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Abstract: Cardiomyopathy, a disorder of electrical or heart muscle function, represents a type of
cardiac muscle failure and culminates in severe heart conditions. The prevalence of dilated car-
diomyopathy (DCM) is higher than that of other types (hypertrophic cardiomyopathy and restrictive
cardiomyopathy) and causes many deaths. Idiopathic dilated cardiomyopathy (IDCM) is a type of
DCM with an unknown underlying cause. This study aims to analyze the gene network of IDCM
patients to identify disease biomarkers. Data were first extracted from the Gene Expression Omnibus
(GEO) dataset and normalized based on the RMA algorithm (Bioconductor package), and differen-
tially expressed genes were identified. The gene network was mapped on the STRING website, and
the data were transferred to Cytoscape software to determine the top 100 genes. In the following,
several genes, including VEGFA, IGF1, APP, STAT1, CCND1, MYH10, and MYH11, were selected
for clinical studies. Peripheral blood samples were taken from 14 identified IDCM patients and
14 controls. The RT-PCR results revealed no significant differences in the expression of the genes APP,
MYH10, and MYH11 between the two groups. By contrast, the STAT1, IGF1, CCND1, and VEGFA
genes were overexpressed in patients more than in controls. The highest expression was found for
VEGFA, followed by CCND1 (p < 0.001). Overexpression of these genes may contribute to disease
progression in patients with IDCM. However, more patients and genes need to be analyzed in order
to achieve more robust results.

Keywords: gene network analysis; microRNA; bioinformatics; diabetes; DisGeNET

1. Introduction

Cardiovascular diseases (CVDs) are among the leading causes of mortality and mor-
bidity globally, representing a considerable burden to families and society [1]. As statistics
indicate, the prevalence of CVDs has virtually doubled during the past two decades, and,
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worryingly, deaths from CVDs have risen from 12.1 to 18.6 million throughout this pe-
riod [1]. Among all CVDs, cardiomyopathies are the most common and represent cardiac
muscle failure, culminating in serious heart conditions. Dilated cardiomyopathy (DCM)
refers to heart muscle failure characterized by ventricular enlargement, systolic dysfunc-
tion [2], and impaired contraction, resulting in a lessened ability to pump blood [3]. Most
contributors to DCM are genetic and acquired factors, such as mutations, infections, autoim-
munity, metabolic or endocrine dysfunction, exposure to toxins, neuromuscular diseases,
and pregnancy [4].

Idiopathic dilated cardiomyopathy (IDCM) is a type of DCM for which the underlying
causes are unclear [5]. However, genetics play a crucial role in this disease, and many
genes have contributed to its progression. In a study among African Americans, the IDCM
heritability was 33%. In this ethnic group, a variant in a novel intronic locus in the gene
CACNB4 contributes to IDCM [6]. In another study, IL1RL1, TIMP-1, and TIMP-4 have been
reported as similarly altered markers in adult and pediatric IDCM hearts. Furthermore,
microRNAs 29a–c are substantially downregulated in pediatric IDCM patients [7].

Given the high prevalence of IDCM and the mortality caused by it, it is becoming in-
creasingly critical to identify high-risk patients at earlier stages so as to start therapy before
the late phase of the disease [8]. Numerous studies have examined the data to identify the
best screening and prognostication indices [9], but they have been inconclusive. Currently,
a direct biopsy of the myocardium achieves the most exact diagnosis, but it is invasive.
As an alternative, the peripheral blood sample provides a non-invasive diagnosis [10]. In
fact, more than 84% of genes expressed in heart tissue overlap with genes expressed in
blood cells [11], and peripheral blood gene expression profiles have the potential to identify
genetic signatures associated with cardiovascular diseases [10,12–15]. Particularly, it has
been shown that gene expression changes in the peripheral blood of IDCM patients can
reflect changes in left ventricular function [16]. In addition, several reports have indicated
that gene expression alterations in blood cells occur in the early stages of the disease and
before the condition worsens [17–20]. Considering that aberrant molecular variations and
environmental modifications leading to cardiovascular disease occur before tissue mor-
phological abnormalities [21], the study of molecular variations can serve as a valuable
tool for the early diagnosis of asymptomatic patients. Moreover, numerous studies have re-
ported that gene expression changes in peripheral blood cells are associated with coronary
artery disease severity [22–24], and gene expression analysis is a practical method capable
of reflecting genetic predisposition, disease activity, environmental modifier effects, and
therapeutic responses [23–27]. In addition to its scientific value, the blood gene expression
profile offers a cost-effective and less-invasive alternative to invasive measurements [10].
Therefore, in this study, by analyzing the gene expression in cardiac tissues of patients who
were in advanced stages of the disease (GSE5406 dataset), we determined the genes that
have high expression in the advanced stages of the disease. Afterwards, we used blood
samples (the present study) to know which of these advanced-stage genes have increased
expression in the early stages of the disease (suitable for introduction as biomarkers and
prognosticators).

In this research, we conducted a comprehensive bioinformatics analysis, including
the identification of DEGs, gene ontology (GO) enrichment, and the construction of a PPI
network. Furthermore, we validated the expression of several genes identified through
bioinformatics analysis as having increased expression in IDCM patients using the RT-PCR
method. It is important to note that our study differs from previous research in that we
employed distinct thresholds and parameters for identifying DEGs and conducted multiple
rounds of analysis to ensure the robustness of our findings.

2. Materials and Methods
2.1. Data Collection

The gene expression profile dataset GSE5406 was downloaded from the National
Center for Biotechnology Information (NCBI) and the Gene Expression Omnibus (GEO)
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database (http://www.ncbi.nlm.gob/geo/ (accessed on 10 August 2022)). The dataset
contained 210 RNA samples, as follows: 108 cases of human explanted left ventricular
(LV) myocardial with systolic heart failure (HF) due to ischemic cardiomyopathy (IC)
(IC-HF), 86 cases of explanted LV myocardial with systolic HF due to idiopathic dilated
cardiomyopathy (IDC) (IDC-HF), and 16 non-failing controls with a normally functioning
LV myocardium from the unused donor heart. Based on the report by Hannenhalli et al. [28],
all heart failure patients had New York Heart Association class 3 to 4 symptoms and LV
systolic dysfunction, with a mean ± SD ejection fraction of 14 ± 8%. Nonfailing controls
had normal left ventricular function with a mean ejection fraction of 56 ± 7% (p = 0.0001
versus failing). Ages were comparable in subjects with heart failure (57 ± 12 years) and
nonfailing controls (54 ± 12; p = 0.3) [28]. Further information on sample characteristics
was not reported. For further studies, 102 samples of IDC-HF and non-failing controls were
selected in total. The data were generated using an Affymetrix Human Genome U133A
Array (HG-U133A). In addition, GPL96 platform annotation was performed to map gene
probes to gene names.

2.2. Data Preprocessing

Series matrix files and associated annotations for the dataset were acquired from
the GEO database [29] using the R programming language package “GEOquery”
(https://www.r-project.org/ (accessed on 1 August 2022)). All arrays were pre-processed
and normalized together using the robust multichip average (RMA) method (http://
www.bioconductor.org/). For those multiple expression values that corresponded to an
individual gene symbol, a maximum level was adopted.

2.3. DEG Identification

Empirical Bayes statistics (eBayes) were used via the Linear Models for Microarray
Data “limma” package [30] of R to uncover the DEGs in the IDC-HF samples compared to
the normal LV samples. DEGs were selected with the following cut-off:|log2 FC| > 0.3 and
p-value < 0.05. To avoid gene name corruption in Microsoft Excel, the Escape Excel [31] plug-
in was implemented. Using the “pheatmap” package, a hierarchical clustering heatmap for
DEGs was plotted.

2.4. Enrichment and Functional Analysis

The R package “ClusterProfiler” [32] was used to carry out KEGG pathway analy-
sis [33] and GO enrichment analysis [34]. The cut-off was set at an adjusted p-value < 0.05
(obtained using the BH procedure), and this work was conducted to discover the related
fundamental processes and biological pathways.

2.5. PPI Network Construction and HUB Detection

Utilizing the Search Tool for the Retrieval of Interacting Genes (STRING, https://
stringdb.org/, accessed on 15 August 2022) v11.5 database [35], the PPI network was built
to investigate the interactions between upregulated genes in IDC-HF. Only interactions
with a medium confidence of a combined score > 0.4 were acquired. Moreover, Cytoscape
(v3.8.2) [36] was used to evaluate network parameters for further HUB identification. All
topological parameters were computed using the “CentiScaPe 2.2” plug-in.

2.6. Sampling

Fourteen IDCM patients, aged 45–55 years, comprising seven men and seven women,
referred to healthcare centers affiliated with Jahrom University of Medical Sciences (Jahrom,
Iran), were investigated against fourteen controls with the same age and gender distribu-
tion. Patients were diagnosed with IDCM by echocardiography using visual and Simpson
methods. All patients underwent coronary angiography (CAG) to reject HF ischemic and
other secondary causes. Patients were clinically stable for at least a month after receiving
diuretics, angiotensin-converting inhibitors, digoxin, and β-blockers. Inclusion criteria

http://www.ncbi.nlm.gob/geo/
https://www.r-project.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
https://stringdb.org/
https://stringdb.org/
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included having a left ventricular ejection fraction < 45% (LVEF < 45%) and undergoing left
ventricular catheterization (LVC) and CAG with normal results or minimal coronary artery
involvement. Exclusion criteria were having CVDs, significant coronary artery stenosis
(> or =50%), a prior history of MI, severe heart valve disease, restrictive or hypertrophic
cardiomyopathy, prolonged or uncontrolled systemic diseases such as acute and chronic
cardiac involvement, myocarditis, thyroid disease, drug abuse, HIV, chronic kidney dys-
function, and consuming drugs with myocardial toxicity. The patients did not report any
familial history of DCM. All the participants were informed of the study procedures and
asked to sign a consent form before entering the study. Whole blood samples (10 mL from
each participant) were obtained and stored at −80 ◦C for further examinations. The JUMS’s
research council approved the study under the ethical code IR.JUMS.REC.1398.122.

2.7. Total RNA Isolation, cDNA Synthesis, and RT-PCR Validation

Whole blood samples were collected into ethylenediaminetetraacetic acid (EDTA)
collection tubes. Peripheral blood mononuclear cells were isolated by histopaque-ficoll
(SIGMA) centrifugation. Total RNA was isolated using Invitrogen™ TRIzol™ Reagent
(Kimia Gostar Pooyesh Co., Ltd., Tehran, Iran). The RNA purity and quantity were esti-
mated by a colorimetric assay. The OD values at 260, 280, and 320 nm were read using a
UV/Vis spectrophotometer (Eppendorf, Germany), and the RNA concentration was mea-
sured as RNA.Conc. = (OD260 − OD280) × 40 × 100. The 260/230 absorbance ratio was 1.8,
indicating the acceptable purity of the RNA extracted. cDNA was constructed using ran-
dom hexamer primers and the Fermentas cDNA Synthesis Kit (Sankt Leon-Rot, Germany),
which has RevertAid H Minus Reverse Transcriptase. This enzyme has a point mutation,
enabling it to inhibit RNase H activity entirely. It further prevents RNA decomposition
and allows the synthesis of a full-length cDNA from the primary strand. Additionally, the
kit contains Ribolock RNase Inhibitor, which prevents RNA decomposition up to 55 ◦C.
Primers were designed according to PREMIER Biosoft International Inc. (San Francisco,
CA, USA) (Table 1). All the primers were investigated for the possibility of the formation
of secondary structures, primer-dimer (PD) formation during the PCR, primer melting
temperature (Tm), and proper Tm ranges. The mRNA sequences of target and housekeep-
ing genes were obtained from NCBI, and all primers were precisely investigated for exact
attachment to the sequences obtained. The NCBI Blast tool was used to investigate the
likely primer attachment to other sequences.

Table 1. The sequences of primers used in real-time PCR.

Primer Sequence (5′→3′)

VEGFA
F GGCAGAAGGAGGAGGGCAGAAT
R CATCGCATCAGGGGCACACA

CCND1
F AGGCGGAGGAGAACAAACAGA
R TGAGGCGGTAGTAGGACAGGA

MYH11
F GGACAAACTGCAAGCAAAGGTGA
R TTGTGTGAACCTCCCTGCTCT

MYH10
F ATCTCGGCGTAAACTCCAGCG
R TCTGTGTCATCGTCGGAGAGC

STAT1
F GTGGCAGGATGTCTCAGTGGT
R AACATCATTGGCAGCGTGCTC

IGF1
F ACCATGTCCTCCTCGCATCTCT
R ACTGCTGGAGCCATACCCTGT

APP
F TGGTGGGCGGTGTTGTCATAG
R GCCGTTCTGCTGCATCTTGGA

GAPDH
(Housekeeping)

F ATTATTCTCTGATTTGGTCGTAT
R CTCCTGGAAGATGGTGAT

The RT-PCR was carried out in an ABI thermocycler (ABI Co., Chiyoda City, Tokyo)
using the 2–∆∆Ct method. The reaction was performed using SYBR® Green Fluorescent as a
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marker. The Ct:Ct values for all eight target genes and the housekeeping gene (GAPDH)
were estimated from RT-PCR graphs. Similarly, ∆∆Ct was obtained by subtracting the ∆Ct
of each state from the ∆Ct of controls. Furthermore, the relative increase in gene expression
level was calculated using the 2–∆∆Ct method.

2.8. Over-Representation ANALYSIS

We utilized the “DOSE” package in R [37] to apply over-representation analysis for
the disease ontology [38] and DisGeNET [39] databases using enrichDO and enrichDGN
commands, respectively. We set the cut-off at an adjusted p-value < 0.05 (obtained using the
BH procedure). This approach led us to find significant gene-disease associations among
our validated hub genes.

3. Results
3.1. Data Preprocessing and Identification of DEGs

The GSE5406, a microarray expression dataset, includes mRNA expression data from
102 samples, 86 IDCM samples, and 16 normal LV samples. For our analysis, we selected
IDCM and normal samples and downloaded the series matrix file, which was pre-processed
and normalized together using the robust multichip average (RMA) method. Using the
limma R program, the DEGs were filtered (criteria: |log2 FC| > 0.3 and p-value < 0.05).
Finally, 1287 DEGs (Table S1) were extracted from the IDCM samples and compared to the
normal left ventricle function samples, comprising 632 upregulated and 655 downregulated
DEGs (Figure 1 depicts the heatmap for upregulated and downregulated DEGs).

3.2. Differentially Expressed Gene Enrichment Analysis

We performed KEGG pathway analysis by using the ClusterProfiler package for
upregulated DEGs. KEGG analysis demonstrated that human papillomavirus infection,
viral myocarditis, focal adhesion, ECM receptor interaction, and the calcium signaling
pathway were linked to our DEGs (Table 2). The top 20 enriched KEGG pathways are
shown in Figure 2A.

Table 2. Top 5 results of KEGG pathway enrichment analysis of DEGs.

ID Description Adjusted
p-Value Gene Symbol

hsa05165 Human papillomavirus
infection 0.000771289

ATP6V0E2/CCND1/CCND2/CDKN1B/COL1A1/COL1A2/COL6
A1/COMP/EIF2AK2/FZD1/FZD7/HEY1/HLA-B/HLA-

E/ITGB5/JAG1/LAMA4/LAMB1/LAMB2/MX1/NOTCH2/NOTC
H3/PRKACB/STAT1/TCF7L2/THBS2/THBS4/TNXB/VEGFA/VWF

hsa05416 Viral myocarditis 0.000833702 CCND1/DMD/HLA-B/HLA-DMA/HLA-DMB/HLA-
DPA1/HLA-DPB1/HLA-DRA/HLA-DRB1/HLA-E/SGCG

hsa04510 Focal adhesion 0.000833702
CCND1/CCND2/COL1A1/COL1A2/COL6A1/COMP/IGF1/ITGB5
/LAMA4/LAMB1/LAMB2/MYLK3/PDGFC/PDGFD/PPP1R12B/T

HBS2/THBS4/TNXB/VEGFA/VEGFB/VWF

hsa04512 ECM receptor interaction 0.000833702 AGRN/COL1A1/COL1A2/COL6A1/COMP/ITGB5/LAMA4/LA
MB1/LAMB2/THBS2/THBS4/TNXB/VWF

hsa04020 Calcium signaling pathway 0.000833702
ASPH/CALM3/CAMK2B/CASQ2/EDNRA/F2R/FGF1/GRM1/HR
C/ITPR1/MYLK3/NTRK2/PDE1A/PDE1C/PDGFC/PDGFD/PLC

B4/PLCE1/PRKACB/TPCN1/VDAC3/VEGFA/VEGFB
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Figure 1. The hierarchical heatmap (based on Pearson correlation) of the DEGs. Each sample is
represented by a column, and each gene is represented by a row. The change in color from green to
red reflects the pattern of expression, from downregulation to upregulation.

Furthermore, GO analysis was performed by using the ClusterProfiler package for
upregulated DEGs. The result revealed that the most significant GO terms under the
biological processes category (in descending order of adjusted p-value) were extracellular
matrix organization (GO:0030198), extracellular structure organization (GO:0043062), and
external encapsulating structure organization (GO:0045229). Furthermore, the most signifi-
cant GO terms under the molecular functions category were extracellular matrix structural
constituent (GO:0005201), glycosaminoglycan binding (GO:0005539), and integrin binding
(GO:0005178). Finally, the most significant GO terms under the cellular component category
were collagen-containing extracellular matrix (GO:0062023), contractile fiber (GO:0043292),
and Z disc (GO:0030018) (Figure 2B).
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Figure 2. Scatter plot functional and pathway enrichment of upregulated DEGs. (A) Plot of the top
20 enriched KEGG pathways. (B) Plot of the top 10 enriched GO terms for molecular functions (MF),
biological processes (BP), and cellular components (CC).

3.3. PPI Network Construction and HUB Selection

For this article, we selected the most upregulated DEGs and used the STRING online
database to produce a protein-protein interaction (PPI) network. According to the STRING
analysis, our network consisted of 615 nodes and 2543 edges. The top 100 genes, ranked
based on the intersections between four topological algorithms (i.e., degree, betweenness,
closeness, and centroid), were expected to play a significant role in biological processes
and were set as HUBs (Figure 3, Table S2). Although in vivo examination and validation
of all these genes can be of particular importance in understanding the pathogenesis of
IDCM, due to experimental limitations, we selected seven of the top 100 genes (nominated
as “HUB of HUBs”) based on the bioinformatics analysis results and the literature review.
In fact, one of the common methods for selecting genes (i.e., seven HUB of HUBs in this
study) out of the top ones in the PPI network (to introduce them as biomarkers or potential
therapeutic targets and consider further experimental studies) is the results of patient
survival analysis. Despite the abundance of survival data for cancer patients, the absence
of such information for DCM patients presents a technical limitation. Consequently, we
relied on an extensive literature review as an alternative and considerable method for gene
selection. Thus, due to these limitations, five genes (VEGF-A, STAT1, APP, CCND1, and
IGF1) with the best betweenness ranking were selected based on the bioinformatics analysis,
and two genes related to heart disease were selected according to the literature review
(MYH 10 and MYH 11): 1. Vascular endothelial growth factor-A (VEGF-A) can regulate
angiogenesis, vascular permeability, and inflammation. Based on our bioinformatics
analysis, this gene was among the top ten genes, but there were few documents and
pieces of evidence examining its expression in IDCM patients. 2. Signal transducer and
activator of transcription 1 (STAT1) is a member of the STAT family, and it has been
proposed that STAT1 promotes the generation of larger infarcts, which can lead to heart
failure, by enhancing apoptosis and negatively regulating autophagy [40]. 3. The amyloid
precursor protein (APP) is known as a precursor protein of Alzheimer’s disease (AD)-
related amyloid β-protein (Aβ) [41]. Recent studies identified Aβ aggregates in the hearts
of patients with dilated cardiomyopathy [42]. It was important and exciting for us to
examine the expression of APP in patients without a history of Alzheimer’s. 4. CCND1
is an important cell cycle gene involved in three pathways (the cell cycle, Hedgehog
(Hh) signaling, and Wnt signaling). Limited previous observations have reported its
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upregulation in IDCM [43,44]. 5. Insulin-like growth factor-1 (IGF-1) is a peptide hormone
that activates canonical and non-canonical signaling pathways in the heart. It has a direct
growth-promoting effect on cardiomyocyte hypertrophy. 6. Myosin heavy chain (MYH10),
the only non-muscle myosin, is expressed in the heart and required for normal heart
development. Recently, the upregulation of MYH10 in the cardiomyocytes of adults with
heart failure has been reported [45]. 7. Myosin heavy chain 11 (MYH11) belongs to the
MYH family and is a myocardial contractile protein. Hydrolyzed proteins are involved in
muscle contraction through adenosine triphosphate. Myocardial cytoskeleton proteins are
important for maintaining the structural and functional integrity of the myocardium [46].
However, there are few studies on the changes in cytoskeletal proteins associated with
dilated cardiomyopathy. Figure 4 represents the violin plots of selected HUB of HUBs
expression patterns.
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3.4. RNA Isolation and Quantification, cDNA Synthesis, and RT-PCR

Isolated RNA was quantified with NanoDrop (Biotech. ENG). The OD 260/280 and
OD 260/230 ratios of 1.8 to 2 and 1.7 to 2 indicated acceptable RNA quantities. The
synthesized cDNA was similarly quantified with NanoDrop (Biotech. ENG). The melting
curve was investigated at 60 to 96 ◦C. The highest expression in patients compared to
controls was found for the gene VEGFA (p < 0.001), followed by the genes CCND1 (p < 0.001)
and IGF1 (p = 0.001). STAT1 was also overexpressed in patients (p = 0.017). Contrarily, the
genes APP (p = 0.823), MYH11 (p = 0.781), and MYH10 (p = 0.502) were not significantly
more expressed in patients compared to controls (Figure 5).
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3.5. Over-Representation Analysis for the DisGeNET and DO

Over-representation analysis (ORA) on four significantly expressed HUBs of HUBs
(VEGFA, IGF1, CCND1, and STAT1) was applied by the DOSE package for two databases of
the disease gene network (DisGeNET) and disease ontology (DO). However, it is essential
to interpret these results cautiously and consider the databases’ constraints. DisGeNET
integrates data from expert-curated repositories, scientific literature, animal models, and
GWAS catalogs. Nevertheless, it is important to recognize that the data contained in
these databases may have inherent limitations, such as errors in text mining or insufficient
annotations.

In this study, three keywords were used to filter out diseases that are related to this
project: “cardiomyopathy,” “heart failure,” and “ischemic.” Some genes were also involved
in “cardiovascular” diseases, but this keyword was ignored to prevent generalization. Ac-
cording to the DisGeNET and DO analyses, two genes (IGF1 and VEGFA) were significantly
related to IDCM, while there is no link between STAT1 and CCND1 with IDCM (Figure 6,
Table 3).

It should be noted that CCND1’s role was detected by DisGeNET in two related
diseases. The former was “Cardiomyopathy, Familial Idiopathic,” while after studying the
stated PMIDs, it was found that all of them were related to “invasive ductal carcinoma
(IDC)” incorrectly, instead of idiopathic dilated cardiomyopathy (IDC), due to possible
errors in text mining. The latter was “myocardial ischemia,” given only one PMID, which
was not enough to conclude the role of CCND1 in that disease. To sum up, there is
insufficient cardio-relational experimental evidence for CCND1. However, it is important
to emphasize that the absence of significant associations in the current analysis does not
preclude the existence of a potential relationship between CCND1 and IDCM. A deeper
exploration of the potential involvement of CCND1 in IDCM is needed through rigorous
experiments and validation.
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Table 3. Detailed information on ORA for DisGeNET and DO.

ID Description Gene Symbol Adjusted p-Value Database

C0349782 Ischemic cardiomyopathy IGF1/VEGFA 0.000957133 DisGeNET
C0235527 Right-sided heart failure IGF1/VEGFA 0.001407601 DisGeNET
C4552322 Obesity cardiomyopathy IGF1 0.001552258 DisGeNET
C0264716 Chronic heart failure IGF1/VEGFA 0.002243913 DisGeNET
C1168330 Non-ischemic dilated cardiomyopathy VEGFA 0.003639825 DisGeNET
C0007787 Transient ischemic attack IGF1/VEGFA 0.003972576 DisGeNET
C4509223 Heart failure with reduced ejection fraction (HFrEF) IGF1 0.004298851 DisGeNET
C0018802 Congestive heart failure IGF1/STAT1/VEGFA 0.004923199 DisGeNET
C0007193 Cardiomyopathy, dilated IGF1/VEGFA 0.006671016 DisGeNET
C0007194 Hypertrophic cardiomyopathy IGF1/VEGFA 0.007424915 DisGeNET
C0746731 Acute myocardial ischemia VEGFA 0.009968188 DisGeNET
C4509226 Heart failure with preserved ejection fraction (HFpEF) IGF1 0.020442736 DisGeNET
C0023212 Left-sided heart failure VEGFA 0.026246253 DisGeNET
C0018801 Heart failure IGF1/VEGFA 0.029611829 DisGeNET
C4551472 Hypertrophic obstructive cardiomyopathy IGF1 0.044684056 DisGeNET
DOID:6000 Congestive heart failure IGF1/STAT1/VEGFA 0.000875442 DO
DOID:11984 Hypertrophic cardiomyopathy IGF1 0.038275847 DO
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Figure 6. An overview of ORA for DisGeNET and DO generated by the “enrichplot” package. (A) and
(B) gene-concept networks for DisGeNET and DO gene-disease associations, respectively. (C) and
(D) dot plots illustrating these relationships with adj. p-value and Rich factor. (E,F) Heatmap-like
functional classification representing the role and association of each gene among different diseases.
Compared to all gene numbers involved in a disease term, the richest factor is the proportion of
selected gene numbers (four HUBs). As the rich factor increases, the degree of disease increases.

4. Discussion

DCM is a consequence of various pathogenic factors, such as genetic, infectious,
hormonal, and environmental factors [47]. However, knowledge about the genotype-
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phenotype relationship is still unknown. Therefore, DCM is almost always diagnosed late,
which in turn causes a poor prognosis. In recent years, gene sequencing and bioinformatics
methods have resulted in new ideas for understanding the mechanisms of disease develop-
ment, disease diagnosis, and personalized precision medicine development and presented
some meaningful results. Sun and Li (2023) used WGCNA and the machine learning
algorithm to identify biomarkers of IDCM and obtained two hub genes, AQP3 and CYP2J2,
which have the potential to serve as targets for the diagnosis and management of IDCM [48].
Liu et al. (2022) investigated the candidate genes and pathways involved in DCM patients
(data sets GSE3585 and GSE5406) and predicted the microRNAs (miRNAs) targeting the
hub genes. Their screening criteria were set as p < 0.05 and |log fold change (FC)| > 0.589.
Furthermore, they investigated the pattern of immune cell infiltration in DCM. The top 10
hub genes included collagen type III alpha 1 chain (COL3A1), COL1A2, signal transducer
and activator of transcription 3 (STAT3), C-C motif chemokine ligand 2 (CCL2), fibro-
modulin (FMOD), aspirin (ASPN), C-X-C motif chemokine ligand 12 (CXCL12), lumican
(LUM), heat shock protein 90 alpha family class A member 1 (HSP90AA1), and osteoglycin
(OGN) [49]. Si (2023) has screened the associated genes and biological pathways of in-
flammatory dilated cardiomyopathy (DCMi) [50]. Luo et al. (2020) identified novel long
non-coding RNA (lncRNA) biomarkers associated with DCM and revealed the potential
molecular mechanisms of DCM development using bioinformatics approaches (dataset
GSE5406 from GEO) [51]. Zhang et al. (2022) screened diagnostic biomarkers and identified
the landscape of immune infiltration in DCM (dataset GSE141910 from Geo). They found
that ASPN, CD163, IL10, and LUM could predict the occurrence of DCM [52]. Huang et al.
(2018) found that Fos proto-oncogene, AP-1 transcription factor subunit, tissue inhibitor
of metalloprotease-1, and serpin family E member 1 may serve as therapeutic targets in
DCM [25].

In this study, we investigated which of the DEGs related to the advanced stages of the
disease (confirmed by bioinformatics methods using the GSE5406 dataset) have increased
expression in the early stages of the disease (using the RT-PCR method in blood samples
of IDCM patients participating in this study). It is noteworthy that the dataset used in
this study (GSE5406) has already been analyzed by several researchers to predict potential
targets [25,53], but in this study we set different thresholds for some parameters compared
to previous studies. For instance, a similar paper for this dataset used |log2 FC| > 0.589
to detect DEGs, while we used |log2 FC| > 0.3. FC is a main parameter to show the
change in expression levels of genes. FC analysis is a very intuitive method to identify
DEGs [54]. Although in most cases, |log2 FC| is set to ≥1, sometimes these cutoff values
can significantly change the interpretation of the microarray due to the deletion of some
hub genes [55]. For instance, a minor change in transcription factor expression may alter
the entire system and induce a high effect across the network of genes [56]. Thus, we
covered more genes in our study that could possibly have significant impacts on cellular
processes while having a minor gene expression level. Furthermore, we took additional
steps to ensure the reliability of our findings and performed multiple rounds of analysis
with different thresholds and parameters (e.g., different topological centrality parameters
for detecting HUBs in our PPI network and then selecting HUBs of HUBs) and used
different software packages for the analysis to confirm the robustness of our results (e.g.,
using DOSE and enrichplot packages to perform and visualize over-representation analysis
(ORA) on significantly expressed HUBs of HUBs). Finally, from the DEGs identified by
bioinformatics methods, seven genes were selected to check their expression in the blood
of patients participating in this study.

RT-PCR tests showed that four of the seven selected genes (VEGFA, IGF1, CCND1, and
STAT1) have increased expression in blood samples from patients. Some studies, in accor-
dance with the results of our RT-PCR experiments, showed an increase in the expression of
some genes in a variety of heart diseases. However, for genes whose expression changes
were not observed in our study, we did not find any reports on the expression of these
genes in patients with IDCM or other heart diseases. The literature review revealed that, in
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general, there is little information on the expression changes of the HUB genes selected in
this study in IDCM patients.

VEGFA is one of the HUB genes whose increased expression in patients was observed
in our study. The generation of six isoforms, including VEGF111, VEGF121, VEGF145,
VEGF165, VEGF189, and VEGF206, from VEGFA mRNA under the alternative splicing
process has been reported [57]. VEGFA and its two receptors, VEGFR-1 and VEGFR-2, play
fundamental roles in angiogenesis under physiological and pathological conditions, as
well as in neurological and cardiac growth and morphogenesis [46,58]. Disturbance in
angiogenesis has been shown to contribute to the development of myocardial interstitial
fibrosis in IDCM [59–62]. Some evidence has confirmed that serum VEGF-A [61] or total
VEGF [60] is significantly higher in patients with IDCM compared to controls. Moreover,
significant increases in serum VEGF levels were reported in DCM patients compared
to ischemic cardiomyopathy patients [63]. However, another study showed that, in the
heart tissue of patients with end-stage DCM, the mRNA transcript levels of VEGF165 and
VEGF189 and the protein level of VEGF-A decreased compared to controls [64]. In fact, it
has been indicated that in the disease’s acute stage, the expression of genes and receptors
may be altered significantly, with varying intensities and at different times. Accordingly,
the concentration of VEGF-A may fluctuate significantly [65]. In this regard, it has been
reported that VEGF-A is strongly expressed in the acute and subacute stages of CNS
damage, but its expression decreases over time [66].

CCND1 was one of the HUB genes that our RT-PCR studies confirmed to be over-
expressed in IDCM patients. CCND1 is a proto-oncogene that manages progression via
the G1-S phase of the cell cycle [67], and its involvement in heart diseases has been re-
ported [68]. In a study reported on children and adults with IDCM in the end-stages, it
was shown that the CCND1 gene is not overexpressed in adults, but it is overexpressed
in children [42]. A significant association of microRNAs (miRNAs) with heart diseases
such as cardiac arrhythmia, myocardial infarction, and cardiac hypertrophy has been
confirmed [69]. For instance, it has been revealed that several miRNAs (e.g., miR-34a,
miR-28, miR-148, and miR-93) are differentially expressed in patients with left ventricular
hypertrophy (LVH) and normal controls [70]. Moreover, more recent studies confirmed
that miR-93 is reduced in LVH patients and that CCND1 is the direct target of miR-93 [68].
In mouse models, the MYCN gene has been revealed to induce cardiomyocyte proliferation,
at least in part by upregulating CCND1, CCND2, and the inhibitor of DNA binding 2
(ID2). MYCN is a multifunctional transcription factor that plays an essential role in the
development of disease [71]. MYCN has been indicated to be the major disease-causing
gene for Feingold syndrome, a developmental disorder characterized in part by congenital
heart abnormalities [72]. However, some other reports showed that the upregulation of
CCND1 and CCND2 suppressed DCM caused by TTN gene insufficiency [73]. Truncating
variants of TTN are common in patients with IDCM [74–76]. Titin, encoded by the gene
TTN, is a giant sarcomeric protein that is critical for cardiac contraction and relaxation [77].

IGF-1 is a peptide hormone homologous to pro-insulin, which is expressed in most
tissues and is involved in cell proliferation, apoptosis, migration, and differentiation [78].
The results of epidemiological studies on the relationship between IGF-1 levels and the
risk of cardiovascular disease were inconsistent [79], as various reports indicated that
both an increase and decrease in serum IGF-1 levels were involved in heart disease [80].
Similarly, a meta-analysis conducted in 2015 showed that both low and high IGF-1 levels
were associated with an increased risk of cardiovascular disease [79].

Indeed, more recent studies have also not reached a consensus on the association of
IGF-1 with heart disease (including dilated cardiomyopathy): while some have reported
a decrease in IGF-1, others have reported an increase, and some studies have not even
found an association between IGF-1 levels and heart failure. In this regard, some evidence
associates the decline in IGF-1 expression with heart disease. For instance, in a cohort
study of 337 patients, IGF-1 was reported as a predictor of cardiovascular mortality in
patients with heart failure, so older patients with lower serum IGF-1 levels showed higher
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mortality [81]. Another report described that IGF-1 signaling was inhibited in end-stage
DCM [82]. Moreover, a study on DCM rats revealed that the intramuscular injection
of human umbilical cord-derived mesenchymal stem cells (hUCMSC) improved cardiac
function, and the same study suggested that the expression of IGF-1, HGF, and VEGF in the
myocardium of DCM rats was remarkably increased by hUCMSC injection [83]. In contrast,
other evidence suggests that increased IGF-1 expression is involved in heart disease. Free
IGF-1 levels have been shown to be higher in patients with myocardial infarction compared
to controls [64]. Furthermore, IGF-1 levels in patients with HFpEF (heart failure with
preserved ejection fraction) were significantly higher than the IGF-1 levels of their HFrEF
(heart failure with reduced ejection fraction) counterparts [84]. Moreover, it was shown
that the concentration of IGF-binding protein (IGFBP)-1 and the ratio of IGFBP-1/IGF-1
in patients with heart failure were significantly lower than in a control group, and they
can be used to easily identify patients with and without heart failure [85]. Due to the
fact that IGFBP1 and IGFBP2 have inhibitory effects on the biological activity of IGF-1, it
can be concluded that, in this group of patients, although the amount of IGF-1 did not
increase due to the decrease in the inhibitory effect of its binding proteins, in fact, IGF-1
had increased activity [86]. Furthermore, some evidence suggests that elevated IGF-1 levels
may be causally correlated with a higher risk of type 2 diabetes [68], and another report
indicated that patients with type 2 diabetes were notably associated with an increased
risk of IDCM in all age and sex categories, with the exception of men over 64 years of
age [87]. On the other hand, some studies have linked an increase in IGF-1 system activity
to a decrease in lifespan [88], while other reports have revealed that an increase in IGF-1
is associated with increased survival in people over 65, unlike younger people [89]. In
general, it can be concluded that an increase in IGF-1 in the under-65 population can be
dangerous, which is highly consistent with the data of our study, in which the subjects
were under 65 years of age.

STAT1 is another gene whose high expression was observed in the IDCM patients who
participated in our study. STAT1, encoding a signal transducer and activator of transcrip-
tion factor, is involved in apoptosis and the interferon response [90]. Some reports have
suggested that this gene is involved in dilated cardiomyopathy. It has been shown that mu-
tations of sodium voltage-gated channel alpha subunit 5 (SCN5A) are involved in dilated
cardiomyopathy [91,92]. Furthermore, mice with the SCN5A N1325S mutation in the heart
(TG-NS mice) exhibited the phenotype of dilated cardiomyopathy and heart failure [93],
and other studies have indicated the upregulation of STAT1 in the hearts of TG-NS mice [90].
Moreover, in vitro studies on engineered myocardial tissues stated that interferon-γ (IFN-γ)
damages myofibrillar organization and contractile force production in human cardiomy-
ocytes through upregulation of the JAK/STAT signaling pathway and downregulation of
multiple sarcomeric proteins. In fact, circulating IFN-γ (a pro-inflammatory cytokine) is en-
hanced in numerous clinical conditions, including acute coronary syndrome, autoimmune
and inflammatory diseases, sepsis, and viral infections, which are correlated with a high
risk of myocardial dysfunction [94]. In addition, Trypanosoma cruzi, a protozoan parasite,
causes zoonotic Chagas disease, which is a chronic and systemic infection that typically
brings about progressive dilated cardiomyopathy and gastrointestinal manifestations [95].
Some in vitro studies revealed that in response to T. cruzi, intracellular STAT1 was increased
both at the mRNA and protein levels [96].

Further analysis was performed through the DisGeNET database to find the correlation
between four significant HUB of HUBs genes (VEGFA, IGF1, CCND1, and STAT1) and IDCM.
According to DisGeNET data, confirmatory findings were reported for two genes (IGF1 and
VEGFA) with an IDCM link in DisGeNET. These results suggest that IGF1 and VEGFA are
also associated with other heart diseases similar to IDCM. Furthermore, DisGeNET data
show that two genes, including STAT1 and CCND1, have not been associated with IDCM,
but STAT1 is related to congestive heart failure. Although, based on DisGeNET results,
CCND1 is not related to IDCM, its upregulation in IDCM has been previously reported in
children [44]. The same report has shown that CCND1 is not overexpressed in adults at the
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end stage of IDCM [44]. Thus, our study is the first evidence of CCND1’s upregulation in
IDCM adult patients at an early stage, and CCND1 might be a potential newfound gene for
cardiomyopathy.

In contrast to the genes that exhibited increased expression in the patients who partici-
pated in our study, some upregulated genes (based on analysis of GEO data) did not show
significant changes in the patients compared to the control group, based on the RT-PCR
results. These genes included MYH10, MYH11, and APP. There are several points to be
made regarding this issue. As mentioned in the previous paragraphs, the expression of
some genes depends on the stage of the disease or the age of the patients. It is clear from
the data of the present study and the GSE5406 dataset that the patients participating in
the present study were in the early stages of the disease, while the patients in the GSE5406
dataset were in the final stages. It can be the reason for the difference in APP, MYH10,
and MYH11 gene expressions in these two groups of patients. Moreover, the number of
samples used in this study was limited; therefore, future studies can include larger groups
of participants to investigate these genes’ status and identify other genes associated with
the disease. Due to the limited available studies regarding the expression of these genes in
IDCM patients, further studies are needed for a more detailed discussion. Finally, the lack
of sample characteristics and clinical and survival information in the GSE5406 dataset were
other limitations in this research.

5. Conclusions

In this study, seven genes that have increased expression in IDCM patients (obtained
from bioinformatics analysis on the GSE5406 dataset) were selected for further investigation
in patients referred to Jahrom Hospital. The RT-PCR results confirmed the overexpression
of the STAT1, IGF1, CCND1, and VEGFA genes in blood samples of patients with IDCM,
which was consistent with our GEO analysis. Among these four genes, CCND1 was the
only one not linked to IDCM or related heart disease in DisGeNET; therefore, according
to our investigation, CCND1 may be introduced as a potential biomarker for IDCM. Con-
versely, there were no significant differences in the expression of three DEGs (APP, MYH10,
and MYH11) between patients and controls, which was inconsistent with GEO analysis.
Considering the limited available studies on the expression of these genes in IDCM patients
and the lack of detailed information on the GSE5406 dataset, more studies are needed for a
more detailed discussion. Nevertheless, the present study may advance our understanding
of IDCM pathogenesis and provide new targets for clinical diagnosis.
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