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Abstract: There is still much to learn about the epigenetic mechanisms controlling gene expression
during carcinogenesis. When researching aberrant DNA methylation, active proliferative tumor cells
from head and neck squamous cell cancer (HNSCC) can be used as a model. The aim of the study
was to investigate the methylation status of CDKN1, CDKN2A, MYC, Smad3, SP1, and UBC genes
in tumor tissue (control-normal tissue) in 50 patients (37 men and 13 women) with HPV-negative
HNSCC. Methods: Bisulfite conversion methods and methyl-sensitive analysis of high-resolution
melting curves were used to quantify the methylation of genes. In all patients and across various
subgroups (tongue carcinoma, laryngeal and other types of carcinomas T2, T3, T4 status; age before
and after 50 years; smoking and non-smoking), there are consistent differences in the methylation
levels in the SP1 gene in tumor DNA compared to normal. Results: The methylation of the SP1 gene
in tumor DNA suppresses its expression, hinders HNSCC cell proliferation regulation, and could
be a molecular indicator of malignant cell growth. The study of DNA methylation of various genes
involved in carcinogenesis is promising because hypermethylated promoters can serve as potential
biomarkers of disease.

Keywords: methylation of DNA; head and neck squamous cell cancer; epigenetic changes; Sp1 gene

1. Introduction

Head and neck squamous cell cancer (HNSCC) is one of the ten most common malig-
nant neoplasms [1]. Currently, active research is underway to discover and characterize
new molecular genetic signatures of head and neck squamous cell carcinoma. Based on
some of these signatures, the WHO HNSCC classification was recently improved in 2022.
Thus, it has been shown that the nature of genetic changes is often associated with eti-
ological factors that serve as a “trigger” for the development of oncopathology, in the
development of HNSCC among the leading factors that increase the risk of developing the
disease, infection with human papillomavirus, smoking, alcohol abuse. It is known that,
unlike their HPV-positive counterparts, HPV-negative tumors are characterized by high
mutational load and chromosomal aberrations with different copy number alteration (CNA)
profiles [2]. HPV-positive HNSCC has a higher frequency of aberrant DNA methylation
compared to HPV-negative HNSCC. Various studies have shown that various genes are
frequently hypermethylated in HPV-positive HNSCC. Thus, HPV infection status affects
not only the genetic alterations but also the prognosis of patients with HNSCC [3]. Com-
pared to the DNA methylation profiles of HPV-positive HNSCC, fewer studies have been
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conducted to investigate the DNA methylation profiles of HPV-negative HNSCC, although
it is this group of patients that needs the isolation of diagnostic and prognostic biomarkers
due to their unfavorable prognosis [4].

The Cancer Genome Atlas characterized the molecular genetic landscape of 279 pri-
mary HNSCC of different anatomical localization, with the majority of patients (over 60%)
having a long smoking history and being HPV-negative, only 13% were identified as HPV-
positive (>60%) [5]. For our study, we decided to select a group of HPV-negative patients
with HNSCC of different anatomical localization with different smoking status and to
investigate them for the presence of epigenetic changes in 6 genes. The sample of patients
is small and is characterized by anatomical heterogeneity, which may also influence the
pattern of gene methylation.

HNSCC carcinogenesis is a multiserial process under the control of the genetic ma-
chinery of cancer cells. In addition to the well-studied genetic alterations that contribute to
oncogenesis, the important role of epigenetic abnormalities is now also recognized [6].

A number of studies have demonstrated that carcinogenesis is accompanied by
changes in cell DNA methylation. DNA methylation is an important tool for epigenetic
regulation of gene expression in physiological conditions and in pathology, in particular,
in cancer. It is characterized by global hypomethylation of the genome with focal hyper-
methylation of numerous 5′-cytosine-phosphate-guanine-3′-islands (CpG), often covering
gene promoters and the first exons of genes involved in cell cycle regulation, which causes
genome instability [7,8]. Most often, methylation occurs within genomic regions with
a higher frequency of CpG nucleotides, which are predominantly localized in promoter
regions. As a result of this promoter change, the affinity of transcription factors for tar-
get genes changes, as well as the mobilization of other proteins, such as methyl-binding
domain proteins and chromatin remodelers [9]. In cases where DNA methylation is con-
centrated in the promoter region, it usually results in gene silencing. In contrast, when
DNA methylation affects the core region of a gene, the result is usually an increase in gene
expression [10]. To date, an increasing number of researchers tend to believe that malignant
transformation of cells is preceded by a “breakdown” of the cell genome, consisting in the
suppression of a tumor suppressor gene and/or activation of a pro-oncogene, to which
epigenetic changes may lead. In this paper, we decided to study the methylation of the
following genes: CDKN1, CDKN2A, MYC, Smad3, SP1, and UBC. These genes were selected
based on a literature review. Characteristics of the analyzed genes are presented in Table 1.

Table 1. Characteristic of studied genes.

Gene Name Synonyms: Location MIM Exon Count Gene ID Transcripts Gene Type Gene Function

CDKN1A–
cyclin

dependent
kinase

inhibitor 1A

CAP20,
CDKN1,

CIP1,
MDA-6, P21,
SDI1, WAF1,

p21CIP1

6p21.2 116899 6 1026

0 REFSEQ
mRNAs:

NM_000389.5
NM_001220777.2
NM_001220778.2
NM_001291549.3
NM_001374509.1

Protein
coding

Inhibition of cellular
proliferation,

cyclin-dependent
kinase activity, DNA

synthesis by DNA
polymerase delta;

Blocking and
controlling cell cycle.

CDKN2A
cyclin

dependent
kinase

inhibitor 2A

ARF, CAI2,
CDK4I,
CDKN2,
CMM2,

INK4, INK4A,
MLM,
MTS-1,

MTS1, P14,
P14ARF, P16,
P16-INK4A,

P16INK4,
P16INK4A,

P19, P19ARF,
TP16

9p21.3 600160 10 1029

NM_000077.5
NM_001195132.2
NM_001363763.2

NM_058195.4
NM_058196.1

Protein
coding,
tumor

suppressor

Cell cycle arrest in G1
and G2 phases;
controlling cell

proliferation and
apoptosis;

inhibiting ribosome
biogenesis.
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Table 1. Cont.

Gene Name Synonyms: Location MIM Exon Count Gene ID Transcripts Gene Type Gene Function

MYC
MYC proto-
oncogene,

bHLH
transcription

factor

MRTL,
MYCC,

bHLHe39,
c-Myc

8q24.21 190080 3 4609

2 REFSEQ
mRNAs:

NM_001354870.1
NM_002467.6

Protein
coding

Transcription
activation of

growth-related genes;
regulation of somatic

reprogramming,
controlling

self-renewal of
embryonic stem cells.

SMAD3
SMAD
family

member 3

LDS3; mad3;
LDS1C;

MADH3;
JV15-2;

hMAD-3;
hSMAD3;
HSPC193;
HsT17436

15q22.33 603109 15 4088

11 REFSEQ
mRNAs:

NM_001145102.2
NM_001145103.2
NM_001145104.2
NM_001407011.1
NM_001407012.1
NM_001407013.1
NM_001407014.1
NM_001407015.1
NM_001407016.1
NM_001407017.1

NM_005902.4

Protein
coding

Regulation of
chondrogenesis and

osteogenesis; binding
the TRE element in
the promoter region

of many genes;
Positive regulation

PDPK1 kinase
activity

SP1
Sp1

transcription
factor

no 12q13.13 189906 7 6667

3 REFSEQ
mRNAs:

NM_001251825.2
NM_003109.1
NM_138473.3

Protein
coding

Regulation the
expression, binding
with high affinity to

GC-rich motifs;
modulating the

cellular response to
DNA damage;

chromatin
remodeling;

protecting cells
against oxidative

stress.

UBC
ubiquitin C HMG20 12q24.31 191340 2 7316

1 REFSEQ
mRNAs:

NM_021009.7

Protein
coding

DNA replication;
Protein

ubiquitination;
post-translational

protein modification;
transcription-

coupled nucleotide
excision repair

(TC-NER)

The aim of the study was to evaluate promoter methylation of CDKN1, CDKN2A,
MYC, Smad3, SP1, and UBC genes in tumor tissue of HNSCC patients.

2. Materials and Methods
2.1. Ethical Approval

All study participants were provided with patient-adapted information, and all pa-
tients signed an informed consent to participate in the study. Before patients were included
in the study, the study protocol, patient information, and consent form were approved by
an independent ethics committee (Extract from Minutes No. 634 of the Ethics Committee
meeting of 17 November 2021. Extract from Minutes No. 684 of the Ethics Committee
meeting of 2 March 2022) The study complies with the ethical standards developed in
accordance with the World Medical Association Declaration of Helsinki “Ethical Principles
for Scientific Medical Research Involving Human Subjects”, as amended in 2000, and the
“Rules of Clinical Practice”. Participants were identified by patient number only.
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2.2. Patient Selection

Fifty patients with HNSCC (37 men and 13 women) were included in this study. All
patients underwent surgery as the first stage of therapy, during which biopsies of normal
peritumoral tissue and tumor tissue were obtained. The main inclusion criterion was the
absence of other treatments before surgery. Characterization of the patients is presented in
Table 2. Squamous cell cancer of the tongue was observed in 14, in the larynx in 20, in the
oral cavity in 6, in the floor of the mouth in 3, and in the maxillary sinus in 6 patients. 21 of
50 patients had a long history of smoking. All patients were HPV-negative. According to
the patients and their relatives, the patients have never abused alcohol.

Table 2. Characteristics of patients (n = 50). M—male, F—female.

Patient ID Tumor Origin ICD-10
TNM

Classification Gender Age Smoker
T N M

1

Tongue n = 16

C02.0 1 0 0 M 50 yes

2 C02.0 3 0 0 F 53 yes

3 C02.1 2 0 0 F 59 no

4 C02.1 2 0 0 M 71 yes

5 C02.1 3 0 0 F 47 no

6 C02.1 3 0 0 M 63 no

7 C02.1 3 0 0 M 40 no

8 C02.1 3 0 0 M 46 no

9 C02.1 3 0 0 M 47 yes

10 C02.1 3 1 0 M 68 no

11 C02.1 3 2b 0 F 60 No

12 C02.1 3 0 0 F 69 Yes

13 C02.1 3 0 0 M 60 No

14 C02.1 3 0 0 F 79 No

15 C02.1 3 0 0 M 64 Yes

16 C02.1 4 2 0 M 36 No

17

Larynx n = 21

C32.0 2 0 0 F 55 No

18 C32.0 3 0 0 M 69 No

19 C32.0 3 0 0 M 59 Yes

20 C32.0 3 0 0 M 62 No

21 C32.0 3 1 0 M 49 No

22 C32.0 3 0 0 M 70 No

23 C32.0 3 1 0 M 58 Yes

24 C32.0 4a 0 0 M 71 Yes

25 C32.0 4a 2б 0 M 64 No

26 C32.0 4a 2c 0 M 59 Yes

27 C32.0 4a 1 0 M 60 No

28 C32.1 3 2b 0 M 64 Yes

29 C32.1 4a 2б 0 M 76 Yes

30 C32.8 2 0 0 M 50 Yes

31 C32.8 3 0 0 M 58 Yes

32 C32.8 3 0 0 M 50 No

33 C32.8 3 1 0 M 58 No

34 C32.8 3 1 0 M 59 No

35 C32.8 3 0 0 M 59 No

36 C32.8 4 0 0 M 72 Yes

37

Gum n = 3

C03.0 2 0 0 F 53 No

38 C03.1 3 0 0 M 66 No

39 C03.1 4a 0 0 M 50 Yes
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Table 2. Cont.

Patient ID Tumor Origin ICD-10
TNM

Classification Gender Age Smoker
T N M

40

Floor of mouth n = 5

C04.1 2 0 0 F 64 Yes

41 C04.1 2 0 0 F 64 No

42 C04.1 3 0 0 M 60 Yes

43 C04.1 3 0 0 F 66 No

44 C04.8 4a 1 0 M 32 No

45

Cheek mucosa n = 3

C06.0 2 0 0 M 63 Yes

46 C06.0 3 1 0 M 74 Yes

47 C06.2 2 0 0 F 55 No

48

Maxillary sinus n = 3

C31.0 4 0 0 M 40 No

49 C31.0 3 1 0 F 60 No

50 C31.0 4a 1 0 M 53 Yes

The mean age of men was 58 (32 ÷ 76) years, and of women, 60 (47 ÷ 79) years. The
age distribution among all patients was as follows: 2 patients 30–39 years (4%), 4 patients
40–49 years (8%), 17 patients 50–59 years (34%), 18 patients 60–69 years (36%) and 7 patients
70–79 years (14%).

2.3. Sampling and DNA Extraction

Tumor and normal tissue samples from each patient were obtained during surgery
and stored at −20 ◦C. DNA isolation from biomaterials was performed on microcolumns
(K-SORB, № EX-514, Syntol, Moscow, Russia) according to the manufacturer’s instructions.

2.4. DNA Methylation Analysis

Bisulfite conversion was performed with the EZ DNA Methylation-Lightning kit
(ThermoFisher EpiJET Bisulfite Conversion Kit, K1461, ThermoFisher Scientific, Waltham,
MA, USA) according to the manufacturer’s instructions.

Methylation of the promoter regions of the genes was performed with the Methylation-
Sensitive High-Resolution Melting (MS-HRM) method using the CFX 96 Connect Real-time
System (BioRad, Hercules, CA, USA).

The primers for the reaction were selected using Primer Blast software (Table 3).
The ready-mix (PCR-Mix, M-428, Syntol, Russia) was used for two-step PCR. Program
of amplification was 95 ◦C—5 min; (95 ◦C—15 s, 60 ◦C—30 s, 72 ◦C—45 s) ×30 cycles;
(95 ◦C—15 s, 50 ◦C—30 s, 72 ◦C—45 s) ×25 cycles. Further, the intercalating dye EVA Green
(Syntol, Russia) was added to the obtained products. Each sample was run in duplicate.
Construction of the melting curve was performed according to the following program: 1st
stage—95◦—30 s; 2nd stage—60◦—10 min, 3rd stage—melting analysis in the range 60◦–90◦

with 0.2◦ step. MS-HRM was performed using Precision Melt Analysis Software, version
3 (BioRad, USA). A CFX96 amplifier (BioRad, USA) was used for PCR and MS-HRM.
The methylation level was detected by fluorescence expressed in relative fluorescence
units (RFU).

2.5. Statistical Analysis

Statistical analysis of the data was carried out using R language (Version 4.2.3). The method
used is the Chi-squared test. p values less than 0.05 were considered statistically significant.
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Table 3. Characteristics of primers used.

Gene Forward Primer Sequence
(5′ → 3′)

Reverse Primer Sequence
(5′ → 3′) Product Size (bp)

CDKN1A ATTAGTTGGGTATGGTGGTGTATGT ACCCAAACATATTCCTAAAAAACAA 540

CDKN2A TTTTTAGTTGGAAAGGAGGAAGG TCCTCTTCTAAATTTAAAAAACAAAC 573

MYC TTAATAATAAAAGGGGAAAGAGGATTT CAAACTAAATCCCCCAATTTACTAC 516

Smad3 GTTTAAGGGGAAGAAGAGAAAGAGT AACTACACCCAACTACCTAAATCAC 550

SP1 TTATTGGTTTTTAATATTGAGAGGG AACTTAAAATAAACTCATCCTTACC 363

UBC TTTTTAGATAGTTTTATGGGGTTGG ACTCAAAAATCAAATATCAAATCAC 412

3. Results

The results average of methylation level of the DNA promoter in CDKN1, CDKN2A,
MYC, Smad3, SP1, and UBC genes is shown for all patient’s normal and tumor tissues
and subgroups in Table 4. Significant differences in DNA methylation level between the
patient’s tumor and normal tissues were found for the SP1 gene in all persons (p < 0.05).

We compared the average methylation levels for these genes in the following sub-
groups of patients (larynx, tongue, and other cancers, T2, T3, and T4, age before and after
50 years old, smokers, and non-smokers). Significant differences were observed for the SP1
gene in different subgroups of the patient’s tumor and normal tissues (p < 0.05). For other
genes, no significant differences were observed.
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Table 4. The average level of promotor gene methylation in tumor and normal tissue in all patient and their subgroups. T-tumor, N-normal.

Genes Sample
All

(n = 50)

TNM Classification ** Tumor Origin
Age Smokers

Under 50
Years (n = 12)

Over
50 Years
(n = 38)

Yes No

T2
(n = 9)

T3
(n = 29)

T4
(n = 11)

Tongue
(n = 16)

Larynx
(n = 20)

Other
(n = 14) (n = 21) (n = 29)

M ± m, Range

CDKN1A

T 0.35 ± 0.21
(0.01 ÷ 1.0)

0.37 ± 0.21
(0.04 ÷ 0.6)

0.36 ± 0.21
(0.01 ÷ 0.62)

0.31 ± 0.19
(0.01 ÷ 1.0)

0.37 ± 0.17
(0.01 ÷ 0.56)

0.35 ± 0.17
(0.04 ÷ 0.57)

0.33 ± 0.26
(0.01 ÷ 1.0)

0.33 ± 0.19
(0.04 ÷ 0.58)

0.35 ± 0.22
(0.01 ÷ 1.0)

0.36 ± 0.24
(0.01 ÷ 0.62)

0.34 ± 0.19
(0.01 ÷ 1.0)

N 0.29 ± 0.19
(0.01 ÷ 0.67)

0.33 ± 0.19
(0.06 ÷ 0.57)

0.28 ± 0.20
(0.04 ÷ 0.67)

0.25 ± 0.18
(0.01 ÷ 0.52)

0.24 ± 0.20
(0.01 ÷ 0.55)

0.26 ± 0.20
(0.06 ÷ 0.64)

0.35 ± 0.19
(0.01 ÷ 0.67)

0.28 ± 0.20
(0.01 ÷ 0.67)

0.28 ± 0.20
(0.01 ÷ 0.64)

0.27 ± 0.18
(0.01 ÷ 0.67)

0.27 ± 0.22
(0.01 ÷ 0.64)

CDKN2A
T 0.28 ± 0.09

(0.06 ÷ 0.50)
0.23 ± 0.09

(0.06 ÷ 0.36)
0.30 ± 0.09

(0.13 ÷ 0.50)
0.29 ± 0.09

(0.14 ÷ 0.41)
0.28 ± 0.09

(0.14 ÷ 0.49)
0.30 ± 0.09

(0.13 ÷ 0.47)
0.27 ± 0.09

(0.06 ÷ 0.50)
0.30 ± 0.08

(0.14 ÷ 0.42)
0.28 ± 0.09

(0.06 ÷ 0.50)
0.27 ± 0.05

(0.06 ÷ 0.50)
0.31 ± 0.10

(0.14 ÷ 0.36)

N 0.25 ± 0.13
(0.01 ÷ 0.59)

0.22 ± 0.13
(0.01 ÷ 0.44)

0.26 ± 0.13
(0.10 ÷ 0.59)

0.26 ± 0.12
(0.12 ÷ 0.56)

0.28 ± 0.14
(0.10 ÷ 0.59)

0.22 ± 0.13
(0.01 ÷ 0.56)

0.28 ± 0.10
(0.10 ÷ 0.46)

0.28 ± 0.14
(0.12 ÷ 0.56)

0.25 ± 0.12
(0.01 ÷ 0.59)

0.25 ± 0.12
(0.01 ÷ 0.56)

0.26 ± 0.13
(0.10 ÷ 0.59)

MYC
T 0.12 ± 0.05

(0.01 ÷ 0.27)
0.13 ± 0.05

(0.07 ÷ 0.24)
0.12 ± 0.05

(0.01 ÷ 0.27)
0.13 ± 0.05

(0.08 ÷ 0.17)
0.12 ± 0.05

(0.06 ÷ 0.26)
0.12 ± 0.04

(0.07 ÷ 0.24)
0.13 ± 0.06

(0.01 ÷ 0.27)
0.11 ± 0.04

(0.03 ÷ 0.17)
0.12 ± 0.05

(0.01 ÷ 0.27)
0.11 ± 0.05

(0.03 ÷ 0.28)
0.13 ± 0.05

(0.01 ÷ 0.24)

N 0.12 ± 0.05
(0.04 ÷ 0.33)

0.10 ± 0.05
(0.04 ÷ 0.18)

0.12 ± 0.05
(0.05 ÷ 0.21)

0.12 ± 0.04
(0.06 ÷ 0.33)

0.10 ± 0.03
(0.04 ÷ 0.20)

0.13 ± 0.03
(0.06 ÷ 0.19)

0.12 ± 0.06
(0.06 ÷ 0.33)

0.12 ± 0.04
(0.06 ÷ 0.21)

0.12 ± 0.05
(0.04 ÷ 0.33)

0.11 ± 0.02
(0.04 ÷ 0.33)

0.12 ± 0.06
(0.07 ÷ 0.16)

Smad3
T 0.69 ± 0.19

(0.01 ÷ 0.83)
0.68 ± 0.16

(0.01 ÷ 0.83)
0.68 ± 0.18

(0.01 ÷ 0.83)
0.72 ± 0.25

(0.61 ÷ 0.81)
0.69 ± 0.19

(0.01 ÷ 0.83)
0.72 ± 0.27

(0.01 ÷ 0.83)
0.65 ± 0.008
(0.04 ÷ 0.79)

0.74 ± 0.05
(0.61 ÷ 0.81)

0.68 ± 0.21
(0.01 ÷ 0.83)

0.67 ± 0.17
(0.01 ÷ 0.83)

0.71 ± 0.19
(0.01 ÷ 0.79)

N 0.65 ± 0.17
(0.32 ÷ 0.82)

0.64 ± 0.17
(0.32 ÷ 0.81)

0.65 ± 0.16
(0.32 ÷ 0.82)

0.63 ± 0.19
(0.32 ÷ 0.80)

0.65 ± 0.17
(0.32 ÷ 0.81)

0.62 ± 0.11
(0.38 ÷ 0.81)

0.71 ± 0.18
(0.32 ÷ 0.82)

0.67 ± 0.17
(0.32 ÷ 0.80)

0.65 ± 0.16
(0.32 ÷ 0.82)

0.64 ± 0.16
(0.32 ÷ 0.82)

0.67 ± 0.16
(0.32 ÷ 0.79)

SP1
T 0.22 ± 0.10 *

(0.09 ÷ 0.45)
0.22 ± 0.10 *
(0.01 ÷ 0.38)

0.21 ± 0.11 *
(0.01 ÷ 0.42)

0.23 ± 0.09 *
(0.01 ÷ 0.45)

0.20 ± 0.09 *
(0.11 ÷ 0.42)

0.24 ± 0.08 *
(0.11 ÷ 0.45)

0.21 ± 0.11 *
(0.09 ÷ 0.42)

0.23 ± 0.12 *
(0.12 ÷ 0.45)

0.21 ± 0.09 *
(0.09 ÷ 0.42)

0.22 ± 0.10 *
(0.11 ÷ 0.45)

0.21 ± 0.10 *
(0.09 ÷ 0.42)

N 0.11 ± 0.06
(0.01 ÷ 0.23)

0.11 ± 0.09
(0.01 ÷ 0.27)

0.11 ± 0.09
(0.04 ÷ 0.42)

0.09 ± 0.06
(0.01 ÷ 0.30)

0.10 ± 0.05
(0.04 ÷ 0.20)

0.09 ± 0.05
(0.01 ÷ 0.23)

0.13 ± 0.05
(0.01 ÷ 0.17)

0.11 ± 0.05
(0.04 ÷ 0.20)

0.11 ± 0.05
(0.01 ÷ 0.23)

0.11 ± 0.05
(0.01 ÷ 0.19)

0.10 ± 0.05
(0.01 ÷ 0.23)

UBC
T 0.34 ± 0.23

(0.01 ÷ 0.72)
0.36 ± 0.23

(0.18 ÷ 0.52)
0.33 ± 0.23

(0.01 ÷ 0.72)
0.36 ± 0.11

(0.01 ÷ 0.72)
0.28 ± 0.23

(0.01 ÷ 0.72)
0.34 ± 0.21

(0.01 ÷ 0.72)
0.41 ± 0.24

(0.01 ÷ 0.72)
0.35 ± 0.23

(0.01 ÷ 0.72)
0.34 ± 0.23

(0.01 ÷ 0.72)
0.37 ± 0.23

(0.01 ÷ 0.72)
0.32 ± 0.22

(0.01 ÷ 0.72)

N 0.16 ± 0.08
(0.01 ÷ 0.75)

0.43 ± 0.25
(0.02 ÷ 0.75)

0.27 ± 0.25
(0.01 ÷ 0.72)

0.26 ± 0.25
(0.01 ÷ 0.65)

0.27 ± 0.26
(0.01 ÷ 0.70)

0.24 ± 0.23
(0.01 ÷ 0.75)

0.39 ± 0.25
(0.01 ÷ 0.72)

0.23 ± 0.21
(0.02 ÷ 0.58)

0.31 ± 0.26
(0.01 ÷ 0.75)

0.26 ± 0.27
(0.01 ÷ 0.72)

0.31 ± 0.24
(0.01 ÷ 0.75)

* Significant differences between tumor and normal tissues (p < 0.05). M—mean, m—standard deviation. ** One patient had T1N0M0 stage with average methylation levels in CDKN1,
CDKN2A, MYC, Smad3, SP1, and UBC genes in the patient’s tumor tissue equal to 0.26, 0.32, 0.08, 0.78, 0.42, 0.01 respectively, and in patient’s normal tissue equal to 0.26, 0.22, 0.12, 0.74,
0.10 and 0.03 respectively.
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4. Discussion

Currently, hypermethylation of tumor suppressor gene promoters is the most char-
acterized epigenetic event in carcinogenesis [11]. A number of studies have described
hypermethylation of promoter regions of various genes in patients with HNSCC. The work
of R. Noorlag et al. described a number of genes whose methylation changes contribute to
the development of HNSCC [12].

Transcription factor specificity protein 1 (Sp1) regulates target genes by binding to
the 5′-GGGGGCGG-3′ motif on their promoter [13]. This transcription factor was orig-
inally assigned an important role in regulating the transcription of a large number of
“housekeeping genes”, so named because of their involvement in important cellular events:
metabolism, cell proliferation/growth, and cell death [14]. It is estimated that the human
genome contains, on average, more than 10,000 Sp1 binding sites. In addition, Sp1 is
known to induce and inhibit transcription of a large number of genes [15]. Sp1 activity is
regulated throughout the cell cycle and is modulated by post-translational modifications
in response to a variety of signals [16]. The protein encoded by this gene is involved
in many cellular processes under both normal physiological conditions and pathology,
including cell differentiation, cell growth, apoptosis, immune responses, DNA damage
response, and chromatin remodeling. Sp1 is overexpressed in cancer cells and, in most
cases, activates genes that enhance proliferation, invasion, and chemoresistance [17]. Sp1
is overexpressed in a number of cancers, including breast, gastric, pancreatic, lung, brain
(glioma), and thyroid cancers [18–21]. In patient samples and cancer models, Sp1 levels
correlate with stage, invasive potential, and metastasis. Sp1 levels correlate with patient
survival in almost all cancers, with high Sp1 levels associated with poor prognosis. In
HNSCC, Sp1 overexpression is also associated with tumor progression and is a negative
prognostic factor. Thus, increased expression of this gene in HNSCC is associated with
increased migration of cancer cells and invasive potential and, as a consequence, with rapid
metastasis [22,23]. Sp1 is involved in the regulation of HNSCC progression by controlling
cell proliferation [24], apoptosis, cell migration, and invasion [25].

A large number of molecular genetic studies of HNSCC have revealed a number of
differences between HPV-positive and HPV-negative samples [26]. HPV-positive HNSCC
is characterized by more numerous alterations in gene expression profile or the appearance
of somatic mutations in genes involved in cell survival and apoptosis, cell cycle, DNA
replication, recombination and repair, nucleic acid metabolism, immune response, tran-
scriptional and post-transcriptional regulation through the action of viral oncogenes or
epigenetic silencing [27]. In turn, HPV-negative HNSCC is dominated by mutations that
either inactivate tumor suppressor genes or enhance the function of oncogenes [28]. We
hypothesize that the hypermethylation of this gene detected in this study is due to the fact
that patients with HPV-negative HNSCC were included in the study.

The study of DNA methylation patterns in various genes involved in carcinogenesis is
promising, as hypermethylated promoters may serve as potential biomarkers of disease.
The Food and Drug Administration (FDA) has already approved a number of drugs for
the treatment of haemablastosis targeting epigenetic alterations. These drugs are mainly
DNA methylation inhibitors, such as vidase and dacogen (Decitabine) and others [29,30].
A number of works are devoted to describing the efficacy of drugs targeting demethylation
in solid tumors [31–33]. In addition to this, studies aimed at determining the prognostic
significance of methylation of certain genes in response to drug antitumor therapy are
actively conducted [34–37].

DNA methylation profiling can serve as a new tool in oncology to improve the clas-
sification of HNSCC and predict response to existing treatment strategies, as well as to
identify targets for the creation of new targeted drugs [38].
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