants have been identified, and
among those, 5% have ASD [29,49–51].

https://www.uniprot.org/uniprotkb/Q9UHC6/entry
https://www.uniprot.org/uniprotkb/Q9UHC6/entry
https://omim.org/entry/600567
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2. Material and Methods
2.1. Whole-Exome Sequencing

We performed exome sequencing from leucocyte-derived DNA from the affected child
(singleton exome). The library was prepared by SureSelect60Mbv6 (Agilent) and paired-end
sequenced on a HiSeq 4000 platform (Illumina), with a read length of 100 bases [52]. In
order to align reads to the human genome assembly hg19, a Burrows-Wheeler Aligner
(BWA, v.0.5.87.5) was applied and detection of genetic variation was performed using
SAMtools (v 0.1.18), PINDEL (v 0.2.4t), and ExomeDepth (v 1.0.0). The cut-off for biallelic
inheritance was set to < 1% allele frequency, while for monoallelic inheritance, it was set to
< 0.1%. The number of reference entries was 26,174 exomes in the database at the time of
analysis. Samples achieved a 20× coverage of 95.5%. Reads were aligned to the human
genome-build GRCh37/hg19 and assessed for sequence alterations using a custom-made
bioinformatics tool [52]. Sanger sequencing was performed using standard methods. No
array CGH was performed (Figure 1A).

2.2. Web Resources/Tools and Databases Used for the Current Study

DECIPHER; https://www.deciphergenomics.org [53]
ClinVar; https://www.ncbi.nlm.nih.gov/clinvar [54]
gnomAD; https://gnomad.broadinstitute.org [55]
OMIM; https://www.omim.org
UCSC Genome Browser; https://genome.ucsc.edu [56]
UniProt; https://www.uniprot.org [57]
GTEx Portal; https://gtexportal.org
Varsome; https://varsome.com [58]
Denovo-db; https://denovo-db.gs.washington.edu
Genematcher; https://genematcher.org [59]

3. Results
3.1. Clinical Description

This girl is the second child of healthy, non-consanguineous Pakistani parents. Her
older sister and younger brother have no medical complaints. Her pregnancy, delivery,
anthropometric data at birth, and postnatal adaptation were unremarkable.

She achieved independent walking at the age of 20 months but cannot run or climb
at her current age of 50/12 years. She is unresponsive when called by name and does
not follow any commands. She does not make any syllables or words nor does she use
gestures. She only communicates discomfort by crying. An assessment of her hearing
with audiometry was impossible due to non-compliance, but brainstem response evoked
audiometry (BERA) showed normal results. She does not make eye contact or seek physical
contact with her parents or other individuals.

Her play consists of emptying drawers. She is not toilet-trained and wears diapers.
The physical and neurological examinations were unremarkable. The only somatic com-
plaint was constipation, responding well to macrogols. Based on these observations the
Austrian developmental screening tool from Jentschura und Janz and the Autism Diag-
nostic Observation Schedule (ADOS), the diagnosis of a global developmental delay and
autism spectrum disorder was made [60].

3.2. Genetic Testing

An autosomal recessive search (frequency < 500 cases) in our in-house exome database
containing 26,174 individuals gave 161 non-synonymous variants. An autosomal dominant
search (frequency < 5 cases) revealed 302 non-synonymous variants. A total of 38 variants
(dominant search) affected genes with a pLI score of 1. Furthermore, 28 CNVs (250 controls
allowed) were detected.

An exome analysis revealed a monoallelic frameshift variant in NRXN3 NM_001272020.2
(c.[159_160del];[=] (p.[Gln54AlafsTer50];[=]), which was absent from gnomAD (Figure 1B).

https://www.deciphergenomics.org
https://www.ncbi.nlm.nih.gov/clinvar
https://gnomad.broadinstitute.org
https://www.omim.org
https://genome.ucsc.edu
https://www.uniprot.org
https://gtexportal.org
https://varsome.com
https://denovo-db.gs.washington.edu
https://genematcher.org
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Additionally, no further cases with this variant were present in the in-house cohort. The
NRXN3 variant was confirmed by Sanger sequencing and found to be inherited from the
mother. According to the ACMG (American College of Medical Genetics) guidelines, the
variant is classified as likely pathogenic (PVS1, PM2, PP4, and BS2). Alternative promotor
usage produces several α and β isoforms [61]. The protein encoded by the β promotor
contains a signal sequence of 34 amino acids. The promotor for the β isoforms is located
downstream of exon 17. The frameshift mutation affects the 15th amino acid after a signal
sequence and, therefore, should lead to a lack of all β isoforms.
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4. Discussion

Numerous microdeletion disorders were published prior to the identification of
the specific disease genes residing within the critical deletion region. Initially, 9q dele-
tions were linked to Kleefstra syndrome (9q Subtelomeric Deletion Syndrome, 9q34.3
Microdeletion Syndrome, 9qSTDS), and later, it was recognized that single nucleotide
variants (SNVs) in the euchromatic histone methyltransferase 1 (EHMT1) gene cause
Kleefstra syndrome (MIM#607001) [13]. Further, notable examples include Van-Asperen
syndrome/chromosome 17q11.2 deletion syndrome (MIM#613675)l harboring NF1 (Neu-
rofibromatosis 1) (MIM#613113); Koolen–De Vries syndrome, harboring KANSL1 (KAT8
regulatory NSL complex, subunit 1) (MIM#610443); Miller–Dieker syndrome (MIM#247200),
harboring PAFAH1B1 (platelet-activating factor acetylhydrolase, isoform 1B, alpha subunit)
(MIM#601545); and Smith–Magenis Syndrome/17p11.2 microdeletion syndrome, including
RAI1 (retinoic acid-induced gene 1) (MIM#182290) [62,63].

Here, we provide further evidence that NRXN3 is likely the responsible disease
gene associated with the phenotype observed in chromosome 14q24.3-31.1 deletions in
both human and knock-out mouse models [2,10,41,46]. Reported symptoms include in-
tellectual disability, ADHD, motor delay, aggression, depression, anxiety, facial dysmor-
phism, language delay, social impairment, learning difficulties, schizophrenia, temper
tantrums, color blindness, self-harm obsessions, sleep issues, obesity, delusional and
persecutory ideas, seizures, and hypotonia. The individual presented here is the first
reported with a maternally inherited SNV in NRXN3 that is associated with an NDD
with behavioral features. In gnomAD, six loss-of-function (LoF) variants have been re-
ported. In the “gnomAD v2.1.1. (controls)” subset (60,146 out of 141,456), three LoF
variants remain. One variant lies within a non-coding transcript, and the other two
affect the last exon, potentially allowing the production of stable transcripts. In sum-
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mary, there might be no LoF variants in gnomAD controls, pointing to the extremely rare
nature of NRXN3 LoF variants. Furthermore, in gnomAD, the following LoF variants
are listed: c.1833_1849+5dupAAATCTGGATTTGAAAGGTAAA, c.2497+2_2497+3dupTA
p.Arg639Ter, and p.Arg1013GlyfsTer26. The variant p.Arg1013GlyfsTer26 affects the
last exon of NRXN3 and might give rise to a stable transcript. For another variant,
c.1833_1849+5dupAAATCTGGATTTGAAAGGTAAA, it is unclear whether it influences
splicing. In total, there are two potential LoF candidate variants: p.Arg639Ter and c.2497+
2_2497+3dupTA. In the database at https://denovo-db.gs.washington.edu, no loss-of-
function variants are reported. In DECIPHER, a maternally inherited and likely pathogenic
LoF variant (p.Arg176Ter) has been reported [53] in a patient with autistic behavior, de-
layed speech and language development, and an intellectual disability. We contacted the
responsible physician to obtain some additional information. For the individuals mother a
speech delay and a mild intellectual disability was reported. No autism was present, once
more underlining that penetrance plays an important role in the development of autism in
NRXN3 deficiency. A very short clinical description has been published recently [64]. The
clinical features of the individual reported in DECIPHER fit well with those of our patient.

Recently, a patient with a NRXN3 missense variant of uncertain significance (p.Arg39Cys)
and a neurodevelopmental disorder was described [65]. Additionally, a microdeletion of
7177 base pairs (79176037–79183213) affecting NRXN3 was detected in four patients; two of
them were sisters in a Saudi epilepsy cohort [66]. Furthermore, two Iranian families were de-
scribed with homozygous and compound heterozygous variants characterized by learning
disabilities, developmental delays, an inability to walk, and behavioral problems [67].

The variant identified in our study was also deposited on Genematcher. However, no
proper matches were present on the Genematcher platform [59]. In detail, totally different
clinical features and/or low ACMG ratings, low conservation of the affected residues, and
another mode of inheritance of the Genematcher entries led to exclusion. No matches with
sufficient evidence were identified.

The clinical features of the two patients (the one presented here and the one in [64]).
are similar to those reported in individuals with 14q24.3-31.1 deletions. Although all three
variants affect highly conserved residues, prediction algorithms classify the two missense
variants, p.Arg1332His (rs200707419) and p.Arg1481Gln (rs768341004) (NM_001330195.2,
NP_001317124.1), as “variants of unknown significance” based on PM2 and PP2. The
individual carrying the p.Arg1481Gln was compound heterozygous for c.3142 + 3A > G
(rs531047390). This splice site mutation scores well in accordance with the ACMG criteria.
Analyses of additional patients with an autosomal recessive inheritance are required to
demonstrate that NRXN3 can both be inherited by autosomal recessive and the described
autosomal dominant mode as seen in the chromosome 14q24.3-31.1 deletions. Additionally,
six patients with biallelic NRXN1 mutations were identified, raising the question of whether
all neurexin-related disorders (NRXN1, NRXN2, and NRXN3) can be inherited via an
autosomal recessive or autosomal dominant mode [34,68,69].

A total of 24 individuals with heterozygous deletions affecting either part or the entire
NRXN3 gene have been reported [2,10,41,46]. In six families, the deletions were not de-
tectable in parental leucocyte-derived DNA, and presumably occurred de novo. In another
six families, these were inherited from a (healthy) parent, suggesting incomplete penetrance
and expressivity, especially for autism [2,41]. Further, the mother in our study did not
display any overt symptoms. However, a detailed and complete neuropsychological evalu-
ation was not performed. Therefore, it cannot be excluded that some subtle abnormalities
are present. In Sanger sequencing, no signs of a mosaic were obvious, which could explain
the lack of symptoms in the mother. No exome sequencing was performed for the mother.

Consistently, it is reported that for the paralogue NRXN1, reduced penetrance and
variable expressivity remain challenges for genetic counselling. The estimation of pene-
trance in previous studies for NRXN1 was between 10.4 and 62.4% for different CNVs. For a
large cohort including 67 individuals from 34 families (11 paternal inheritance; 10 maternal
inheritance), cascade screening of 71 first-degree relatives of the 21 inherited cases led to

https://denovo-db.gs.washington.edu
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the identification of an additional 24 carriers, of whom 13 showed the typical phenotype.
Speech delay is the most consistent clinical finding in individuals harboring the NRXN1
deletion. It has been estimated that the penetrance of several key features manifests as
global delay (83%), speech delay (94%), intellectual disability (80%), autism spectrum
disorder (60%), and seizures (17%) [27]. NRXN1 deletions can be inherited from apparently
healthy parents [53]. In addition, incomplete penetrance was observed for variants in
CNTNAP2 with presentation in heterozygous carriers ranging from severe to apparently
unaffected [70].

In summary, all disorders caused by variants in members of the neurexin family seem
to show an incomplete penetrance and/or expressivity that underscore our results. In two
families, the mode of inheritance was not available. The main phenotype of our individual
(autism spectrum disorder and speech delay) is in line with previously reported cases and
mouse models. A fundamental similarity to the clinical features observed in NRXN1 and
NRXN2 patients is also present.

5. Conclusions

In summary, heterozygous CNVs encompassing NRXN3, intragenic deletions, and
specific monoallelic SNVs in NRXN3 are associated with a neurodevelopmental disorder
with behavioral/autistic features. We therefore propose that NRXN3 is a potential novel
causative disease gene for neurodevelopmental disorder/autism spectrum disorder.
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