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Abstract: The nomenclature of star alleles has been widely used in pharmacogenomics to enhance
treatment outcomes, predict drug response variability, and reduce adverse reactions. However, the
discovery of numerous rare functional variants through genome sequencing introduces complexities
into the star-allele system. This study aimed to assess the nature and impact of the rapid discovery
of numerous rare functional variants in the traditional haplotype-based star-allele system. We
developed a new method to construct haplogroups, representing a common ancestry structure, by
iteratively excluding rare and functional variants of the 25 representative pharmacogenes using
the 2504 genomes from the 1000 Genomes Project. In total, 192 haplogroups and 288 star alleles
were identified, with an average of 7.68 ± 4.2 cross-ethnic haplogroups per gene. Most of the
haplogroups (70.8%, 136/192) were highly aligned with their corresponding classical star alleles
(VI = 1.86 ± 0.78), exhibiting higher genetic diversity than the star alleles. Approximately 41.3%
(N = 119) of the star alleles in the 2504 genomes did not belong to any of the haplogroups, and
most of them (91.3%, 105/116) were determined by a single variant according to the allele-definition
table provided by CPIC. These functional single variants had low allele frequency (MAF < 1%),
high evolutionary conservation, and variant deleteriousness, which suggests significant negative
selection. It is suggested that the traditional haplotype-based naming system for pharmacogenetic
star alleles now needs to be adjusted by balancing both traditional haplotyping and newly emerging
variant-sequencing approaches to reduce naming complexity.

Keywords: pharmacogenomics; haplotype; star allele; haplogroup; rare variant; 1000 Genomes Project

1. Introduction

Pharmacogenomics (PGx) is the study of how an individual’s genetic makeup affects
their response to medications, with a focus on understanding genetic variations in drug
transporters, receptors, and metabolic enzymes [1,2]. This knowledge has the potential
to greatly improve medication efficacy and safety, as well as reduce the risk of adverse
drug reactions [3]. The advent of next-generation sequencing (NGS) technologies has
significantly advanced PGx by facilitating the discovery of rare functional genetic vari-
ants [4,5]. In response to these technological advancements, the star-allele nomenclature has
become a critical component in PGx [6]. Its primary purpose is to establish a standardized,
widely recognized system for classifying genetic variations, ensuring clear and precise
communication within the scientific and medical communities [7]. The star-allele system
not only provides names for genetic variations, but also plays a crucial role in predicting the
functional effects of genetic differences in pharmacogenes. Traditionally, this is achieved by
representing combinations of single-nucleotide polymorphisms (SNPs) and/or small inser-
tions and deletions (INDELs), known as haplotypes, that can influence protein function [8].
A haplotype refers to a set of genetic variants located on a single chromosome. Various
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professional societies, such as the Clinical Pharmacogenetic Implementation Consortium
(CPIC) [9], the Dutch Pharmacogenetics Working Group (DPWG) [10], and the American
College of Medical Genetics and Genomics (ACMG) [11], provide clinical PGx guidelines
to optimize therapy for individual patients [12].

Traditionally, it should be noted that the purpose of the star-allele nomenclature
is to define haplotypes, but in practical application, many defined star alleles represent
individual rare functional variants instead of combinations of variants. As of 21 October
2021, the majority of star alleles defined in CPIC guidelines, approximately 85.6% (716 out
of 836), are defined by a single rare functional variant in the definition table (Figure S1).
For instance, the CYP2D6*3 allele, classified as a no-function allele, is characterized by a
single nucleotide deletion, rs35742686 in the CPIC definition table. This deletion results in
a frameshift, leading to premature truncation of the CYP2D6 protein and a loss of enzyme
function [13]. The rapid discovery of rare functional PGx variants has led to excessive
complexity in the traditional haplotype-based star-allele nomenclature. This complexity
in pharmacogenomic knowledge and its nomenclature is believed to be a barrier to the
clinical application of PGx by prescribing clinicians, potentially delaying its adoption in
both clinical and research settings.

In this study, we aim to evaluate the impact of the rapid introduction of many rare
functional variants on classical star-allele nomenclature, which is traditionally haplotype-
based (Figure S2). To accomplish this, we developed a novel method that iteratively
eliminates rare and functional variants to construct haplogroups that represent the common
ancestry structures. Lastly, we analyzed the genomic properties [14,15] of these rare
functional-based star alleles using six genomic features: the number of variants determining
star alleles, allele frequency, GERP++ conservation score, and in silico deleteriousness scores
including SIFT, Poly-Phen-2, and CADD. This study not only offers a novel perspective on
pharmacogene classification but also contributes to the broader understanding of genetic
diversity and its implications in pharmacogenomics.

2. Materials and Methods
2.1. The 1000 Genomes Project

The 1000 Genomes Project (1KGP) is a comprehensive resource that provides a rep-
resentation of human genetic variation through the sequencing of 2504 individuals from
26 countries, divided into five main population groups: Africa (AFR), America (AMR),
Europe (EUR), East Asia (EAS), and South Asia (SAS) [16]. It offers valuable information
for evolutionary, functional, and pharmacogenomic studies of human genetics. For our
study, we downloaded the variant call format (VCF) files of 2504 individuals from the
1000 Genomes Project phase III dataset [17].

2.2. Functional Variant Determination

It is essential to determine functional variants before constructing haplogroups. In this
study, we initially selected 25 pharmacogenes classified as CPIC Level A or A/B, based
on gene regions according to the Ensembl of GRCh37 human assembly [18]. Functional
variants were defined for each pharmacogene using the Ensembl Variant Effect Predictor
(VEP, version 104.3) tool [19]. A variant was determined functional if it met either of the
following criteria: (1) The ”Impact” field in the VEP annotation was labeled “HIGH” or
”MODERATE”, indicating a potential effect on the gene or its product’s structure and
function. (2) The Combined Annotation Dependent Depletion (CADD) score [20] of the
variant was above 15, ranking it within the top 5% of deleterious variants in the human
genome. Additionally, variants with a minor allele frequency (MAF) of less than 1% in the
1KGP were considered rare variants.

2.3. Constructing Haplogroups

We generated a matrix containing all observed variants, including single-nucleotide
variants (SNVs) and insertions/deletions (INDELs), along with their corresponding hap-
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lotypes, from the phased data of the 1KGP for each of the 25 pharmacogenes (Figure 1).
The process of haplotype collapsing was then applied to merge identical sequences that
are haplotypes within the matrix into a single entry. Subsequently, in a step referred to as
variant collapsing, the variant with the lowest minor allele frequency (MAF) was removed.
These two steps were iteratively repeated until the MAF met the stopping condition. The
stopping condition was defined as the complete absence of rare and functional variants
and the absence of singletonHapG, which consists of a single haplotype. Finally, a hap-
logroup was defined as a collection of haplotypes with identical genetic variations that
were free from both rare and functional variants, with each row in the matrix representing
a distinct haplogroup.
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Figure 1. Process for constructing haplogroups for each pharmacogene. Initially, a matrix is created,
with each row representing a phased allele sequence (haplotype, hn) and each column representing
all observed variants, including coding and non-coding variants, within a gene. During the haplotype
collapsing step, all identical haplotype sequences are combined into a single entity. Then, the variant
with the lowest minor allele frequency (MAF) is removed from the matrix (variant collapsing). These
two steps are repeated until the stopping condition. The stopping condition is the MAF.

2.4. Assignment of Star Alleles

In pharmacogenomics, haplotypes, which are combinations of inherited variants such
as single-nucleotide polymorphisms (SNPs), insertions/deletions (INDELs), and structural
variants (SVs), are identified as star alleles (*). Our focus was on 25 pharmacogenes that
are classified with evidence levels A or A/B according to the Clinical Pharmacogenetics
Implementation Consortium (CPIC) based on data from the 1000 Genomes Project (1KGP).
The 25 pharmacogenes are as follows: IFNL3, GSTP1, CYP2D6, VKORC1, NUDT15, NAT2,
UGT1A1, G6PD, CYP4F2, GSTM1, UGT2B15, TPMT, CYP2B6, CYP3A4, CYP3A5, CYP2C8,
CYP2C9, NAT1, UGT1A4, CACNA1S, SLCO1B1, RYR1, CYP2C19, CFTR, and DPYD (Table
S1). To assign star alleles to individuals from the phased VCF file of the 1KGP, we utilized
PyPGx v0.20.0 [21] with the Human Genome version (hg19).

2.5. Evaluation

To evaluate the constructed haplogroups, we utilized the variation of information
(VI) index, a metric based on principles of information theory and entropy [22]. The VI
index quantifies the information loss and gain during the transition from one clustering
to another, enabling us to assess the similarity between established haplogroups and star
alleles for each pharmacogene. The VI index values range from 0, indicating a perfect
match in clustering, to log2 N, denoting completely distinct clusterings, where N is the
total count of haplotypes, which in the case of the 1KGP is 5008. The VI index values were
computed using the “mclust” package in R [23].

Additionally, we computed Nei’s standard genetic distance [24] to assess genetic
diversity among five populations. This metric reflects the degree of genetic divergence
or differentiation between compared populations, with higher values indicating greater
divergence. This calculation was applied to evaluate the genetic distance within each
frequency of star alleles and haplogroups.

2.6. Enrichment Analysis

We conducted enrichment analysis using the hypergeometric test to identify the
associations between newly constructed haplogroups and pre-existing star alleles. This
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process was important for identifying whether specific star alleles were more frequently
found within certain haplogroups than would be expected by chance.

In this analysis, we treated each star allele as a distinct category and compared the
observed frequency of each allele within haplogroups to its expected frequency, which
was calculated based on its overall distribution among all haplogroups. Then, significant
associations between haplogroups and star alleles were identified if the False Discovery
Rate (FDR) was less than 0.05.

Following this, we classified all the star alleles identified in the 1KGP into two groups
based on their association with haplogroups. The first group, defined as SA, included
star alleles that showed a statistically significant association with at least one haplogroup.
Conversely, the second category, named SI, comprised star alleles that did not exhibit any
significant association with haplogroups and were thus considered to be independent
of haplogroups. Next, we conducted a comparative analysis to highlight the differences
between the star alleles associated with haplogroups (SA) and those independent of hap-
logroups (SI).

2.7. Genomic Features of Star Alleles

In order to investigate the star alleles defining variants that are not tied to specific
haplogroups, we employed in silico pathogenic prediction scores to gauge their evolution-
ary conservation and potential deleterious effects. Variants with a GERP++ score higher
than 2 were regarded as being evolutionarily conserved and potentially functional [25].
Furthermore, we utilized the SIFT score, categorizing variants with scores below 0.05 as
deleterious, suggesting a likely deleterious impact on protein function [26]. Additionally,
we assessed these variants using PolyPhen-2 (PP2), where scores exceeding 0.5 were in-
dicative of potential deleterious effects on protein structure or function [27]. Additionally,
we utilized the CADD score, with a cutoff value set above 15 [20]. By employing this
comprehensive approach, we were able to thoroughly analyze the genetic variants relevant
to haplogroup-independent star alleles, offering insights into their evolutionary history
and potential pathogenicity.

3. Results

In our study, we adhered to CPIC guidelines, which are widely accepted as the
standard for star-allele nomenclature [9]. The CPIC definition tables show that the star-allele
nomenclature is mixed with both traditional haplotype-based and rare functional-variant-
based approaches. To navigate the intricacies of these interwoven nomenclatures, we
introduced the concept of haplogroups, which represent common ancestry structures. We
hypothesized that traditional haplotype-based star alleles are closely linked to haplogroups.
Therefore, we investigated the impact of rare functional variants on the established star-
allele system through the construction and analysis of haplogroups.

3.1. Haplogroup Construction

We constructed haplogroups for 25 pharmacogenes, utilizing all variants found in
the 1KGP, which includes both coding and non-coding variants. The functional impact of
these variants was determined using the Ensembl Variant Effect Predictor (VEP) tool, based
on the GRCh37 human genome assembly. The criteria for identifying rare and functional
variants were detailed in the methods section.

The process of constructing haplogroups for each pharmacogene began with the
creation of a matrix containing all variants found in 2504 genomes, including INDELs and
SNVs (Figure 1). Our approach involved two main steps: haplotype collapsing and variant
collapsing. Two main steps were involved in the approach: haplotype collapsing and
variant collapsing. In the haplotype collapsing step, all identical sequences in the matrix
were combined into a single entry. In the variant collapsing step, the variant with the
lowest minor allele frequency (MAF) was removed. These steps were repeated iteratively
until all functional and rare variants were excluded and no singletonHapG remained, which
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is a haplogroup defined as consisting of a single haplotype. Finally, haplogroups were
constructed for every 25 pharmacogenes using the 1KGP.

Our analysis yielded an average of 7.68 ± 4.2 haplogroups per pharmacogene, with
each haplogroup comprising 2.1 ± 1.1 genetic variations (Table 1). In terms of star-allele
nomenclature, we observed that approximately 76.4% (8.8 out of 288) of the star alleles were
also defined as single variants within the 1KGP. This suggests rare functional-variant-based
nomenclature interwoven with traditional haplotype-based nomenclature.

Table 1. The number of constructed haplogroups, observed star alleles in the 1KGP, and total star
alleles from CPIC guidelines. The gene length was annotated by Ensembl. Assessment of similarity
between haplogroups and star alleles. The similarity between haplogroups and star alleles was
computed using the variation of information (VI) index.

Gene Gene Length a Haplogroups
(Variant)

Observed
Star Alleles b

(Variant)

TotalStar
Alleles c

(Variant)
VI

IFNL3 1.40 8 (4) 2 (1) 4 (3) 0.98
GSTP1 3.06 4 (2) 3 (2) 4 (2) 1.37

CYP2D6 4.42 13 (4) 38 (37) 131 (125) 1.76
VKORC1 5.14 7 (5) 2 (1) 2 (1) 1.04
NUDT15 9.66 2 (1) 7 (5) 20 (18) 1.23

NAT2 9.97 8 (3) 11 (10) 18 (17) 0.96
UGT1A1 13.05 4 (2) 5 (3) 9 (6) 1.36

G6PD 16.18 2 (1) 21 (19) 186 (182) 1.38
CYP4F2 20.10 4 (2) 3 (2) 4 (2) 2.00
GSTM1 21.23 16 (4) 2 (1) 3 (1) 3.24

UGT2B15 24.00 12 (4) 5 (3) 11 (4) 1.35
TPMT 26.76 4 (2) 13 (12) 46 (45) 1.47

CYP2B6 27.10 13 (4) 15 (7) 37 (35) 2.10
CYP3A4 27.29 8 (3) 20 (19) 33 (32) 2.28
CYP3A5 31.81 5 (3) 4 (3) 9 (8) 0.88
CYP2C8 32.73 7 (3) 11 (11) 18 (18) 2.40
CYP2C9 50.73 4 (2) 21 (20) 71 (69) 1.57

NAT1 53.21 14 (5) 7 (6) 11 (10) 2.27
UGT1A4 54.52 4 (2) 7 (10) 12 (12) 1.98

CACNA1S 73.05 8 (3) 1 (0) 3 (2) 2.37
SLCO1B1 108.05 16 (4) 23 (16) 44 (31) 3.06

RYR1 153.87 8 (3) 2 (1) 49 (48) 1.27
CYP2C19 165.11 8 (3) 17 (17) 36 (33) 2.15

CFTR 250.19 9 (4) 9 (8) 41 (40) 2.05
DPYD 843.31 4 (2) 39 (39) 83 (83) 4.08

a Total gene length by Ensembl in kilo base pairs. b Total number of observed star alleles in the 1000 Genomes
Project of CPIC guidelines, as of 21 October 2021. c Total number of star alleles of CPIC guidelines, as of
21 October 2021.

In the process of establishing haplogroups for various pharmacogenes, the criteria for
the stopping condition differed across genes (Figure 2). Our analysis across 25 pharmaco-
genes showed an average MAF of 0.4 at this stopping condition. For instance, the gene
DPYD had the highest MAF at the stopping condition (0.497), while IFNL3 was the lowest
(0.02). Additionally, we observed that DPYD was the longest gene in our study, while
IFNL3 was the shortest. It led to a positive correlation between the length of a gene and its
MAF at the stopping condition, as demonstrated by a Spearman correlation coefficient of
0.8 (p < 0.01, Figure S3). This relationship suggests that longer genes, such as DPYD, tend
to accumulate a broader range of variants, including those with higher MAFs, due to their
greater potential for evolutionary adaptability and genetic diversity [28,29]. In contrast,
shorter genes, such as IFNL3, have fewer variants and reach the stopping condition with
lower MAFs, indicating a reduced capacity for genetic and evolutionary change.
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3.2. Evaluate Haplogroup Construction

To evaluate the effectiveness of our haplogroup construction method, we used the
star alleles observed in the 1000 Genomes Project (1KGP) to analyze both similarity to the
constructed haplogroups and population diversity. Using PyPGx v0.20.0 and based on
Human Genome version 19 (hg19), we assigned star alleles for 25 pharmacogenes with
CPIC evidence levels A or A/B to each individual in the 1KGP. Our analysis revealed a
distinct distribution of star alleles across these pharmacogenes, with an average frequency
of 0.03 for non-reference star alleles and a higher average of 0.70 for reference star alleles
(Figure 3). Notably, for genes like CACNA1S, all identified star alleles were classified as the
reference allele, whereas RYR1 predominantly featured the reference star allele, with a rare
exception of a unique haplotype defined by genetic variant c.1840C>T. Furthermore, genes
such as DPYD and CYP2D6 displayed considerable allele diversity, with 39 and 38 different
star alleles identified, respectively.
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To quantify the similarity between our constructed haplogroups and the star alleles,
we utilized the variation of information (VI) index, a measure based on information theory
principles. We categorized the VI index values equally into four groups representing
different levels of association: strong, moderate, weak, and no association. A stronger
association implies a higher degree of similarity between the haplogroups and star alleles.
Our analysis revealed that, except for GSTM1 and DPYD, the genes demonstrated a
strong association between their haplogroups and star alleles, as indicated by the VI index
evaluations (Table 1). These two genes showed a moderate association. Notably, none of
the genes fell into the categories of weak or no association. This outcome validated the
effectiveness of our haplogroup construction, confirming that these haplogroups accurately
represent the star alleles and exhibit a strong correlation between them. Moreover, we
observed that shorter genes displayed a more robust association with their haplogroups
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than longer genes, as evidenced by a Spearman correlation coefficient of 0.57 (p < 0.01,
Figure S3).

Furthermore, we explored the potential of haplogroups and star alleles in differen-
tiating global populations using Nei’s standard genetic distance (Figure 4). Specifically,
we computed the genetic distance between five major global populations, Africa (AFR),
America (AMR), Europe (EUR), East Asia (EAS), and South Asia (SAS), for both star alleles
and haplogroups. Our results showed that haplogroups were better at reflecting genetic
diversity compared to star alleles (p < 0.01, Wilcoxon test).
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3.3. Genomic Characterization of Star Alleles by Haplogroups

In our study, we aimed to explore the associations between traditional haplotype-
based star alleles and their ancestral haplogroups by conducting an enrichment analysis.
We focused on the star alleles identified in the 1KGP and categorized them into two groups
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based on the enrichment test: those associated with haplogroups (SA) and those not (SI).
Our findings revealed that 58.7% (N = 169/288) of the star alleles were classified as SA,
indicating a strong association with ancestral lineages (Figure 5A). Remarkably, for genes
such as CYP3A5, CYP4F2, GSTM1, GSTP1, IFNL3, UGT2B15, and VKORC1, all star alleles
exhibited significant associations with haplogroups. Additionally, over 91.7% of the haplo-
types within these genes were categorized as SA, indicating that this category encompasses
the majority of haplotypes in the 1KGP (Figure 5B). The remaining 8.3% of haplotypes not
classified as the SA category were primarily due to the gene DPYD, which had the highest
number of haplotypes assigned to the SI category (Figure S28). For genes CACNA1S and
RYR1, the enrichment test was not feasible as only reference star alleles were present, with
no association with the SA category detected (Figures S23 and S25). Furthermore, when
analyzing from the haplogroup perspective, about 70.8% (N = 136) of haplogroups were
closely linked to SA star alleles (Figure 5C). Moreover, 90.3% of haplotypes belonged to
these SA category (Figure 5D). Similar to the star alleles, CACNA1S and RYR1 showed no
significant haplogroup associations. The associations between haplogroups and traditional
haplotype-based star alleles were represented for 25 pharmacogenes (Figures S4–S28).
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Figure 5. The percentage of star alleles and haplogroups that have a significant association in the
1KGP. (A) The percentage of star alleles that have a significant association with at least one haplogroup
in the 1KGP. (B) The percentage of haplotypes representing respective star alleles. (C) The percentage
of haplogroups that have a significant association with at least one star allele. (D) The proportion of
haplotypes respective haplogroups. Only the values under 100% are represented. SA, star alleles that
have a significant association with haplogroups; SI, star alleles that are independent of haplogroups.

We conducted a further investigation of the genomic properties of SA and SI star
alleles. Our findings show a statistically significant difference in the number of variants
between these groups. On average, SA alleles contained 1.49 variants, while SI alleles had
slightly more, averaging 1.67 variants per allele (Figure 6A). Notably, about 76.7% (104 out
of 136) of the SI alleles were characterized by a single variant (Figure S29). SI alleles were



Genes 2024, 15, 521 10 of 14

also much rarer than SA alleles, typically appearing at frequencies below 1% (Figure 6B).
Furthermore, SI alleles demonstrated higher evolutionary conservation, as evidenced by
their significantly higher GERP++ scores (Figure 6C). This conservation suggests stronger
selective pressures over evolutionary time. Additionally, differences in deleteriousness
scores, such as SIFT, CADD, and PolyPhen-2 (PP2), were significant, with SI alleles showing
more deleterious effects, indicating that these variants are likely to have a greater impact
on protein function (Figure 6D–F).
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(C–F) GERP++, SIFT, PolyPhen2, and CADD score. * p < 0.05; ** p < 0.01; **** p < 0.0001 by the
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Considering the low frequency and high evolutionary conservation of SI star alleles,
along with their potential deleterious impacts on protein function, it is likely that these
alleles are influenced by negative selection. This contrasts with the typical pharmacogenetic
variants, which have not been significantly shaped by evolutionary pressures due to the
recent nature of drug exposure in human history [30]. Therefore, it is suggested that the



Genes 2024, 15, 521 11 of 14

traditional haplotype-based pharmacogenetic star-allele nomenclature is now required to
balance the traditional haplotype-based and the newly emerging functional-variant-based
approaches to accelerate clinical adoption.

4. Discussion

The star-allele nomenclature is continually updated by various consortiums such
as CPIC, PharmGKB [31], and PharmVar [32] to incorporate new haplotypes that affect
drug metabolism. However, the traditional system for naming star alleles, which relies
on haplotypes, has become substantially more complex due to the rapid discovery of rare
functional variants in pharmacogenomics, accelerated by advancements in next-generation
sequencing (NGS) technology. This complexity of the system can make it difficult for users
to interpret and apply genomic data accurately. Recognizing these challenges, our study
explored the traditional haplotype-based nomenclature.

We aimed to evaluate how the influx of numerous rare functional variants influences
the traditional haplotype-based nomenclature used for identifying star alleles. To address
this, we proposed a novel approach that involves the construction of haplogroups, repre-
senting common ancestry, by systematically excluding both rare and functional variants
from the 1KGP of 25 pharmacogenes. This analysis identified an average of 7.68 hap-
logroups, which exhibited a high similarity to the existing star alleles based on the variation
of information. Moreover, the haplogroup displayed greater genetic diversity than the
corresponding star allele, which can be attributed to their common ancestor.

Our investigation of star alleles through haplogroup analysis shows the complex con-
nection between traditional haplotype-based alleles and their shared ancestral haplogroups.
By performing enrichment analysis, we discovered significant relationships between star
alleles and haplogroups across pharmacogenes. Our study found that over half of the
alleles were connected to their ancestral haplogroups, with 66.6% being classified as SA star
alleles. This indicates a strong association between many star alleles and their haplogroups,
highlighting the importance of considering ancestral lineage in pharmacogenomic studies.

In examining SA and SI star alleles, we observed distinct genetic characteristics. SI alle-
les, which are less frequent and show higher evolutionary conservation, may significantly
impact protein function and appear to be influenced by negative selection. In contrast,
SA alleles are more common and exhibit lower evolutionary conservation. Although the
current nomenclature integrates both SA and SI star alleles, our findings highlight sig-
nificant differences between them in terms of frequency and evolutionary conservation.
Consequently, we suggest an adjustment in the pharmacogene nomenclature to treat these
types of alleles separately. This modification would enhance the precision of genetic in-
terpretations and facilitate their clinical application by providing clearer, more actionable
genetic information.

The differentiation of star alleles, particularly those classified as SI defined by the
impact of a single variant, suggests a potential pathway to adjust the current star-allele
nomenclature. By more clearly categorizing these alleles, we hypothesize that the com-
plexity of the naming conventions could be reduced, which might simplify genetic data
interpretation for clinical practitioners. Such adjustments would aim to support clearer
communication and practical application of pharmacogenetic information in clinical set-
tings. However, further empirical studies are needed to validate whether these changes
indeed lower barriers to clinical adoption and expedite the integration of personalized
medicine into practice.

Our method for constructing haplogroups of pharmacogenes has its limitations. It
involves collapsing steps, which exclude certain variants. All variants found in a specific
gene will be removed if the MAF of the functional variant to be removed is the highest
among them. In cases where no suitable variants are left for haplogroup formation, we
cannot define them, resulting in all alleles being categorized as singletonHapG. Furthermore,
our study has several limitations in addressing broader genetic factors that influence
drug response. First, we did not consider copy number variants (CNVs), which can



Genes 2024, 15, 521 12 of 14

significantly affect gene expression and enzyme levels, thereby impacting drug metabolism.
Second, we did not investigate the inheritance patterns of variants—whether they are
inherited on the same chromosome (in cis) or on different chromosomes (in trans)—which
is vital for accurately understanding how these variations function together and affect
clinical outcomes. Third, we omitted analysis of the co-inheritance of variants across
different pharmacogenes, a key factor in predicting multi-drug interactions and adverse
drug reactions. Recognizing these limitations, future research should aim to include these
aspects to provide a more comprehensive understanding of pharmacogenomic variability
and enhance the predictive accuracy of drug response models.

Our study utilizes the CPIC guidelines available up to October 2021. It is important to
note that any updates to these guidelines following this date represent a potential limitation,
as they may introduce changes not reflected in our analysis. These updates could affect the
long-term relevance and applicability of our findings. Additionally, while our study relies
on CPIC for genetic variation information, PharmVar is another valuable resource that
could be leveraged for such data. This alternative database offers a comprehensive catalog
of genetic variations that may provide additional insights, suggesting a broader approach
to data selection could enhance the robustness of future research in pharmacogenomics.

Our study utilized Combined Annotation Dependent Depletion (CADD) scores to
identify functional variants, which assess both coding and non-coding variants. However,
incorporating additional computational tools, such as FathmmXF [33], could enhance our
methodology by offering alternative predictions on the impact of genetic variations. Inte-
grating these tools would refine our approach to defining and understanding haplogroups
in pharmacogenomics.

In conclusion, our study introduced a method for constructing haplogroups that re-
flect common ancestry for pharmacogenes and evaluated the impact of the numerous rare
functional variants in traditional haplotype-based star-allele nomenclature. Our findings
emphasize the need for an advanced nomenclature that incorporates these insights, en-
abling clinicians to better predict patient responses to medications and tailor treatments
accordingly. As we continue to unravel the complexities of human genetics, integrating
such advancements into clinical practice will be key to realizing the full potential of per-
sonalized medicine. The success of this endeavor will depend on our ability to adapt and
refine our methodologies in response to the rapid pace of genomic discoveries, ensuring
that pharmacogenomics remains a vital tool in the pursuit of more effective and safer
therapeutic strategies.
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www.mdpi.com/article/10.3390/genes15040521/s1, Figure S1: The cumulative density of the number
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coefficient among gene length, the minor allele frequency at the stopping condition, and the variation
of information; Figures S4–S28: The network plot of haplogroups and star alleles for each of the
25 pharmacogenes; Figure S29: The distribution of the number of variants defining haplogroup-
independent star alleles; Table S1: The star-allele nomenclature.

Author Contributions: Conceptualization, S.H.A., Y.P. and J.H.K.; methodology, S.H.A., Y.P. and
J.H.K.; formal analysis, S.H.A.; writing—original draft preparation, S.H.A.; writing—review and
editing, S.H.A., Y.P. and J.H.K.; visualization, S.H.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Ministry of Science and ICT, grant number NRF-
2023R1A2C3007686, and J.H.K. was supported by the Education and Research Encouragement
Fund of Seoul National University Hospital.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The 1000 Genomes Project data can be accessed at https://www.
internationalgenome.org/data/ (accessed on 2 April 2024).

https://www.mdpi.com/article/10.3390/genes15040521/s1
https://www.mdpi.com/article/10.3390/genes15040521/s1
https://www.internationalgenome.org/data/
https://www.internationalgenome.org/data/


Genes 2024, 15, 521 13 of 14

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Evans, W.E.; Johnson, J.A. Pharmacogenomics: The inherited basis for interindividual differences in drug response. Annu. Rev.

Genom. Hum. Genet. 2001, 2, 9–39. [CrossRef] [PubMed]
2. Schwab, M.; Schaeffeler, E. Pharmacogenomics: A key component of personalized therapy. Genome Med. 2012, 4, 93. [CrossRef]

[PubMed]
3. Cacabelos, R.; Cacabelos, N.; Carril, J.C. The role of pharmacogenomics in adverse drug reactions. Expert Rev. Clin. Pharmacol.

2019, 12, 407–442. [CrossRef] [PubMed]
4. Schwarz, U.I.; Gulilat, M.; Kim, R.B. The Role of Next-Generation Sequencing in Pharmacogenetics and Pharmacogenomics. Cold

Spring Harb. Perspect. Med. 2019, 9, a033027. [CrossRef] [PubMed]
5. Zhou, Y.; Tremmel, R.; Schaeffeler, E.; Schwab, M.; Lauschke, V.M. Challenges and opportunities associated with rare-variant

pharmacogenomics. Trends Pharmacol. Sci. 2022, 43, 852–865. [CrossRef] [PubMed]
6. Robarge, J.D.; Li, L.; Desta, Z.; Nguyen, A.; Flockhart, D.A. The star-allele nomenclature: Retooling for translational genomics.

Clin. Pharmacol. Ther. 2007, 82, 244–248. [CrossRef] [PubMed]
7. Nebert, D.W. Suggestions for the nomenclature of human alleles: Relevance to ecogenetics, pharmacogenetics and molecular

epidemiology. Pharmacogenetics 2000, 10, 279–290. [CrossRef] [PubMed]
8. Twesigomwe, D.; Wright, G.E.B.; Drogemoller, B.I.; da Rocha, J.; Lombard, Z.; Hazelhurst, S. A systematic comparison of

pharmacogene star allele calling bioinformatics algorithms: A focus on CYP2D6 genotyping. NPJ Genom. Med. 2020, 5, 30.
[CrossRef]

9. Relling, M.V.; Klein, T.E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research
Network. Clin. Pharmacol. Ther. 2011, 89, 464–467. [CrossRef]

10. Swen, J.J.; Wilting, I.; de Goede, A.L.; Grandia, L.; Mulder, H.; Touw, D.J.; de Boer, A.; Conemans, J.M.; Egberts, T.C.; Klungel,
O.H.; et al. Pharmacogenetics: From bench to byte. Clin. Pharmacol. Ther. 2008, 83, 781–787. [CrossRef]

11. Lyon, E.; Gastier Foster, J.; Palomaki, G.E.; Pratt, V.M.; Reynolds, K.; Sabato, M.F.; Scott, S.A.; Vitazka, P.; working group of the
Molecular Genetics Subcommittee on behalf of the American College of Medical Genetics and Genomics ACMG) Laboratory
Quality Assurance Committee. Laboratory testing of CYP2D6 alleles in relation to tamoxifen therapy. Genet. Med. 2012, 14,
990–1000. [CrossRef] [PubMed]

12. Abdullah-Koolmees, H.; van Keulen, A.M.; Nijenhuis, M.; Deneer, V.H.M. Pharmacogenetics Guidelines: Overview and
Comparison of the DPWG, CPIC, CPNDS, and RNPGx Guidelines. Front. Pharmacol. 2020, 11, 595219. [CrossRef] [PubMed]

13. Pratt, V.M.; Cavallari, L.H.; Del Tredici, A.L.; Gaedigk, A.; Hachad, H.; Ji, Y.; Kalman, L.V.; Ly, R.C.; Moyer, A.M.; Scott, S.A.; et al.
Recommendations for Clinical CYP2D6 Genotyping Allele Selection: A Joint Consensus Recommendation of the Association for
Molecular Pathology, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists
Association, and the European Society for Pharmacogenomics and Personalized Therapy. J. Mol. Diagn. 2021, 23, 1047–1064.
[CrossRef] [PubMed]

14. Lasorsa, V.A.; Montella, A.; Cantalupo, S.; Tirelli, M.; de Torres, C.; Aveic, S.; Tonini, G.P.; Iolascon, A.; Capasso, M. Somatic
Mutations Enriched in Cis-Regulatory Elements Affect Genes Involved in Embryonic Development and Immune System Response
in Neuroblastoma. Cancer Res. 2022, 82, 1193–1207. [CrossRef] [PubMed]

15. Balasubramanian, S.; Fu, Y.; Pawashe, M.; McGillivray, P.; Jin, M.; Liu, J.; Karczewski, K.J.; MacArthur, D.G.; Gerstein, M.
Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes. Nat. Commun. 2017, 8, 382.
[CrossRef] [PubMed]

16. Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.;
McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [CrossRef]

17. Fairley, S.; Lowy-Gallego, E.; Perry, E.; Flicek, P. The International Genome Sample Resource (IGSR) collection of open human
genomic variation resources. Nucleic Acids Res. 2020, 48, D941–D947. [CrossRef] [PubMed]

18. Mauleekoonphairoj, J.; Chamnanphon, M.; Khongphatthanayothin, A.; Sutjaporn, B.; Wandee, P.; Poovorawan, Y.; Nademanee,
K.; Pongpanich, M.; Chariyavilaskul, P. Phenotype prediction and characterization of 25 pharmacogenes in Thais from whole
genome sequencing for clinical implementation. Sci. Rep. 2020, 10, 18969. [CrossRef]

19. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect
Predictor. Genome Biol. 2016, 17, 122. [CrossRef]

20. Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative
pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [CrossRef]

21. Lee, S.B.; Shin, J.Y.; Kwon, N.J.; Kim, C.; Seo, J.S. ClinPharmSeq: A targeted sequencing panel for clinical pharmacogenetics
implementation. PLoS ONE 2022, 17, e0272129. [CrossRef]

22. Meilă, M. Comparing Clusterings by the Variation of Information. In Learning Theory and Kernel Machines. Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 173–187.

23. Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A.E. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite
Mixture Models. R J. 2016, 8, 289–317. [CrossRef]

https://doi.org/10.1146/annurev.genom.2.1.9
https://www.ncbi.nlm.nih.gov/pubmed/11701642
https://doi.org/10.1186/gm394
https://www.ncbi.nlm.nih.gov/pubmed/23194652
https://doi.org/10.1080/17512433.2019.1597706
https://www.ncbi.nlm.nih.gov/pubmed/30916581
https://doi.org/10.1101/cshperspect.a033027
https://www.ncbi.nlm.nih.gov/pubmed/29844222
https://doi.org/10.1016/j.tips.2022.07.002
https://www.ncbi.nlm.nih.gov/pubmed/36008164
https://doi.org/10.1038/sj.clpt.6100284
https://www.ncbi.nlm.nih.gov/pubmed/17700589
https://doi.org/10.1097/00008571-200006000-00001
https://www.ncbi.nlm.nih.gov/pubmed/10862518
https://doi.org/10.1038/s41525-020-0135-2
https://doi.org/10.1038/clpt.2010.279
https://doi.org/10.1038/sj.clpt.6100507
https://doi.org/10.1038/gim.2012.108
https://www.ncbi.nlm.nih.gov/pubmed/22955113
https://doi.org/10.3389/fphar.2020.595219
https://www.ncbi.nlm.nih.gov/pubmed/33568995
https://doi.org/10.1016/j.jmoldx.2021.05.013
https://www.ncbi.nlm.nih.gov/pubmed/34118403
https://doi.org/10.1158/0008-5472.CAN-20-3788
https://www.ncbi.nlm.nih.gov/pubmed/35101866
https://doi.org/10.1038/s41467-017-00443-5
https://www.ncbi.nlm.nih.gov/pubmed/28851873
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/nar/gkz836
https://www.ncbi.nlm.nih.gov/pubmed/31584097
https://doi.org/10.1038/s41598-020-76085-3
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1038/ng.2892
https://doi.org/10.1371/journal.pone.0272129
https://doi.org/10.32614/RJ-2016-021


Genes 2024, 15, 521 14 of 14

24. Takezaki, N.; Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 1996, 144,
389–399. [CrossRef]

25. Davydov, E.V.; Goode, D.L.; Sirota, M.; Cooper, G.M.; Sidow, A.; Batzoglou, S. Identifying a high fraction of the human genome to
be under selective constraint using GERP++. PLoS Comput. Biol. 2010, 6, e1001025. [CrossRef]

26. Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814.
[CrossRef]

27. Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and
server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [CrossRef]

28. Lopes, I.; Altab, G.; Raina, P.; de Magalhaes, J.P. Gene Size Matters: An Analysis of Gene Length in the Human Genome. Front.
Genet. 2021, 12, 559998. [CrossRef]

29. Shin, S.-H.; Choi, S.S. Lengths of coding and noncoding regions of a gene correlate with gene essentiality and rates of evolution.
Genes Genom. 2015, 37, 365–374. [CrossRef]

30. Maranville, J.C.; Cox, N.J. Pharmacogenomic variants have larger effect sizes than genetic variants associated with other
dichotomous complex traits. Pharmacogenom. J. 2016, 16, 388–392. [CrossRef]

31. Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for
Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [CrossRef]

32. Gaedigk, A.; Ingelman-Sundberg, M.; Miller, N.A.; Leeder, J.S.; Whirl-Carrillo, M.; Klein, T.E.; PharmVar Steering, C. The
Pharmacogene Variation (PharmVar) Consortium: Incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature
Database. Clin. Pharmacol. Ther. 2018, 103, 399–401. [CrossRef]

33. Rogers, M.F.; Shihab, H.A.; Mort, M.; Cooper, D.N.; Gaunt, T.R.; Campbell, C. FATHMM-XF: Accurate prediction of pathogenic
point mutations via extended features. Bioinformatics 2018, 34, 511–513. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/genetics/144.1.389
https://doi.org/10.1371/journal.pcbi.1001025
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.3389/fgene.2021.559998
https://doi.org/10.1007/s13258-015-0265-6
https://doi.org/10.1038/tpj.2015.47
https://doi.org/10.1002/cpt.2350
https://doi.org/10.1002/cpt.910
https://doi.org/10.1093/bioinformatics/btx536

	Introduction 
	Materials and Methods 
	The 1000 Genomes Project 
	Functional Variant Determination 
	Constructing Haplogroups 
	Assignment of Star Alleles 
	Evaluation 
	Enrichment Analysis 
	Genomic Features of Star Alleles 

	Results 
	Haplogroup Construction 
	Evaluate Haplogroup Construction 
	Genomic Characterization of Star Alleles by Haplogroups 

	Discussion 
	References

