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Abstract: We propose a computational framework for selecting biologically plausible genes identified
by clustering of multi-omics data that reveal patients’ similarity, thus giving researchers a more
comprehensive view on any given disease. We employ spectral clustering of a similarity network
created by fusion of three similarity networks, based on mRNA expression of immune genes, miRNA
expression and DNA methylation data, using SNF_v2.1 software. For each cluster, we rank multi-
omics features, ensuring the best separation between clusters, and select the top-ranked features that
preserve clustering. To find genes targeted by DNA methylation and miRNAs found in the top-ranked
features, we use chromosome-conformation capture data and miRNet2.0 software, respectively.
To identify informative genes, these combined sets of target genes are analyzed in terms of their
enrichment in somatic/germline mutations, GO biological processes/pathways terms and known
sets of genes considered to be important in relation to a given disease, as recorded in the Molecular
Signature Database from GSEA. The protein–protein interaction (PPI) networks were analyzed to
identify genes that are hubs of PPI networks. We used data recorded in The Cancer Genome Atlas for
patients with acute myeloid leukemia to demonstrate our approach, and discuss our findings in the
context of results in the literature.

Keywords: similarity network fusion (SNF); spectral clustering; chromosome conformation (Hi-C)
data; multi-omics data; mutations; protein–protein interactions (PPI); acute myeloid leukemia (AML)

1. Introduction

The advent of new technologies makes multi-omics (mRNA and micro-RNA expres-
sion, DNA methylation) and mutational profiles routinely available for each individual
patient. These data could potentially give clinicians and researchers a more comprehensive
view on any given disease and allow them to more accurately assess existing similari-
ties/differences between patients in terms of their omics, mutational profiles and other
(clinical) features. Identification of patients’ similarities/differences, especially for highly
heterogeneous diseases, finding informative features that contribute to these similarities
and, most importantly, suggesting plausible biological interpretation for observed similari-
ties is invaluable for a better understanding of the molecular basis of a given disease and
patients’ survival trajectories. It may also lead to the discovery of novel therapeutic and
diagnostic targets for optimized treatment and disease management for specific groups
of patients.

In this paper, we focus on finding informative and biologically plausible features
contributing to the similarities of patients, as identified by clustering of multi-omics profiles
of patients with Acute Myeloid Leukemia (AML), known to be a highly heterogeneous
disease from both a biological and clinical point of view [1].
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AML is the most common type of acute leukemia affecting adults. It accounts for
2500 annual fatalities in the United Kingdom (Cancer Research UK, 2017), which is almost
seven deaths daily. Currently AML is cured in only 35–40% and 5–15% of patients under
and over 60 years of age, respectively. Although morphological and immunophenotypic,
cytogenetic and other molecular alterations incorporated in the FAB (French-American-
British) and ELN (European Leukemia Net) genetic risk stratification systems allow us to
predict individual clinical trajectories, their accuracy remains relatively low, since between
50% and 70% of AML patients harbor normal or risk-indeterminate karyotypes [2]. The
most recent edition of the World Health Organization (WHO) classification of AML, which
is based on therapeutically and/or prognostically assessable biomarkers [3], may lead to a
more accurate stratification of patients.

Various in silico (clustering) procedures have been used for guiding the identification
of prognostic signatures, based on either expression of a specific set of genes/immune
genes with or without clinical features and/or multi-omics data such as gene and miRNA
expression and DNA methylation. Among them is a prognostic signature based on the
expression of 66 genes proposed by Metzeler et al. [4]. A score based on this signature
shows a correlation with overall survival (OS; i.e., dead or alive) in cytogenetically normal
AML patients. A 17-gene leukemia stem cell score (LSC17) proposed by Ng et al. [5] proved
to be accurate in predicting resistance to chemotherapy. High LSC17 scores were found
to be good predictors of poor outcome of current treatments including allogeneic stem
cell transplantation, thus identifying a cohort of AML patients who will not benefit from
standard therapies. Wagner et al. [2] proposed a 3-gene signature based on expression
of the CALCRL, CD109 and LSP1 genes. This 3-gene-based prognostic index allows the
identification of a finer classification within each ELN cytogenetic risk category into sub-
groups with different survival probabilities. This signature, together with other features
(e.g., FLT3 internal tandem duplication or non-mutated nucleophosmin 1, NPM1), was
predictive of event-free and OS of AML patients. The prognostic role of immune genes
in AML was explored by Zhu et al. [6]. In total, 136 immune-related genes associated
with OS in AML patients were identified. In turn, the protein–protein interaction (PPI)
analysis of these genes resulted in identifying a subset of 24 immune-related genes as being
hubs of the PPI network. This subset of genes was further reduced to six immune genes:
CSK, MMP7, PSMA7, PDCD1, IKBKG and ISG15. These genes were subsequently used
to create an immune-related gene signature for stratifying AML patients into two groups
corresponding to OS. Figueroa et al. [7] used DNA methylation profiles of 344 patients with
AML to identify 16 groups. Interestingly, five of the groups found were new AML subtypes
and did not share any known features. Subsequently, a 15-gene methylation signature
was created allowing the prediction of OS in an independent patient cohort (p < 0.001,
adjusted for known covariates). A multi-omics profiling framework based on the integra-
tion of similarity network fusion [8] and machine learning techniques was proposed by
Chierici at al. [9]. For 157 AML patients, several features such as gene expression, miRNA
expression and DNA methylation available from TCGA repository were used to predict
the OS. Although the proposed approach showed the best precision/accuracy balance in
comparison with other approaches in the 10 × 5-fold cross validation settings (Matthew
correlation coefficient, MCC = 0.274), this value was much lower than the corresponding
values for, e.g., the BRCA subtyping (MCC = 0.788) and BRCA estrogen receptor status
(MCC = 0.820), prompting the need for novel and more accurate approaches for identifying
features predictive of AML patients’ overall survival, incorporating multi-omics and other
available data.

In this paper, we propose a computational framework that reveals informative and
biologically plausible genes among features identified by any relevant clustering procedure
as contributing to patients’ similarity. This framework is based on integrating multi-omics
data with chromosome-conformation capture (Hi-C) data, somatic/germline mutations
and knowledge of PPI. We use data recorded in The Cancer Genome Atlas (TCGA; https:
//www.cancer.gov/ccg/research/genome-sequencing/tcga, accessed on 20 November
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2019) database for patients with AML. First, the similarity network fusion (SNF, [8]) was
used to identify patients’ fused similarity network based on three types of multi-omics
data: mRNA expression of immune genes, miRNA expression and DNA methylation.
Signatures based on immune genes have been validated before and proved to be important
for survival prediction in several types of cancers (see, for example, [10]). Second, we used
spectral clustering to identify the optimal partition of the resulting fused network into
homogeneous patients’ subgroups/clusters. To identify informative features contributing
to similarity of patients’ multi-omics profiles, for each cluster we ranked multi-omics
features, ensuring the best separation of a given cluster from the remaining ones. For
each cluster, we selected top-ranked features that, when used for creating fused similarity
network and spectral clustering, ensure 95% accuracy, i.e., classify 95% of patients into
the same clusters as in the original clustering based on all features. Immune genes found
in the selected top-ranked features in each cluster were combined with immune genes
that may be targeted by methylated DNA loci and miRNAs found among those selected
top-ranked features. For the former, we used chromosome-conformation capture (Hi-C)
data [11]; for the latter, the miRNet2.0 [12] software tools were used. To identify subsets of
immune genes contributing to the similarity/homogeneity of patients within each cluster
and investigate the plausibility of these genes playing a role in AML, these combined sets of
immune genes were explored in terms of their enrichment in somatic/germline mutations
and GO biological processes/pathways terms. The Molecular Signature Database from
GSEA was used to assess the enrichment of these combined sets in several known gene sets
often considered to be important in relation to AML. The PPI analysis of the sets of immune
genes was performed with the aim of identifying genes that are hubs of PPI networks
and, when dysregulated, may influence the largest number of interacting proteins. We
discussed our findings in the context of results published so far, although detailed biological
interpretation of the identified genes was beyond the scope of this paper.

2. Materials and Methods
2.1. Publicly Available Datasets Used in This Study

The list of immune genes was compiled from the following databases: the Im-
munology Database and Analysis Portal (ImmPort; 4723 genes; https://www.immport.
org/, accessed on 20 November 2019), the Innate Immunity Genes database (InnateDB;
1378 genes; http://www.innatedb.com/, accessed on 20 November 2019), data from the
Davis et al. (2005) paper [13] (3148 genes), the Immunogenetic-Related Information Source
(IRIS) [14] containing 1508 immune genes and the Immunome database [15] (824 genes;
http://structure.bmc.lu.se/idbase/Immunome/, accessed on 20 November 2019). After
removing duplicates, 7810 immune genes and gene transcripts were retained.

The NCBI Reference Sequence Database (RefSeq; https://www.ncbi.nlm.nih.gov/
refseq/, accessed on 20 November 2019) was used to identify genes and their positions in
the GRCh37/hg19 assembly. In total, there were 51,537 gene transcripts of 26,368 genes,
henceforth referred to as RefSeq genes.

We used single nucleotide polymorphisms (SNPs) identified by the GWA study of
300 AML samples [16]. For each SNP, its linkage disequilibrium (LD) block, available
in Lv et al. (2017) [17], was used. The dataset of 1754 LD blocks was downloaded from
the GWAS Catalog (https://www.ebi.ac.uk/gwas/studies/GCST008413, accessed on 20
November 2019).

The dataset of somatic mutations in 200 AML patients was downloaded from TCGA
database (https://www.cancer.gov/ccg/research/genome-sequencing/tcga, accessed on
20 November 2019). It contained a total of 2749 mutations in 2275 RefSeq genes and
genomic transcripts including 1072 mutations in 871 immune genes.

Chromosome conformation capture (Hi-C) data for all-trans retinoic acid (ATRA)-
induced HL-60 cells, frequently used as a model of leukemia cell differentiation as reported
in Li et al. (2018) [11], were downloaded from the GEO database (four datasets; accession
number GSE93997). These datasets contained ~175 million interactions which we have

https://www.immport.org/
https://www.immport.org/
http://www.innatedb.com/
http://structure.bmc.lu.se/idbase/Immunome/
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subsequently binned into 40 K regions and counted the frequency of interactions between
these 40 K regions. To identify the strongest intra-chromosomal interactions, distributions
of interacting frequencies were analyzed individually for each chromosome. For each
chromosome, only interactions (and corresponding 40 K bins) recorded in all four datasets
and residing within the tails of these distributions that correspond to 5% of all interactions
were considered to be the strongest intra-chromosomal interactions. For inter-chromosomal
interactions, only interactions and their corresponding bins found in all four datasets were
deemed to be significant and used in further analysis. Note that the frequency of intra-
and inter-chromosomal interactions between two loci is inversely proportional to their
closeness within the cell nucleus.

DNA methylation, miRNA expression and mRNA gene expression data were down-
loaded from TCGA database (https://portal.gdc.cancer.gov/repository, accessed on
20 November 2019) for a cohort of 200 AML patients. Methylation levels at 27,578 CpG
loci across the genome were recorded as conventional β values. The mRNA expression
of 51,537 genes and gene transcripts was measured in terms of FPKM (fragments per
kilobase of transcript per million mapped reads) values that consider the length of the
gene sequence to account for biases in the sequencing process. For miRNA expression,
RPM (reads per million mapped reads) values that take into account the number of reads
mapped to miRNAs and the total number of miRNAs (which was 1881), were downloaded.
Patients that exhibited greater than 20% of data missing in a single omics data type were
removed. Further, features (either methylation loci, miRNAs or genes/gene transcripts)
were omitted if they exhibited greater than 20% missing data across all patients and data
types. The remaining missing values were imputed using a K-nearest-neighbor approach
(K = 20) based on weighted averages; all data were further normalized using log2 and
Z-transform. The resulting datasets for 112 patients consisted of methylation levels at
24,889 loci, expression of 415 miRNAs and 51,537 genes/gene transcripts.

Positions of LD blocks, genes and mutations were binned into corresponding 40 K re-
gion(s). When required, genomic positions of features were ‘lifted over’ to the GRCh37/hg19
assembly, using the Lift Genome Annotation program available at https://genome.ucsc.
edu/cgi-bin/hgLiftOver (accessed on 20 November 2019).

Clinical data for each of 112 patients were downloaded from TCGA database and is
summarized in Table S1. Note that all datasets were downloaded between October and
December 2019 when this study commenced.

2.2. Similarity Network Fusion (SNF)

Similarity Network Fusion (SNF) implements a sophisticated method of integrating
multi-omics data based on message-passing theory [8]. SNF initially constructs similarity
matrices for each available data type (e.g., mRNA and miRNA expression, DNA methy-
lation) using the Euclidean distance function and a scaled exponential similarity kernel.
Then, SNF uses a K-nearest-neighbor approach to form sparse local similarity matrices
that encode the local community structure of the patient similarity network corresponding
to each similarity matrix. It assumes that local similarities are more reliable information
sources than similarities between patients that do not share the same local neighborhood,
since those similarities form weak connections in the patient similarity network. The
integration stage involves iteratively updating the full similarity matrices using the local
similarity information encoded in the sparse kernel matrices. This is performed using a
non-linear combination method that has its roots in message-passing and label propagation
theory [18]. The final similarity matrices were shown to converge [8] after a suitable number
of iterations (experiments have shown that 20 iterations suffice in most cases). The data
integration stage is finalized by forming a similarity matrix whose entries are defined as
the average of the corresponding entries in each of the final similarity matrices.

A comparison of several multi-omics integration approaches performed by Tini [19]
demonstrated that SNF is the most robust method for analyzing complex datasets. It
exhibits a unique ability to detect complementary signals and is robust to noise (as it uses
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reliable local similarity information throughout the integration stage). Furthermore, since
the local information (which represents strong similarity connections) is propagated to
all similarity matrices in the integration stage, strong similarities are emphasized in the
final fused matrix. Hence, SNF exhibits the unique property that it up-weights strong
connections and down-weights weak connections in the patient similarity network, which
often results in more clearly defined and well-separated patient communities that can easily
be captured using spectral graph partitioning techniques.

Following data integration, SNF employs spectral clustering using the NCut algo-
rithm [20] to determine the optimal partition of the network into homogeneous patient
subgroups. Spectral clustering partitions the similarity network by using graph-theoretical
properties of the similarity network. In turn, NCut aims to minimize between-cluster
similarity whilst maximizing the similarity within the same cluster (for more detailed
definitions see, e.g., [8]). To compute the optimal number of clusters, we used the EigenGap
approach and RotationCost, adopted by SNF.

2.3. Identifying Informative Features Contributing to Cluster Separation

Following Wang et al. [8], we ranked features according to their significance in each
cluster using a ranking similar to the Normalized Differential Expression (NDE) index
suggested by Tusher [21]. A feature in the kth cluster was considered to be significant if
its average value in that cluster was different from the average value calculated across all
other clusters:

NDE =

∣∣∣µ(Clk)− µ
(

Clk

)∣∣∣√∣∣∣Var(Clk)− Var
(

Clk

) 1
mk

+ 1
n−mk

n − 2

Here µ(Clk) and µ
(

Clk

)
(Var(Clk) and Var

(
Clk

)
) are average values (variances) of a

given feature in cluster k and the rest of the patients, respectively; mk and n are the number
of patients in cluster k and the entire dataset, respectively.

In total, 33,114 features (415 miRNA expression, 7810 immune gene expressions
and DNA methylation levels of 24,889 loci) available for 112 patients were considered
for ranking. Finally, we constructed a list of features in descending order of their corre-
sponding NDE values. Features at the top of this list were considered to be more impor-
tant/informative for separating patients in the kth cluster from the rest of the patients.

2.4. Other Software Packages Used

The software package miRNet2.0—a miRNA-centric network visual analytics
platform—described in Chang [12] and available at https://www.mirnet.ca/miRNet/
home.xhtml (accessed on 20 November 2019), was used to identify potential target genes of
miRNAs. Enrichment analyses were performed using Metascape (https://metascape.org/
gp/index.html, accessed on 20 November 2019). A few selected gene sets corresponding
to the hallmark interferon IFN-α (M5911) and IFN-γ (M5913) response and inflamma-
tory response (M5932) were downloaded from the Molecular Signature Database [22,23],
available via the GSEA website (https://www.gsea-msigdb.org/gsea/msigdb/, accessed
on 20 November 2019). Protein–protein interaction data from the STRING database
(https://string-db.org/, accessed on 20 November 2019) were used to create PPI net-
works for selected gene sets. Node degree distributions were used to identify the top 5%
(1%) genes with the highest number of interactions with other proteins; these genes were
considered to be hubs of the networks.

3. Results
3.1. SNF Analysis

First, patient similarity matrices (networks) for each multi-omics dataset—DNA methy-
lation, mRNA expression of immune genes and miRNA expression—were fused together
using SNF_v2.1 software and then clustered using spectral clustering by the NCut al-

https://www.mirnet.ca/miRNet/home.xhtml
https://www.mirnet.ca/miRNet/home.xhtml
https://metascape.org/gp/index.html
https://metascape.org/gp/index.html
https://www.gsea-msigdb.org/gsea/msigdb/
https://string-db.org/
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gorithm [8]. The optimal number of clusters for each data type was assessed by the
RotationCost and EigenGap approaches and varied between two and four. Supplementary
Figure S1 shows the results for patient clustering using single omics datasets.

It is apparent that these clusters (with exception of a few) exhibit relatively low within-
cluster similarity. For mRNA gene expression, no visible patient clusters were identified
(Supplementary Figure S1a,b). For DNA methylation and miRNA expression, one and
two patient clusters, respectively, with higher within-cluster similarity were emerging
(Supplementary Figure S1c,d). The between-cluster similarity was generally lower than
within-cluster similarity, suggesting some degree of separation between those clusters with
respect to a single omics dataset.

Further, patient similarity networks for each data type were fused together using the
SNF_v2.1 software [8], with default parameter settings (α = 0.5, T = 20 and K = 20). The
fused similarity network was subjected to spectral clustering by NCut. The number of
clusters was set to five. This number of clusters was found as an optimal number among
first- and second-best choices by the RotationCost and EigenGap approaches, respectively.
The heatmap in Figure 1 displays the results of the patient clustering (see also Table 1
for cluster sizes and their characteristics). The heatmap shows a generally good cluster
separation and exhibits lower between-cluster similarity as compared to the clustering
obtained using single omics datasets.
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Figure 1. Heatmap of fused similarity network following spectral clustering into five clusters. Darker
colors indicate higher similarity.

Table 1. Patients’ characteristics by cluster.

Characteristics Category
Cluster

1 2 3 4 5
Number of patients 27 25 29 11 20

Gender
male 14 13 15 5 11

female 13 12 14 6 9
mean 63 57 46 45 48

median 68 58 48 42 50Age
range 32–88 21–76 22–76 29–68 21–75

Vital status
dead 21 15 12 1 11
alive 6 10 17 10 9
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Table 1. Cont.

Characteristics Category
Cluster

1 2 3 4 5
M0 7 0 1 0 3
M1 8 4 9 0 10
M2 8 0 13 0 6
M3 0 0 0 11 0
M4 3 10 6 0 1
M5 0 11 0 0 0

FAB classification

unclassified 1 0 0 0 0

ELN risk category

poor 15 3 5 0 6
normal 12 20 12 1 13

favorable 0 2 12 10 0
not known 0 0 0 0 1

Mutations

IDH1_r132
positive 2 1 1 0 8
negative 25 23 28 10 12

not known 1 0 0 1 0
positive 2 2 3 0 1
negative 24 23 26 11 18IDH1_r140

not known 1 0 0 0 1

IDH1_r172
positive 2 0 0 0 0
negative 24 25 29 11 19

not known 1 0 0 0 1
positive 2 2 1 0 1
negative 24 23 28 11 19Activating_ras

not known 1 0 0 0 0

NPM1c
positive 1 14 0 0 9
negative 25 11 29 11 11

not known 1 0 0 0 0
positive 0 0 0 0 1
negative 1 5 2 0 2BCR::ABL1

not known 26 20 27 11 17

PML::RARA
positive 0 0 0 3 1
negative 1 2 0 0 2

not known 26 23 29 8 17
positive 1 9 7 5 10
negative 23 16 22 6 9FLT3-ITD

not known 3 0 0 0 1
Total number of somatic
mutations/mutated genes 339/113 519/206 689/248 33/9 181/61

Cluster 4 is the smallest (11 patients) and most homogeneous cluster; it has the
strongest within-cluster similarity in the network. Further, all patients in this cluster char-
acterized as the FAB M3 AML subtype, i.e., acute promyelocytic leukemia (see Table 1).
According to the ELN risk categories, every patient in Cluster 4 (with one exception)
exhibits a favorable prognosis. Further, only 11 patients in the entire dataset were charac-
terized as the FAB M5 subtype (acute monocytic leukemia); all these patients were found
in Cluster 2 (Table 1). Twenty out of 25 patients in this cluster were classified as having
intermediate/normal prognosis according to the ELN risk categories. Mutations in the
NPM1c gene were found in almost half of patients in Clusters 2 (14/25) and 5 (9/20) (see
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Supplementary Table S2). Interestingly, the FAB M3 subtype was detected in the absence
of any cytogenetic/chromosomal lesion information during data integration and cluster-
ing, which suggests the involvement of other biological processes/features in this disease
subtype. Other clusters, however, did not significantly associate with either a particular
category of existing classification systems or exhibit any distinct cytogenetic or immunophe-
notypic homogeneity (see Supplementary Table S2), suggesting the involvement of other
biological modalities in defining patients’ similarity. However, it was noted that patients
from poor-risk and favorable-risk categories were rarely clustered together (Table 1). To
explore it further, the survival analysis was performed.

3.2. Survival Analysis

To find out whether the survival curves are different for patient clusters identified
using spectral clustering of the fused network, the Cox log-rank test was performed. The
test indicated that there is evidence to suggest that there is a significant (p = 0.00082)
difference between the survival profiles of patients in the clusters found (Figure 2). The
Kaplan–Meier curve for Cluster 4 showed the highest survival probability. This aligns well
with the ELN risk classification of patients in this cluster; all patients in Cluster 4 (with
one exception) exhibit a favorable prognosis. Approximately 83% of patients in Cluster
3 were classified as having intermediate/normal and favorable prognosis according to
the ELN risk classification, whereas all patients in Cluster 1 are classified as having poor
or intermediate/normal prognosis. In general, there is a good agreement between the
rankings of survival probabilities and the proportion of patients in each cluster having
favorable prognosis (Spearman correlation = 0.82), although the p-value = 0.08859 is slightly
higher than the 5% level of significance.
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3.3. Informative Feature Selection

To find features that make the largest contribution to the patients’ survival/risk
category prediction, as captured by clustering of the fused similarity network, a ranked
list of all 33,114 features comprising 415 miRNA, 7810 immune genes/transcripts and
24,889 DNA methylation loci was constructed for each cluster using the NDE index (see
Section 2). The values of the NDE index, which, by definition, indicate the potential of
each feature to separate patients of a given cluster from the rest of the patients, decrease
dramatically even within the top 100–200 ranked features. For many features, especially
at the bottom of these rankings, the NDE values are identical, showing that these features
make similar, albeit small, contributions to cluster separation. We found that using the top
125 features from each cluster (613 unique features in total across all clusters) allowed us to
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produce clustering similar (with 95% accuracy) to the one obtained using all 33,114 features.
Therefore, we speculate that these top-ranked 125 features from each cluster make the
most contribution to cluster separation and could be considered as the most important and
informative ones.

The majority (92–98%) of features appearing among the top 125 in each cluster were
DNA methylation loci. To find immune genes that could be potential targets of the observed
DNA methylation (i.e., their expression may be affected by DNA methylation either via
intra- or inter-chromosomal interaction between methylated loci and gene promoter/gene),
intra- and inter-chromosomal Hi-C interactions data (see Section 2 for details) were used.
For each cluster, we compiled a list of immune genes that could be potential targets of
methylation. Further, immune genes listed in TCGA database as potential targets of
methylation loci, typically residing within close proximity to the methylation sites but not
found following the stringent definition of “strong” intra-chromosomal interaction (see
Section 2), were added to the corresponding lists.

Between six and 15 miRNAs were also found among top-ranked features. Immune
genes potentially targeted by these miRNAs were found using miRNet [12] and added to
the compiled lists of genes. Immune genes found in the top 125 most informative features
were also kept.

Using the selection procedures described above, the sets of 1542, 1927, 1328, 1720
and 2782 immune genes (SIGs for short) that may play a role in AML were identified in
Clusters 1 to 5, respectively (see Supplementary Table S3). The overall number of different
immune genes (including target genes) across all five clusters was 4692, i.e., 60% of all
immune genes (7810) used in this study. Note that it is unlikely that all the genes identified
using inter- and intra-chromosomal interactions between 40 K fragments play a role in
AML; some of them may be simply “bystanders”, which happened to occur within the
same 40 K regions harboring genes that may play a role in the development of AML.
Although a systematic biological interpretation of genes in the identified SIGs was beyond
the scope of this paper, we explored their enrichment in GO terms and genes from curated
datasets, presence of somatic mutations, occurrence of genes prone to germline mutations
(as identified by the GWA study of unrelated AML patients) and presence of genes being
hubs of PPI network, with the aim of identifying biologically plausible features contributing
to patients’ similarity.

3.4. Enrichment Analysis

For each of five SIGs identified by selection procedures described above, their enrich-
ment in GO biological processes and pathways terms was performed using Metascape. The
SIGs were found to be enriched in ‘cytokine signaling in immune system’ reactome GO
term; p-values corrected for multiple testing (i.e., q-values) were between ~10−96 and 10−41

in all five clusters. The SIGs were also enriched in ‘signaling by interleukin’ reactome term
(10−76 < q < 10−31), ‘apoptotic signaling pathway’ GO term (10−76 < q < 10−40) and many
others; for the full lists, see Supplementary Table S4.

Using the Molecular Signature Database from GSEA, we downloaded curated sets
M5911, M5913 and M5932 containing genes that are up-regulated in response to α and γ

interferon proteins and defining inflammatory response in AML, respectively.
The numbers of immune genes shared between SIGs for each cluster and gene lists

corresponding to GO terms or curated datasets analyzed are summarized in Table 2. Some
of the immune genes were present in several SIGs (i.e., the total number of unique genes is
not a sum of genes in all clusters), but the majority of them were unique to each cluster.
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Table 2. The number of immune genes shared between SIGs for each cluster and gene lists corre-
sponding to GO terms and selected curated datasets.

Number of Genes
Cluster

Total Unique
1 2 3 4 5

selected in cluster (SIG) 1542 1927 1328 1720 2781 4692
enriched in cytokine signaling in immune system 147 185 136 177 291 449
enriched in interferon γ response (M5913; 176 genes) 41 55 45 42 84 130
enriched in interferon α response (M5911; 97 genes) 13 27 21 13 38 56
enriched in inflammatory response (M5932; 170 genes) 53 56 42 36 78 128

3.5. Germline and Somatic Mutations in Immune Genes

A dataset of somatic mutations together with their potential target genes was down-
loaded from TCGA database and consisted of 2749 mutations occurring or residing within
close proximity to 2275 RefSeq genes. The most frequently mutated gene was DNMT3A,
with 33 mutations in 30 out of 200 AML patients. The next most frequently mutated genes
were immune genes TP53 and FLT3; 11 and 13 patients had mutations in these genes,
respectively. The majority of mutated genes were harboring between one and four somatic
mutations per patient. Out of 7810 immune genes used in this study, 871 genes were
harboring 1072 mutations. In a subset of 112 patients selected for this study, 680 somatic
mutations were recorded in 581 immune genes.

The dataset of 1754 LD blocks [17] encompassing germline mutations (SNPs) identified
by GWA studies [16] in patients unrelated to TCGA AML cohort were found to reside
within 1124 distinct 40 K bins. In total, 712 RefSeq genes including 242 immune genes were
either harboring or residing within LD blocks corresponding to at least one SNP showing
genome-wide significance (p < 5 × 10−6).

We found that immune genes were enriched in both germline and somatic mutations
(Fisher’s Exact Test, p < 2.2 × 10−16) as compared to non-immune genes.

It is known that chromatin interactions could bring together genes and germline
mutations that are not necessarily within the same LD block. We used Hi-C data to
identify possible intra- and inter-chromosomal regions strongly (as described in Section 2)
interacting with regions harboring germline mutations. For intra-chromosomal interactions,
the cut-off interaction frequency corresponding to approximately 5% of the strongest
interactions across various chromosomes was found to be 100. Genes residing within these
interacting regions were identified using the list of 26,368 RefSeq genes and gene transcripts
(including 7810 immune genes) that are recorded in the GRCh37/hg19 assembly. All gene
positions were binned into 40 K regions to align them with the Hi-C data. We found that
the proportion of immune genes, either harboring/residing within LD block of SNPs or
targeted by germline mutations remotely via inter- or intra-chromosomal interactions, was
significantly higher (Fisher’s Exact Test; see Table 3 for corresponding p-values) for immune
genes than non-immune genes.

Table 3. Number of genes harboring or targeted by remotely acting germline mutations.

Type of Interactions Type of Genes
Used

Number of Genes in
Interacting Regions

Number of Genes outside
Interacting Regions p-Value

intra-chromosomal
immune 373 7437

8.97 × 10−4
non-immune 719 17,839

inter-chromosomal
immune 580 7230

2.19 × 10−6
non-immune 1088 17,470
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Note that germline mutations were not recorded for TCGA AML cohort; these observa-
tions are purely speculative and were made based on the GWAS data reported in [17]. Nev-
ertheless, we hypothesized that germline mutations reported in [17] as reaching genome-
wide significance level are highly likely to be present in TCGA AML cohort. Therefore, all
genes either mutated or targeted by these germline mutations were considered as affected
by germline mutations. The number of immune genes harboring somatic and germline
mutations or that could be affected by germline mutations via chromatin interactions are
summarized in Table 4.

A small number of genes in each cluster (apart from Cluster 4) could potentially harbor
both germline and somatic mutations. The list of these genes is given in Table 4.

Table 4. Immune genes in SIGs that harbor somatic and germline mutations or could be affected by
germline mutations via chromatin interactions.

Number of
Immune Genes

Cluster
Total Unique

1 2 3 4 5
in SIG 1542 1927 1328 1720 2781 4692

harboring germline
mutations

identified in [16]
56 86 61 79 134 214

affected by
germline mutations

via chromatin
interactions

200 252 205 275 344 583

harboring somatic
mutations 26 55 37 1 23 138

harboring both
germline and

somatic mutation
6 9 5 0 4 22

affected by both
germline and

somatic mutation
1 6 5 0 1 13

Gene symbols

Genes harboring
or affected by both

germline and
somatic mutations

AKR7A2,
CNOT6L,

CRISPLD2,
GALNT2,

PEAR1, RUNX1,
IKZF3 1

CELSR3, KRAS,
LARS, NRAS,

PKHD1, PLXNA2,
PRKCZ, PEAR1,
RUNX1, AP1M1,

CAT, DLG5, PLEC,
SMC5, TPI1

CBL, GLI3, KLHL9,
MYLK, NRXN3,

ADAM19,
FASTKD5, IGF2R,

PCNT, TRIB1

FLT3,
PRDM16,

RERE, XKR4,
CDH23

1 genes that could be affected by both germline and somatic mutation are shown in bold.

3.6. Identification of Hub Genes

PPI data from the STRING database were used to create PPI networks for the four
identified SIGs. The selected gene set for Cluster 5 was too big (2781 genes) for the STRING
analysis. Around 96% of immune genes in each SIGs were involved in PPI, with the average
number of interactions per gene varying between 22 and 36 (Table 5). Genes with the top 1%
of interactions listed in Table 5 were considered to be important hubs in the corresponding
PPI networks. Four genes—ACTB, AKT1, TP53 and VEGFA—appeared to be hubs of all
four networks. Unique cluster-specific hub genes were also identified (see Table 5).
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Table 5. Immune genes in SIGs involved in protein–protein interactions. (Note that the SIG of Cluster
5 was too big for analysis by STRING.)

Number of
Cluster

1 2 3 4
genes in SIG 1542 1927 1328 1720

genes in PPI (% of SIG) 1483
(96%)

1866
(97%)

1271
(96%)

1670
(97%)

connections 38,768 66,333 28,387 56,629
average connections

per gene 26 36 22 34

genes with top 5% of
interactions 75 94 67 84

genes with top 1% of
interactions 15 20 14 17

Gene symbols

Genes with top 1% of
interactions

ACTB, AKT1, CCND1,
ESR1, HIF1A 1, HRAS,
IL1B1, IL6, NOTCH1,

PTEN, RPS27A, STAT3,
TP53, UBC, VEGFA

ACTB, AKT1, CD4,
CTNNB1, EGFR, EP300,

ESR1, HRAS,
HSP90AA1, HSPA8, IL6,

JUN, MYC, PTEN,
RPS27A, STAT3, TNF,
TP53, UBA52, VEGFA

ACTB, AKT1, CASP3,
CCND1, CD4, EGFR,

EP300, FN1, HSP90AA1,
KRAS, MYC, NOTCH1,

TP53, VEGFA

ACTB, AKT1, CASP3,
CCND1, CD4, EGFR,

EP300, FN1, HSP90AA1,
KRAS, MYC, NOTCH1,

TP53, VEGFA

1 genes unique to the corresponding cluster are shown in bold.

4. Discussion

In this study we used the similarity network fusion approach [8] to integrate multi-
omics profiles of 112 AML patients, comprising 24,889 DNA methylation loci, mRNA
expression of 7810 immune genes and expression of 415 miRNAs, into a fused similarity
network, which was subsequently subjected to spectral clustering. The optimal number
of clusters was found to be five. Patients’ characteristics by cluster are given in Table 1.
Analysis of the resulting clustering showed no strong correlation with either FAB or ELN
subtypes/risk categories, apart from Cluster 4 in which all 11 patients were characterized
as FAB M3 subtype, with ten patients having a favorable prognosis according to ELN. It is
likely that patients in this cluster tend to have a favorable prognosis due to the success of
all-trans retinoic acid (ARTA) treatment at targeting the PML::RARA gene fusion [24], which
is distinctly present (positive) in three patients that have been tested for this gene fusion
in this cluster. It was noted that patients with poor and favorable prognosis according
to the ELN risk categories rarely appear in the same cluster. Note that it was impossible
to compare the results with the recently proposed revised ELN classification [25]; these
scores were not available for the cohort of patients analyzed. Subtyping of AML patients
according to the WHO classification [3] by using differentiation markers was also not
possible, since for the majority of patients these data were not available.

Despite only modest agreement between cluster assignment and the ELN risk category,
the survival analysis shows a significant (p = 0.00082) difference between the survival
profiles of patients in different clusters (Figure 2). Although the correlation between the
rankings of survival probabilities and proportions of patients in each cluster having a
favorable prognosis was noted (Spearman correlation = 0.82), the p-value = 0.08859 did
not reach the 5% level of significance. Nevertheless, one may speculate that patients’
survival/risk category is largely dependent on the similarities captured by clustering of the
fused similarity network that integrates DNA methylation, mRNA expression of immune
genes and expression of miRNA. Therefore, the resulting fused similarity network could be
used in prediction of survival/risk categories for new patients, using, e.g., the procedure
outlined in [8].
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We suggested a way of reducing the number of features (immune genes, DNA methy-
lation loci and miRNAs) used in constructing the fused similarity network and subsequent
spectral clustering. For every cluster, we ranked each of 33,114 features with respect to
their NDE index, reflecting the potential of a corresponding feature to separate patients of
a given cluster from other clusters. It appeared that the use of the top 125 features from
each cluster is sufficient to obtain a fused similarity network and clustering similar (with
95% accuracy) to the one obtained using all omics data available. We speculated that these
top 125 features from each cluster make the most contribution to cluster separation and
could be considered as the most important and informative feature in patient clustering
and survival prediction. With a small loss of accuracy, this smaller fused similarity network
could be used for survival/risk category prediction as outlined in [8].

A small number of immune genes (between three and ten) were found among top-
ranked features. They included the ALDH1A1 gene (found in Cluster 1) that emerges as a
significant risk factor in AML [26]. The HNMT gene (Cluster 2) was found among six amino
acid metabolism-related genes that correlate with the immune microenvironment and could
be predictors of the prognosis and immunotherapy response of AML patients [27]. The
MPO gene (Cluster 3) was one of the five immune genes in a model for predicting non-M3
AML patients’ treatment outcome. Note that none of the patients in Cluster 3 are classified
as FAB M3 group (see Table 1). The full list of immune genes found among top-ranked
features is given in Supplementary Table S3 and their role in AML from a biological point
of view could be further explored.

Epigenetic control of gene expression plays a pivotal role in determining the biological
behavior of cells. DNA methylation is one such epigenetic mechanism. Not surprisingly,
between 92% and 98% of features in the top 125 for each cluster were DNA methylation loci.
It is known that chromatin interactions could move distal regulatory elements, promoters or
the transcription start sites to the proximity required for transcription regulation of certain
genes. To identify these proximal and distal targets of methylation, the set of target genes
listed in TCGA database was combined with immune genes found in regions that have
strong intra- and inter-chromosomal interactions with regions harboring methylation loci.

MiRNAs are known to regulate most cellular processes and are considered promising
therapeutic targets for cancer and other diseases. A small number of miRNAs (between six
and 15) was found in the top-ranked features. Their potential target genes were identified
using miRNet2.0 software [12] for four clusters and added to the compiled lists of genes.

The resulting sets of genes (SIGs) were enriched in several GO biological processes/
pathways terms (see Supplementary Table S4). Comparison with curated sets containing
genes that up-regulated in response to α interferon proteins (M5911), γ interferon proteins
(M5913) and defining inflammatory response in AML (M5932) shows that there are overlaps
with selected immune genes. Further investigation and biological interpretation of these
common genes may guide the finding of features responsible for survival differences
between patients in the five clusters obtained.

Further, we created PPI networks for four SIGs using the STRING database. Node
degree distributions were used to identify the top 1% genes with the highest number of
interactions with other proteins; these hub genes were considered to be important for a
given network. Their dysregulation may influence the expression of proteins interacting
with these hub genes. Four genes—ACTB, AKT1, TP53 and VEGFA—appeared to be hubs
of all four networks. It is known that these genes play crucial roles in the development
and progression of AML, and dysregulation of these genes contributes to the proliferation,
survival and chemoresistance of leukemic cells. Their aberrant expression or mutations
were found to serve as important prognostic markers, influencing clinical outcomes in
AML patients (see, e.g., [26–30]). Interestingly, all these genes were found to be targeted by
various miRNAs occurring among top-ranked features, and, in some cases, by the same
miRNAs within the same cluster. For example, in Cluster 1 the ACTB and AKT1 genes
are targets of the hsa-mir-192, whereas the TP53 and VEGFA genes are potential targets
of the hsa-mir-106a. Moreover, all six somatic mutations recorded in the TP53 gene occur
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in patients assigned to Cluster 1. In Cluster 4, for example, three genes—ACTB, AKT1
and VEGFA—could be targeted by hsa-mir-1-3p. In addition, in all five clusters the AKT1
gene could be dysregulated by remotely acting germline mutations (possibly occurring
within an enhancer) identified by GWA studies in an unrelated cohort of patients. Further
understanding of “one-to-many” or “many-to-many” relationship between miRNAs and
their targets is challenging but can guide the development of targeted therapies and
personalized treatment approaches for AML.

Several cluster-specific hub genes identified, such as CASP3, CTNNB1, HIF1A, IL1B,
JUN, MAPK1, UBA52 and UBC, are known to be involved in leukemogenesis. Dysregu-
lation of these genes affects critical cellular processes including apoptosis, cell adhesion,
transcriptional regulation, angiogenesis, inflammation and intracellular signaling.

We identified a small number of genes in each cluster (apart from Cluster 4, in which
only one patient harboring a somatic mutation was found) that could potentially mu-
tate both in soma and germline (see Table 4). The latter mutations were identified in an
unrelated cohort of patients with AML [17] via GWA studies as reaching genome-wide
significance level (p < 5 × 10−6). Among these genes are the three oncogenes KRAS, NRAS
(Cluster 2) and GLI3 (Cluster 3). In turn, the RUNX1 gene (Clusters 1 and 2) could play a
dual role, being both an oncogene and tumor suppressor [31] and is considered to be an
important player in AML. The platelet endothelial aggregation receptor 1 (PEAR1) gene
(Clusters 1 and 2) could be another candidate for a tumor suppressor gene in AML [32].
One may speculate that inactivation of both alleles in these tumor suppressor genes leads
to the change of a cell’s phenotype in agreement with the “two hit hypothesis” [33]. Further
inspection of the other genes from this list is required to establish their tumor suppres-
sor potential.

5. Conclusions

In this paper, we proposed a computational framework for finding informative and
biologically plausible features that may contribute to patient similarity as identified by
various clustering procedures used for patient stratification. In this study, we used spectral
clustering of fused similarity networks. The advantage of using similarity network fusion
is its robustness to noise, because it up-weights strong connections and down-weights
weak connections in the patients’ neighborhood similarity network.

The use of this approach was demonstrated on data available for patients with acute
myeloid leukemia. Further, we suggested a way of reducing the number of features used
in clustering. Chromosome-conformation capture data, somatic/germline mutations and
knowledge of protein–protein interactions were used to understand the observed clustering.
This computational framework has the potential to guide researchers in finding plausible
explanations for the features found as informative in patient’ stratification with respect to
any meaningful clustering. Further experimental/biological validation is required in order
to establish the functional significance of the genes found.
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