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Abstract: Despite recent technological advances, the study of the human transcriptome is 
still in its early stages. Here we provide an overview of the complex human transcriptomic 
landscape, present the bioinformatics challenges posed by the vast quantities of transcriptomic 
data, and discuss some of the studies that have tried to determine how much of the human 
genome is transcribed. Recent evidence has suggested that more than 90% of the human 
genome is transcribed into RNA. However, this view has been strongly contested by 
groups of scientists who argued that many of the observed transcripts are simply the result 
of transcriptional noise. In this review, we conclude that the full extent of transcription 
remains an open question that will not be fully addressed until we decipher the complete 
range and biological diversity of the transcribed genomic sequences. 
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1. Background and Introduction 

The transcriptome of a cell is the collection of all the RNA molecules, or transcripts, present in that 
cell. To generate the transcriptome, the DNA of an organism is first transcribed by RNA polymerase to 
create complementary RNA strands, which in turn are spliced to remove introns, producing mature 
transcripts that contain only exons. For many years, it was assumed that these RNA transcripts were 
primarily used as templates for translation to proteins. The vast majority of the remaining human 
genome, which is not protein coding, was thought to be non-functional and therefore considered 
“junk” DNA [1]. Soon after the publication of the human genome sequence in 2001 [2,3], a new view 
emerged, holding that only a small percentage of the human transcriptome is clearly translated into 
proteins [4–6], and most of the remaining transcripts have unknown purposes. In recent years, the 
number and variety of known RNA genes has grown dramatically, and in addition to protein-coding 

OPEN ACCESS 



Genes 2012, 3 345 
 

 

messenger RNAs (mRNAs), the catalog of transcribed elements now includes a myriad of non-coding 
RNAs (ncRNAs) that play multiple structural and regulatory roles in the molecular biology of the cell [7].  

Ever since the discovery of the genetic code, scientists have labored to decipher the complete 
human transcriptome. It was only with the emergence of automated DNA sequencing in the 1980s that  
real progress was made in this direction [8]. In the 1990s, scientists realized the value of using 
expressed sequence tag (EST) sequencing to rapidly identify expressed genes, or at least fragments of 
those genes, in many human tissues [9,10]. Although at the time EST sequencing was considered a 
very high-throughput technique, both costs and technical limitations prevented it from producing a 
complete transcript catalog. As a consequence, much of our knowledge of the protein-coding portion 
of the human transcriptome relied on different computational gene prediction methods [11,12].  

Various other technologies were developed to complement the traditional EST approach. These 
include tag-based methods such as serial analysis of gene expression (SAGE) [13], cap analysis of 
gene expression (CAGE) [14], and massively parallel signature sequencing (MPSS) [15]. Unlike the 
EST approach, the tag methods uniquely identify each transcript to achieve gene-level expression 
quantification. However they are generally unable to distinguish specific isoforms. In addition, most of 
them are based on traditional Sanger sequencing technology, making them very expensive to apply on 
a large scale.  

Hybridization-based microarrays provided the first relatively inexpensive way to detect and 
quantify transcripts on a large scale [16–18]. These include transcription tiling arrays, which allow the 
mapping of transcribed regions to a very high resolution, from 5 to 50 base pairs (bp), depending on 
probe density [19,20]. They have several advantages over previous methods, including their high 
throughput and their ability, with some designs, to quantify distinct spliced isoforms [21]. However, 
because of differences in hybridization strength, cross-hybridization, and other experimental variables, 
microarrays provide a noisy output signal. In addition, they can only measure genes for which the 
sequence and the precise exon-intron boundaries are known, making them unable to identify novel 
genes or novel splicing events [22,23].  

Recently, RNA-seq methods technologies provide unprecedented opportunities for characterizing 
the set of RNA transcripts produced in a cell [24–28]. Called a “revolutionary tool for transcriptomics”, 
RNA-seq is the first sequencing-based method that allows the entire transcriptome to be surveyed in a 
very high-throughput and quantitative manner [29]. Unlike hybridization-based methods, it is not 
limited to the detection of known transcripts, and it can measure a much larger range of expression 
levels. Among its other advantages, RNA-seq data has relatively low background noise; it achieves 
base-pair resolution, allowing precise identification of exon and intron boundaries; and it can detect 
single nucleotide polymorphisms (SNPs) and other variants within transcripts. Although RNA-seq has 
already dramatically changed the landscape of genetic studies, it is clear that many years remain before 
we will have a complete catalogue of human genes and their expressed isoforms.  

2. The Diversity of the Transcriptome  

2.1. Various Classes of ncRNAs 

Over the past decade, many studies have revealed an unexpected level of diversity in the human 
transcriptome, which in turn has required scientists to expand their definition of a gene. The traditional 
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definition of a gene—a DNA sequence that is transcribed to produce a functional product—has been 
expanded to include not only to the ~22,000 protein-coding genes present in the human genome [11], 
but also a myriad of non-protein coding sequences. These set of transcribed non-protein coding DNA 
sequences show complex patterns of expression and regulation [30], and they are no longer restricted 
to the well known ribosomal and transfer RNAs (rRNAs and tRNAs, respectively). Furthermore, when 
we introduce these new and growing functional RNAs into our gene counts, the number of genes in the 
human genome increases from ~22,000 (which includes only protein-coding genes) to the 2001 
estimates of about 30,000–40,000 genes [31].  

The discoveries of endogenous small interfering RNA (siRNA) [32] and microRNA (miRNA) [33] 
genes represented dramatic breakthroughs in our understanding of the transcriptome. These two 
classes of small ncRNAs play a central role in RNA interference by binding to specific mRNA 
molecules to either increase or decrease their activity. Various other classes of ncRNAs have a  
now-broadly recognized functional role. These include regulatory RNAs such as PIWI-interacting 
RNAs (piRNAs), promoter-associated RNAs (PARs), transcription initiation RNAs (tiRNAs),  
X-inactivation RNAs (xiRNAs), and many others [34,35]. Among them, the long non-coding RNAs 
(lncRNAs), defined as ncRNAs longer than 200 bp, are probably the least well-understood transcripts. 
Although few of them have been experimentally studied, a view is emerging that these are key 
regulators of epigenetic gene regulation in mammalian cells [36].  

Large intergenic RNAs (lincRNAs) are a subclass of lncRNAs that do not overlap protein-coding 
regions. Cabili et al. [37] catalogued more than 8,000 lincRNAs (58% of which were novel) using an 
integrative approach that unifies existing annotation sources with transcripts assembled from RNA-seq 
data collected from 24 tissues and cell types. Several global properties of lincRNAs were evidenced by 
this study:  

- they are expressed in a highly tissue-specific manner compared to protein-coding genes,  
- they are typically co-expressed with their neighboring genes, and  
- they only show moderate conservation in other species.  

The functional classification of lincRNAs is far from complete, even though Cabili et al. assigned 
putative functions to many predicted lincRNAs based on the functions of protein-coding genes with 
similar expression patterns.  

2.2. Alternative Splicing 

Even when considering only protein-coding RNAs, the scientific community still does not have a 
complete picture of the transcriptome. Not only is there uncertainty about the exact number of human 
protein-coding genes, but recent evidence has emerged to show that different humans have slightly 
different individual gene sets [38–40]. The number of mature mRNA transcripts is even less certain, 
and varies across tissues and different stages during cell differentiation [41,42]. Further complicating 
matters, we now know that more than 90% of multi-exon protein-coding genes undergo alternative 
splicing [43,44], which is considered to play a major role in increasing cellular and functional diversity 
in the transcriptomes of higher eukaryotes [45]. However, we do not yet know the function of the vast 
majority of alternatively spliced human transcripts, and it is now clear that alternative splicing does not 
simply act to generate variant protein sequences [46]. 
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Alternative splicing also affects ncRNA genes, about 30% of which produce at least one 
alternatively spliced transcript [47]. Cabili et al. found that lincRNAs, although shorter and with fewer 
exons than mRNAs, are also alternatively spliced with an average of 2.3 isoforms per locus [37]. New 
transcripts are continuously being discovered [19,41,48,49], strengthening the observation that we are 
far from determining all transcript isoforms.  

2.3. Estimating the Annotated Human Transcript Count 

In an attempt to identify how many human transcripts are currently annotated, I combined all  
human gene annotations from Ensembl (release 64) [50], NCBI’s RefSeq database [51], and the UCSC 
Genome Browser [52] with the lincRNAs catalogued by Cabili et al. [37]. After eliminating redundant 
transcripts (i.e., transcripts with identical annotation as an already included transcript from one of the 
databases), I divided the remaining ones into three categories: mRNAs if they were annotated as 
protein-coding transcripts, long ncRNAs if they were annotated as non-coding and were at least 200 bp 
long, and small ncRNAs otherwise.  

As also observed by others [53], I found a highly complex architecture in the human transcriptome, 
in which some base pairs could be part of many overlapping transcripts in any of the three categories, 
and emanating from both strands of the genome. Loci containing all three categories of transcripts 
were not frequent (see Figure 1a). Not surprisingly, the annotations include more mRNA than ncRNA 
transcripts, possibly due to a bias towards annotating protein-coding transcripts, although loci with at 
least one ncRNA are more numerous than loci containing one or more mRNAs (see Table 1). Overall, 
annotated transcripts today cover 4.62% or 3.85% of the human genome, depending on whether or not 
we include pseudogenes. Expression of pseudogenes is controversial, with some reports suggesting 
that they might be transcribed and could play a significant part in gene regulation [54,55]. They cover 
about 30% of the total base pairs included in all ncRNA transcripts. Figure 1b shows the base pair 
coverage of the human transcriptome (including pseudogenes) by the three categories of transcripts.  
I found that 62% of the base pairs in the transcriptome are part of mRNAs, supporting the fact that 
ncRNAs tend to be smaller in length than mRNAs.  

Figure 1. Composition of the human transcriptome. (a) Venn diagram of the number of  
loci containing mRNA transcripts (green), long ncRNAs (blue), and small ncRNAs (red); 
(b) Base pair coverage of the transcriptome by the three categories of transcripts. 
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Table 1. Number of known annotated transcripts and human gene loci collected from 
Ensembl, NCBI’s RefSeq, UCSC Genome Browser, and Cabili et al.’s lincRNA catalog.  
A single locus typically contains multiple transcripts, particularly for mRNAs. 

Annotation mRNA Long ncRNA Small ncRNA 
Transcripts 111,451 89,981 11,366 
Loci 20,944 40,765 11,195 

2.4. RNA Editing 

RNA editing is another cellular process that contributes to the complex landscape of mammalian 
transcriptomes. In the RNA editing process, single nucleotide changes occur after DNA has been 
transcribed into RNA. The resulting RNA transcripts may produce altered proteins, or they may 
disrupt translation more severely [56]. Two RNA editing mechanisms are known in humans, causing 
two types of substitutions: adenosine to inosine, and cytosine to uracil. The A-to-I editing, also called 
A-to-G, is a process mediated by a family of adenosine deaminases (ADARs) that act on RNA  
and replace certain adenosines (A) with inosines, which then act as guanosines (G) during  
translation [57,58]. Similarly, the C-to-U switches are mediated by APOBEC1 [59–61].  

Until recently considered a rare event, RNA editing is now believed to affect both coding and  
non-coding sequences of thousands of genes, including ncRNAs [56,62,63]. A 2011 study by Li et al. [64] 
looked at RNA-seq and DNA sequence data from 27 individuals and reported that RNA-DNA differences 
(RDDs) are not limited to the two previous types of substitutions described above. In their study,  
Li et al., observed all 12 possible RNA-DNA substitutions at more than 10,000 exonic sites, most of 
them present in multiple individuals and in different cell types. Their result suggests that previously 
unknown RNA editing mechanisms may be active in humans. However, this result has been strongly 
contested by several other groups, who argued that the vast majority of the observed RDDs were 
technical artifacts, mostly due to read mapping errors or systematic sequencing errors [65–68]. 
Nevertheless, RNA editing has an important role in molecular biology, and recent studies show that it 
may produce even more transcriptome diversity than alternative splicing [69].  

3. Reconstructing the Transcriptome 

As discussed above, high-throughput RNA sequencing surpasses all previous technologies in its 
ability to profile the extent and complexity of eukaryotic transcriptomes. The latest generation of 
sequencing machines can generate up to 600 gigabases (Gb) in a single run, equivalent to 200-fold 
coverage of the human genome. The 600 Gb is produced in the form of 6 billion short reads, each 
approximately 100 bp in length (using the Illumina HiSeq sequencer), and assembling these reads into 
chromosomes is a very complex, highly specialized task. Therefore one of the main challenges posed 
by RNA-seq is a computational one. Here I will briefly mention some of the most common 
bioinformatics systems for transcriptome assembly, and the challenges faced by these systems. For a more 
comprehensive review of next-generation transcriptome assembly methods, the interested reader can 
consult several recent reviews [70–72]. 

Although many programs have been developed for whole-genome assembly (e.g., [73–75]),  
these methods cannot be directly applied to transcriptome assembly due to specific characteristics of 
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RNA-seq data sets. Genome assembly programs assume that the DNA sequence’s depth of coverage is 
relatively uniform across the genome. This is not true for transcripts, which have highly variable 
sequence coverage depending on their expression levels. Sequence depth is used to indicate repeats by 
genome assemblers, which are designed to take this into account. Another confounding fact for 
genome assemblers is that alternative transcripts from the same locus typically share exons that are 
difficult to assemble unambiguously. Specific features of RNA-seq data (e.g., strand-specific 
sequencing or partially covered gene transcripts from low-abundance genes [48]) can also confound a 
whole-genome assembly algorithm. Therefore new methods have had to be developed to address the 
particular characteristics of transcriptome assembly. 

There are two main approaches for assembly of a transcriptome: a genome-guided approach when a 
reference genome is available; or de novo assembly, which does not need a genome reference and can 
theoretically reconstruct transcripts that are transcribed even from parts missing from that genome’s 
assembly. De novo transcriptome assembly is far more challenging in higher eukaryotes due to the 
large number of genes, the great variation in their expression levels, and especially because of the 
large number of alternatively spliced transcript variants. For this reason, de novo methods are 
primarily used for organisms that lack a sequenced reference genome. 

Read mapping is one of the main technical challenges of genome-guided approaches. Alignment of 
short reads to the reference genome is a challenge in itself, but with RNA-seq data these reads may be 
sequenced from exons and exon-exon junction regions. Methods such as Bowtie [76] and BWA [77] 
can be used for the alignment of reads to either a reference genome or directly to the transcriptome, but 
this strategy will miss novel exons and novel splicing events. Spliced aligners were developed to 
overcome these limitations. Some of them (e.g., TopHat [78], SpliceMap [79], MapSplice [80]) use an 
‘exon-first’ approach where reads are first mapped to the genome, and then the unmapped reads are 
split into shorter segments and aligned independently. Other spliced aligners, such as GSNAP [81] or 
BLAT [82], use a ‘seed-and-extend’ strategy in which the reads are first divided into small segments 
(seeds) that are individually aligned to the genome, and then candidate regions are locally aligned to 
obtain the final spliced alignment of the read. There are different advantages to these strategies, but in 
general ‘exon-first’ aligners are usually faster, while ‘seed-and-extend’ ones may be slightly more 
sensitive by reducing the bias towards unspliced alignments in the exon-first approach. 

After mapping all reads to the reference genome, transcriptome assemblers cluster the overlapping 
reads at each locus and build a connectivity graph representing all possible isoforms. Different 
transcriptome assembly programs, such as Cufflinks [41], Scripture [83], IsoInfer [84], and IsoLasso [85], 
use different criteria to parse the connectivity graph. Cufflinks uses a parsimony principle to generate 
the minimal number of transcripts that will explain all reads in the graph. If there are multiple ways to 
assemble a minimal number of transcripts, Cufflinks uses the read coverage across each path to decide 
which combination is most likely to originate from the same RNA transcript. Scripture reconstructs all 
possible isoforms by enumerating all possible paths in the connectivity graph that have statistically 
significant read coverage. While Cufflinks and Scripture estimate the abundance of transcripts after 
they are assembled, IsoInfer and IsoLasso assemble transcripts at the same time that they estimate their 
expression levels. They take two different approaches: IsoInfer uses a heuristic approach to reduce the 
huge search space of all valid isoforms, while IsoLasso uses a multivariate regression method that also 
minimizes the number of predicted transcripts.  
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De novo transcriptome assembly methods, generally based on de Brujin graphs, are less efficient 
and less sensitive than genome-guided methods for the human genome. Despite that, running a de novo 
assembler in addition to a genome-guided method may produce a more comprehensive transcriptome. 
Because de novo assemblers do not need a reference genome, they can identify genes that are missing 
from the reference genome, such as trans-spliced transcripts and similar transcripts originating from 
chromosomal rearrangements. Trinity [86], Oases [87], SOAPdenovo [88], and Trans-ABySS [89] are 
some of the programs used for de novo transcriptome assembly. A recent comparative study [90] 
evaluated the performance of different de novo transcriptome assembly programs and found that 
Trinity performed well across various conditions, but took the longest running time; Oases consumed 
the most memory; SOAPdenovo required the shortest runtime but performed poorly at reconstructing 
full-length transcripts; and Trans-ABySS showed a good balance between resource usage and quality 
of assemblies. Although it would undoubtedly prove useful, there is no automated software pipeline to 
carry out a combined assembly strategy to bring together the high sensitivity of genome-guided 
assemblers with the ability of de novo methods to detect novel and trans-spliced transcripts. 

4. The Size of the Transcriptome  

Less than 2% of the human genome codes for proteins [91]. As described above, if we add to this 
fraction the DNA sequences that correspond to annotated ncRNAs, we are still left with less than 5% 
of the human genome covered by known transcripts. Other reports have found that only ~5–10% of the 
genome is stably transcribed in cell lines [19,20,92]. My own independent analysis (Figure 2) shows 
that it is rare to see more than 5% of the total base pairs in the genome covered by assembled 
transcripts in normal human tissue. While these studies don’t capture the expression of the 
transcriptome at all stages in the cell development, they suggest that only a small portion of the human 
genome is transcribed. And yet a mounting number of studies suggest that the vast majority of the 
genome is transcribed at some time or other. Beginning in the early 2000s, full length cDNAs from 
various mouse tissues at different developmental stages, and genome-wide tiling arrays in different 
human tissues and cell lines revealed that much more of the mammalian genomes is transcribed than 
what is annotated in public databases [5,19,20,49,93–95]. These studies culminated with the 
publication in 2007 of the results from the pilot phase of the ENCODE Project [96], which estimated 
that as much as 93% of the human genome is transcribed in at least one cell type. Does this broad 
pattern of transcription mean simply that the cell creates a great deal of transcriptional noise by RNA 
polymerase binding accidentally (or randomly) to many sites in the genome? Or does this result 
challenge the long-standing view that most of the human genome is not biologically active? Scientists 
have conflicting opinions on the answer to this question.  

A recent study published by van Bakel et al. [97] claims that most ‘dark matter’ transcripts—
defined as ncRNAs of unknown function - are associated with known genes. In this paper, van Bakel 
et al. argue that there is a high false-positive rate associated with the tiling array technology that was 
the basis of most analyses that suggested the pervasiveness of transcription. When compared to  
RNA-seq data, tiling arrays produce a larger proportion of low-abundance transcripts originating from 
intergenic and intronic regions, although tiling arrays and RNA-seq data generally agree on the 
location of the greatest transcript “mass.” The low coverage of intronic transcripts suggests that they 
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might in fact represent random sampling from partially processed or unprocessed RNAs. Supporting 
this idea is also the observation that the transcription mass in intergenic regions increases at much 
lower rates than in intronic regions as the number of reads is increased. Van Bakel et al., also 
identified several thousand small transcripts that map outside known genes, however most of them 
could be explained as accidental by-products of enhancer activity. Overall, the authors conclude that 
most of the genome is not appreciably transcribed, and the majority of intergenic and intronic 
transcripts observed in previous studies may be attributed to biological and/or technical  
background noise. 

Figure 2. The size of the transcriptome, computed as the fraction of the total number of 
base pairs in the human genome covered by the assembled transcripts, for 16 normal 
human tissues included in the Illumina Body Map [98]. Each RNA-seq data set was 
mapped to the genome with TopHat [78] and assembled with Cufflinks [41]. Note that 
except for adrenal tissue, in which transcripts cover 5.3% of the human genome, all other 
reconstructed transcriptomes are smaller in size than the currently annotated transcriptome. 

 

Clark et al. [99] acknowledge that indeed most dark matter transcripts are associated with known 
genes, but they strongly disagree with van Bakel et al.’s conclusion that the genome is not as 
pervasively transcribed as previously reported. In their study, Clark et al., argue that we cannot dismiss 
the observations from multiple independent techniques, including RT-PCR, RACE, and Northern blot 
analyses, which together validated more than 90% of the identified transcripts [100,101]. They also 
argue that van Bakel et al.’s RNA-seq data suffers from insufficient sequencing depth and poor assembly, 
and is biased towards polyadenylated RNA, which selectively omits significant amounts of RNA as 
has been shown earlier [102]. Overall, similarly to other studies [103,104], Clark et al. find that the 
detection accuracy of tiling arrays is not significantly lower than that of RNA-seq, and they conclude 
that a significant fraction of dark matter RNA comes from very long, intergenic transcribed regions.  

In a subsequent paper [105], van Bakel et al. agree with the fact that most of the genome appears to 
be transcribed. But given the various sources of extraneous reads, both biological and laboratory-derived, 
they expect that given sufficient sequencing depth the whole genome may be covered with transcripts.  
A recent study that sequenced total RNA from human brain and liver supports van Bakel et al.’s 
suggestion that unannotated transcripts within introns represent unspliced introns rather than unique 
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independent transcriptional units [106]. And yet another study found that sequenced reads observed in 
conventional RNA sequencing data sets, previously dismissed as noise, are in fact indicative of 
unassembled rare transcripts [107]. Therefore the debate about the pervasiveness of transcription 
continues, but as van Bakel et al., and others [30,108] point out, it is time to stop arguing over the 
content of the transcriptome, and focus on finding evidence for dark matter functions.  

5. Discussion and Conclusions 

The unprecedented depth of sequence coverage achieved by RNA-seq has revealed how much of 
the human transcriptome is still uncharacterized. Many novel transcripts are still being discovered, 
stimulating the debate as to the extent to which the genome is transcribed. Non-coding RNAs represent 
the majority of the human transcripts, and there is no doubt that many of them, initially considered  
to be transcriptional artifacts, are in fact functional. They play important roles in transcriptional and 
post-transcriptional gene regulation via both cis- and trans-acting mechanisms, chromatin modification, 
control of transcription factor binding, regulation of alternative splicing. These functions have 
important consequences for development and for diseases, including cancer [30,36,109,110]. 

Despite current intense research efforts, many of the novel transcripts identified thus far have an 
unknown function. Most of them have been found only in specific cell types, tissues, or developmental 
stages [37,100,111]. They lack functional ORFs, have lower expression levels, and are only modestly 
conserved, although conservation is only a week indicator of functionality [96,112,113]. Occasionally, 
entirely novel protein-coding genes with strong mRNA expression have been identified [114], but 
most unannotated transcripts that are protein-coding are alternatively spliced isoforms of known 
mRNAs [41]. However, as of today the vast majority of alternatively spliced transcripts lack described 
functions, and the role of alternative splicing itself in gene evolution remains largely unexplored [46].  

Is low RNA polymerase fidelity the principal cause of the widespread transcription observed in the 
human genome? We do not have a definite answer to this question [115]. A focus on deciphering the 
biological functions of transcribed genomic sequences might provide us with a clearer picture. Over 
the last decade, the estimated proportion of the human genome that might be functional has been 
constantly adjusted upwards, and today it lies between 10% and 15% [116]. This estimate is still much 
lower than the ~93% estimate for the transcribed fraction of the genome [96]. In a 2009 review, 
Ponting et al., argue that a large, but as yet unknown, number of noncoding RNAs cannot be explained 
solely as the product of transcriptional noise [30]. If ncRNAs were simply transcriptional noise, than 
their expression levels would not show the wide diversity that is often observed among different 
tissues. In addition, their nucleotide substitution rates would be very similar to neutrally evolving 
sequences. Instead, several evolutionary studies suggest that many ncRNAs exhibit signatures of 
functionality that are more usually associated with protein-coding genes [47,117], or that their low 
sequence conservation is due to the fact that they are frequently acted upon by positive  
selection [118,119]. Nevertheless, some percentage of the transcripts observed are very likely the 
result either of transcriptional noise [120] or of genomic DNA contamination [121]. Even if not 
functional themselves, these unannotated transcripts might reflect transcriptional processes that 
facilitate the expression of other genes. Until we can functionally validate these transcripts or gain a 
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better understanding of the range of transcriptional mechanisms involved, the question of how much of 
the human genome is transcribed will remain an open question.  
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