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Abstract: Detecting associations between an input gene set and annotated gene sets (e.g., pathways)
is an important problem in modern molecular biology. In this paper, we propose two algorithms,
termed NetPEA and NetPEA’, for conducting network-based pathway enrichment analysis. Our
algorithms consider not only shared genes but also gene–gene interactions. Both algorithms utilize a
protein–protein interaction network and a random walk with a restart procedure to identify hidden
relationships between an input gene set and pathways, but both use different randomization strategies
to evaluate statistical significance and as a result emphasize different pathway properties. Compared
to an over representation-based method, our algorithms can identify more statistically significant
pathways. Compared to an existing network-based algorithm, EnrichNet, our algorithms have a
higher sensitivity in revealing the true causal pathways while at the same time achieving a higher
specificity. A literature review of selected results indicates that some of the novel pathways reported
by our algorithms are biologically relevant and important. While the evaluations are performed only
with KEGG pathways, we believe the algorithms can be valuable for general functional discovery
from high-throughput experiments.

Keywords: pathway; protein–protein interaction network; enrichment analysis; gene sets;
random walk with restart

1. Introduction

Modern molecular biology has been revolutionized with the emergence of high-throughput
experimental technologies such as microarrays and next-generation DNA sequencing. While many
exciting discoveries have been made by data-driven analysis of such whole-genome data sets,
an important problem that many biologists face everyday is how to interpret such large-scale data
sets. A typical output from such a high-throughput experiment is a list of genes that are observed to
be associated with a certain phenotype, such as those differentially expressed in tumors compared
to normal tissues. In contrast to the easiness in obtaining the gene list, the bottleneck usually lies in
understanding the meaning of the genes and generating new testable hypotheses with the hope to
reveal the underlying molecular cause of the phenotype.

Biologists are knowledge-driven. A principled way to interpret such gene lists is to compare them
with a database of well-annotated gene sets, such as biological pathways. For example, one of the
most widely used approach, Over Representation Analysis (ORA) [1], counts the number of common
genes shared by an input gene set and each annotated gene set and applies a statistical test, such as the
cumulative hyper-geometric test, to calculate the statistical significance of the overlap. A p-value cutoff,
e.g., 0.05, is then applied to select the annotated gene sets that share a statistically significant overlap

Genes 2017, 8, 246; doi:10.3390/genes8100246 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
http://dx.doi.org/10.3390/genes8100246
http://www.mdpi.com/journal/genes


Genes 2017, 8, 246 2 of 12

with the input gene set. ORA is very easy to implement, and the idea behind it is straightforward
to biologists. A popular extension of ORA, known as the Gene Set Enrichment Analysis (GSEA) [2],
tries to eliminate the need for an ad hoc cutoff (e.g., expression fold change), which is often used in
defining the input gene set. GSEA works by ranking all genes in the genome according to, say, level of
differential expression, and tests whether any annotated gene set is ranked unexpectedly high or low
through a running-sum statistic. While GSEA is becoming more popular, it is sensitive to noise and
may report too many pathways that are conceptually hard to comprehend by biologists. In addition,
GSEA is not applicable in cases where a completely ranked gene list is unavailable. As a result, ORA is
still widely used by biologists.

Both ORA and GSEA depend on the availability of trusted gene annotations, such as gene ontology
(GO) or metabolic pathways, which limits their applicability to only well annotated species. In addition,
gene annotations in databases such as GO or Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway may be strongly biased by some classes of genes or phenotypes that are popular targets, such
as cancer. More importantly, it is becoming more and more well known that such enrichment-based
analyses, including both ORA and GSEA, have very low discriminative power, as they treat genes as
independent functional units. In reality, genes function in a highly coordinated way. For example,
two gene sets may share few genes but can be involved in similar functional pathways, or they can
represent two sub-modules of the same pathway. Common enrichment-based analysis may not be
able to detect the relationship between gene sets.

To address the aforementioned issues, several studies have proposed the use of biological
networks, such as protein–protein interaction (PPI) networks, as a more unbiased tool to investigate
the biological meaning of gene sets [3–6]. The rationale is that genes that are located within a short
distance in the same network are likely involved in similar biological processes. As such networks
are typically obtained from high-throughput experiments, they are less likely to be biased by existing
knowledge and can probably provide better coverage to different classes of genes and phenotypes.
Furthermore, network-based analysis allows the relationship between genes to be explicitly modeled,
instead of treating them as independent entities. While conceptually interesting, such methods have
had limited success because high-throughput biological networks are usually very noisy, and still
have many missing edges. Furthermore, the results obtained by such analyses, often in the form of
PPI subnetworks, can be difficult to interpret because functional connections to biological processes
are missing.

Another strategy, which seems to be more successful in practice, is to combine both biological
networks and pathways in an analysis. For example, Alexeyenko et al. proposed a network-based
method to investigate the associations between input gene sets and annotated gene sets by counting
the number of network links between members of two gene sets [7]. Later, Glaab et al. proposed
an algorithm called EnrichNet, which extends the method of [7] to include gene pairs that are not
necessarily direct neighbors but are within close proximity in the network [8]. These approaches take
gene correlations and interactions into consideration and agree with the fact that genes function in
a coordinated way, which is a meaningful improvement over ORA. However, EnrichNet only provides
scores to measure the functional associations and does not provide information about the statistical
significance of the scores.

In this paper, we propose two network-based pathway enrichment analysis algorithms,
NetPEA and NetPEA’, for conducting a network-based pathway enrichment analysis. Our algorithms
consider not only shared genes but also gene–gene interactions. The two algorithms share some
common features to identify hidden relationships between an input gene set and pathways, but each
uses a different randomization strategy to evaluate statistical significance and, as a result, emphasize
different pathway properties.

The remainder of this paper is organized as follows. We present the details of the two algorithms
and the data sets in Section 2. In Section 3, we present the test results of our methods on multiple
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data sets and discuss the significance of our finding. We conclude with some remarks for future
improvements in Section 4.

2. Methods and Materials

2.1. Overview of Our Algorithms

We propose two network-based pathway enrichment analysis algorithms, NetPEA and NetPEA’.
NetPEA treats gene interactions as important as shared genes, while NetPEA’ is devised to find hidden
causal pathways that are not enriched within the input gene set.

The two algorithms share their first step to calculate similarity scores between the input gene
set and pathways based on their “closeness” on a PPI network, measured by a random walk with
restart procedure. The two methods then adopt different randomization strategies as their background
models to evaluate the statistical significance of the similarity scores. NetPEA uses randomized gene
sets as its background; NetPEA’ employs randomized gene sets and randomized networks as its
background. Both algorithms take gene interactions into account but focus on different pathways.
Considering not only shared genes but also interacting genes, NetPEA extends the search scope of
ORA, and therefore it reports more significant pathways. On the other hand, NetPEA’ attempts to
de-emphasize pathways that are considered statistically significant simply because of their overlaps
with the input gene set, and, as a result, it is able to identify pathways that are within close proximity
to the input genes but do not have a significant overlap with them. As shown in Section 3, these hidden
pathways, which are typically ignored by ORA and similar approaches, may very likely be the actual
causal pathways and can be robust among experiments.

2.2. Random Walk-Based Similarity Measure

Figure 1 shows the main component of our methods, calculating similarity scores, which is used
to measure the closeness of pathways to the input gene set. First, we map the genes in the input
gene set and pathways to a relevant biological network (PPI network in this study). Then all nodes
are assigned an initial value of 0, except the ones in the input gene set which are assigned a value
of 1. The Random Walk with Restart (RWR) procedure [9] is then used to spread the nonzero initial
values to other nodes in the network. RWR is a well-known machine learning algorithm used to
measure the similarities between nodes by imagining that, starting from each nonzero node, there is a
random walker that, at each step, either moves to a randomly chosen neighbor or jumps back to the
starting node. We formulate the procedure in Equation (1). V denotes the vector of initial node values;
p represents the restart probability, which indicates the probability for random walkers to jump back
to their starting nodes (fixed at 0.5 in this study); M is the PPI network transition matrix; and Sn is
a vector of all nodes in the network, which is used to measure the similarities between each node in
the network and nodes in the input gene set after n rounds of propagation. At the very beginning, S0

is initialized with V. After a period of time of propagation, Sn reaches some dynamic balance and the
node values converge and become stable. For each pathway, we take the average of its member gene
values as its similarity score to the input gene set.

Sn = (1 − p) ∗ M ∗ Sn−1 + p ∗ V (1)
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Figure 1. The workflow for calculating similarity scores between the input gene set and pathways.
RWR refers to a Random Walk with Restart procedure.

2.3. Network-Based Pathway Enrichment Analysis

To evaluate the statistical significance for pathways to achieve such similarity scores, we introduce
two algorithms based on different randomization strategies.

2.3.1. Algorithm NetPEA

NetPEA only randomizes the input gene set, in which we randomly choose the same number
of genes as the input gene set to calculate the similarity score for each pathway. After we repeat this
randomization 1000 times, we then get 1000 similarity scores for each pathway as its background.
Equation (2) is used to calculate z-scores for pathway significance. D is the similarity score using gene
set of interest as input, while R is a set 1000 similarity scores taking randomized gene sets as inputs.

z-score =
D − mean(R)

std(R)
(2)

We rank the pathways in descending order according to their z-scores. As the distribution of the
z-scores roughly follows a normal distribution, we also convert the z-scores to p-values under a normal
distribution assumption. We then select pathways with z-scores greater than 1.65, which corresponds
to a p-value 0.05, as statistically significant pathways.

2.3.2. Algorithm NetPEA’

NetPEA’ randomizes both the input gene set and PPI network to calculate the statistical
significance of the associations between the input gene set and annotated gene sets. To randomize the
network, we rewire the network connections randomly but ensure all nodes in the network maintain
the same degrees as in the original PPI network. Repeating this rewiring 10 times, we have 11 networks
including the original human PPI network. For each network, we perform a random walk with a
restart procedure to calculate the similarity scores between the true input gene set and each of the
annotated gene sets. This is also repeated for 1000 randomized input gene sets.

The z-score of the association between an input gene set and each annotated gene set is calculated
by Equation (3). For each pathway, DN represents the similarity score taking the real input gene set
and human PPI network as input; DR is a set of 10 similarity scores using the real input gene set
and randomized networks as input; RN represents a set of 1000 similarity scores taking randomized
gene sets and the human PPI network as input; and RR is 10 sets (each set corresponding to one
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randomized network) of 1000 similarity scores taking randomized gene sets and randomized networks
as input. Similarly as in NetPEA, we rank all pathways according to their z-scores, and use a cutoff 1.65
to select statistically significant pathways.

z-score =
(DN − mean(DR))− mean(RN − mean(RR))

std(RN − mean(RR))
(3)

Consider that there is a modest overlap between an input gene set and a particular pathway,
and that none of the genes in the input gene set, other than those overlapping, are located within
close proximity to the pathway genes in the PPI network. In this case, the expected values in the
vector DR are close to DN. As a result, the z-score for this particular pathway will be “corrected” and
becomes insignificant in NetPEA’ compared to that in NetPEA. Therefore, we expect NetPEA’ to report
less pathways than NetPEA but, at the same time, be able to promote the ranking of the true causal
pathways, which may not be ranked high in NetPEA or other overlap-based methods.

2.4. Data Sets

The annotated gene sets used in this study are from KEGG pathways [10]. We test our algorithms
using input gene sets from several well-cited sources, including a Parkinson’s disease gene set [11],
a lymphoma cancer gene set [12], two breast cancer gene sets obtained by two groups [13,14], two lung
cancer gene sets [15,16], a diabetes disease gene set [17], a leukemia gene set [18], and two unpublished
gene sets, “gender” and “p53” from the GSEA website [2]. All gene sets except “Parkinson” are from
high throughput experiments. The Parkinson’s disease gene set is from a literature search. For four of
the data sets, (p53, gender, diabetes, leukemia), genes are further categorized into “up” and “down”
according to the direction its expression level changes in the experiments. The human PPI network is
downloaded from the Human Protein Reference Database (HPRD, version 9) [19].

3. Results and Discussion

Validation of associations between genes sets is difficult because of the lack of ground truth and
the biases inherent in different evaluation standards. To evaluate the performance of our methods and
have a fair comparison with the existing ones, we adopted and designed multiple evaluation methods.

3.1. Validation Using KEGG Pathways as Input Genes

To validate that our algorithms can indeed identify the most relevant pathways, we first used
KEGG pathways as input genes to identify the most significantly associated KEGG pathway for each
pathway. The rationale is that each pathway should have a closer relationship with itself. Indeed,
NetPEA ranks each pathway itself as the most enriched pathway with a very significant z-score.
Moreover, some between-pathway associations found by NetPEA are also reasonable. For example,
the top three pathways associated with “DNA replication” are “DNA replication”, ”mismatch repair”,
and “nucleotide excision repair”, while the top three pathways associated with “chemokine signaling”
are “hemokine signaling”, “cytokine–cytokine receptor interaction”, and “gap junction”.

On the other hand, NetPEA’ ranks the pathway itself as the most enriched pathway only for
62% pathways, and ranks the pathway itself in the top 10% for 91% of pathways. The deviation from
the ground truth is because NetPEA’ is intended to explore hidden pathways by de-emphasizing
pathways that are considered significant simply because of their overlaps with the input gene set.
Indeed, for a number of cases where the input gene set itself is not ranked as the top gene set, we found
evidence of the association between the reported top gene set and the input gene set, such as “maturity
onset diabetes of the young” and “methane metabolism”. Note also that the association between the
two pathways is not significant according to NetPEA.



Genes 2017, 8, 246 6 of 12

3.2. Validation Using GSEA Outputs as Benchmarks

For four data sets that we have access to the coupled microarrays and ranked gene lists, we applied
GSEA to rank the pathways and we use the rankings as benchmarks. GSEA is a benchmark widely
used to validate gene set rankings, and [8] uses it to check pathway rankings. While the results may be
biased, it provides partial evidence that our algorithms achieve better performances. Here we calculate
Spearman correlation coefficients between each mentioned method and GSEA. Table 1 shows that for
each input gene set, the largest correlation coefficient is from NetPEA or NetPEA’, which means that
our algorithms gain more support on pathway rankings and are better than ORA and EnrichNet.

Table 1. Spearman correlation coefficient between GSEA and four other approaches.

Input Gene Set p53 (down) Gender (down) Diabetes (down) Leukemia (down)

NetPEA 0.4653 0.2713 0.2373 0.3253
NetPEA’ 0.3978 0.1265 0.2401 0.182

ORA 0.3968 0.2406 0.1602 0.264
EnrichNet 0.2967 0.219 0.1779 0.2726

Input gene set p53 (up) Gender (up) Diabetes (up) Leukemia (up)

NetPEA 0.3427 0.4349 0.227 0.1195
NetPEA’ 0.2911 0.2756 0.1419 0.1438

ORA 0.2507 0.332 0.1421 0.0583
EnrichNet 0.2167 0.3067 0.0823 0.0599

3.3. Evaluation Based on Number of Enriched Pathways

We apply our algorithms, NetPEA and NetPEA’, to each of the data sets mentioned in Section 2.4.
Meanwhile, we run ORA on these input gene sets and compare the significant pathways found by the
three methods.

3.3.1. NetPEA vs. ORA

Table 2 shows significant pathways only reported by NetPEA but not present in the results
for ORA. For most of cases (11/14), ORA does not identify any pathway that is not found by
NetPEA. For common significant pathways discovered by both methods, we define NetPEA � ORA,
NetPEA � ORA and NetPEA ≈ ORA by the ratios of their p-values. NetPEA � ORA means the
p-value ratio (NetPEA/ORA) is less than 0.001; NetPEA � ORA represents the ratio greater than 1000;
otherwise it is NetPEA ≈ ORA. Strikingly, no pathways fall into the range NetPEA � ORA. Overall,
NetPEA can successfully identify nearly all significant pathways reported by ORA. Moreover, NetPEA
reports many significant pathways not found by ORA. The superiority of NetPEA over ORA can be
explained by the fact that NetPEA not only considers the pathway enrichment caused by common
genes but also takes gene interactions into account. Through the gene interactions, some pathways
not enriched in ORA are elevated to be significant. In Section 3.6, we will show that these additional
pathways are biologically meaningful.
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Table 2. Significant pathways: NetPEA vs. ORA .

Input Gene Set
# Unique Pathways # Common Pathways

NetPEA ORA PNetPEA � PORA PNetPEA � PORA PNetPEA ≈ PORA

Parkinson 18 0 19 0 18
Lymphoma 18 0 10 0 5

Breast cancer [13] 13 0 6 0 12
Breast cancer [14] 4 1 4 0 16
Lung cancer [15] 28 0 3 0 12
Lung cancer [16] 25 1 6 0 17
Diabetes (down) 13 0 4 0 2

Diabetes (up) 7 0 0 0 2
Leukemia (down) 22 0 1 0 2

Leukemia (up) 7 0 3 0 7
Gender (down) 7 0 0 0 1

Gender (up) 10 0 1 0 2
p53 (down) 14 0 1 0 5

p53 (up) 24 1 5 0 18

3.3.2. NetPEA’ vs. ORA

As NetPEA’ is devised to complement NetPEA, it provides new significant pathway information
that is not present in the results of ORA or NetPEA. Compared to information in Table 2, the number
of common significant pathways decreases for each input gene set (Table 3). At the same time, NetPEA’
produces some significant pathways not present in ORA. This difference is because of the network
randomization in NetPEA’, which eliminates some significant pathways in ORA or NetPEA with loose
gene interactions and lifts insignificant ones in ORA with close gene interactions. As shown clearly in
Section 3.4, these pathways are often preserved between different experiments for the same disease,
signifying the importance of the pathways for the disease.

Table 3. Significant pathways: NetPEA’ vs. ORA.

Input Gene Set
# Unique Pathways # Common Pathways

NetPEA’ ORA PNetPEA’ � PORA PNetPEA’ � PORA PNetPEA’ ≈ PORA

Parkinson 7 28 3 1 5
Lymphoma 16 5 4 0 6

Breast cancer [13] 11 9 0 0 9
Breast cancer [14] 5 9 1 0 11
Lung cancer [15] 28 12 1 0 2
Lung cancer [16] 27 12 1 0 11
Diabetes (down) 19 4 0 0 2

Diabetes (up) 13 2 0 0 0
Leukemia (down) 16 2 0 0 1

Leukemia (up) 15 6 0 0 4
Gender (down) 5 1 0 0 0

Gender (up) 20 3 0 0 0
p53 (down) 13 5 0 0 1

p53 (up) 27 15 0 0 9

3.4. Evaluation Using Cross-Data Stability Analysis

It is well known that the agreement is often poor between different high throughput experiments
concerning the same disease performed by different groups. Among other reasons, this is because
many of the genes identified by these experiments are caused by downstream effects, which can vary
significantly among experiments. It is reasonable to assume that if indeed we can find true causal
genes/pathways, agreement between experiments will be improved. Therefore, for the genes identified
from the two breast cancer data sets and the two lung cancer data sets, we compare the significant
pathways from different data sets reported by NetPEA, NetPEA’ and ORA. We calculate the ratios of
common significant pathways to the total number of unique significant pathways identified from the
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two experiments as well as the p-values of the overlap under the hypergeometric distribution using 208
total KEGG pathways as background. Table 4 shows that NetPEA can find more common significant
pathways than ORA and NetPEA’ as a result of the increased number of significant pathways reported
by NetPEA, which partially suggest that the additional pathways reported by NetPEA are reasonable.
Remarkably, while NetPEA’ reports much fewer pathways than NetPEA, the number of common
pathways remains almost unchanged. As shown in Figure 2, the statistical significance of overlap
between the pathways detected from different data sets is the highest in NetPEA’, compared to NetPEA
and ORA. Therefore, we believe that the pathways reported by NetPEA’ may have a greater chance
of containing the pathways that are directly associated with the phenotype instead of downstream
effects. In addition, while the overlap of pathways detected by NetPEA is not as significant as in
ORA, this is mainly due to the increased number of detected pathways and the limited number of
candidate pathways as background. Since almost all pathways reported by ORA are also reported by
NetPEA, we removed the ORA-detected pathways from NetPEA results and reanalyzed the overlap.
As shown in Figure 2 (“NetPEA unique”), the pathways found by NetPEA but not by ORA do have
an increased level of overlap compared to ORA, suggesting that the additional pathways identified
by NetPEA are biologically relevant. Collectively, the results suggest that our algorithms have an
advantage in interpreting the results of high throughput experiments performed by different groups
and can potentially discover the key pathways underlying the diseases.

Table 4. Common significant pathways analysis.

NetPEA NetPEA’ ORA

Common pathways
between two breast
cancer data sets
([13,14])

glycolysis/gluconeogenesis,
homologous recombination,
oocyte meiosis, p53 signaling,
progesterone-mediated
oocyte maturation, base
excision repaire, cell cycle

lipoic acid metabolism,
progesterone-mediated
oocyte maturation, cell
cycle, protesome, ubiquitin
mediated proteolysis,
oocyte meiosis

glycolysis/gluconeogensis,
homologous recombination,
progesterone-mediated oocyte
maturation, cell cycle,
oocyte meiosis

Common pathways
between two lung
cancer data sets
([15,16])

DNA replication, ECM
-receptor interaction, focal
adhesion, mismatch repair,
nucleotide excision repair,
pancreatic cancer,
pathways in cancer,
prostate cancer, small cell
lung cancer, base excision
repair, bladder cancer

antigen processing and
presentation, base excision
repair, DNA replication,
ErBB signaling, FC epsilon
RI signaling, FC gamma
r-mediated phagocytosis,
lysosome, mismatch repair,
nucleotide excision repair,
prostate cancer, vibrio
cholerae infection

focal adhesion, mismatch repair,
pathways in cancer, small cell
lung cancer
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Figure 2. Common pathways from two different datasets of the same disease. (a) Overlap between
two breast cancer data sets; (b) Overlap between two lung cancer data sets.
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3.5. Pathways Cross Verification Analysis

Checking whether pathways ranked at the top by one method are also ranked at the top by other
methods can provide additional confidence to biologists and help biologists to narrow down new
hypotheses to test. Here we use two cross verification methods, positive cross verification and negative
cross verification, to compare our algorithms with ORA, EnrichNet and GSEA. For positive cross
verification, we examine how many pathways out of the top 20 by one method appear in the top 20
pathways determined by all the other methods. For negative cross verification, we checked how many
pathways out of the top 20 by one method are ranked below the top 100 by the other three methods.
We verify NetPEA and NetPEA’ separately because if we verify them together they may vote for each
other, which would provide biased, favorable results for our algorithms.

3.5.1. NetPEA

Table 5 shows that ORA receives the most recognition and reports only one pathway that is not
agreed by others, which is understandable because ORA is the most conservative method and most
of its results are also reported by NetPEA and EnrichNet. For the two network-based approaches,
they receive similar results on positive cross verification, while NetPEA is better than the counterpart
with less negative results. Moreover, the only pathway of negative verification result of NetPEA is
“taste transduction” for diabetes, which has been reported previously [20]. The pathways of EnrichNet’s
negative verification result include “thyroid cancer”, “basal cell carcinoma”, “melanogenesis”,
“endometrial cancer” and “hedgehog signaling”. Our limited literature search does not reveal enough
evidence of their associations with diabetes. GSEA is the one receiving the least recognition as it
exploits whole microarrays and, from a methodology point of view, it is far away from the other three
methods. Its negative cross verification results include “olfactory transduction”, “mismatch repair”
and “snare interactions in vesicular transport” for diabetes. These associations claimed by GSEA are
hard to understand. Therefore, NetPEA has an advantage over other methods to rank meaningful
pathways at the top.

Table 5. Pathways cross verification analysis for NetPEA.

Input Gene Set
Positive Negative

NetPEA ORA EnrichNet GSEA NetPEA ORA EnrichNet GSEA

Lung cancer [15] 16 16 16 7 0 0 0 2
Lung cancer [16] 14 16 16 4 0 0 1 8
Diabetes (down) 17 19 16 5 0 0 0 3

Diabetes (up) 15 16 13 5 1 1 5 3
Leukemia (down) 18 18 15 5 0 0 0 7

Leukemia (up) 15 19 15 8 0 0 1 4
Gender (down) 18 19 15 8 0 0 1 2

Gender (up) 17 19 15 7 0 0 0 1
p53 (down) 19 19 13 10 0 0 1 2

p53 (up) 16 15 16 6 0 0 2 3

3.5.2. NetPEA’

Compared with Table 5, Table 6 shows that NetPEA’ receives less support than NetPEA. This is
reasonable since NetPEA’ eliminates some pathways that are an important part of ORA. On the other
hand, we conclude that NetPEA’ shares some similarities with GSEA because the results of positive
verification of GSEA increase while its negative verification results decrease.
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Table 6. Pathways cross verification analysis for NetPEA’.

Input Gene Set
Positive Negative

NetPEA’ ORA EnrichNet GSEA NetPEA’ ORA EnrichNet GSEA

Lung cancer [15] 7 14 16 9 0 0 0 2
Lung cancer [16] 4 15 15 4 4 0 1 7
Diabetes (down) 6 19 16 6 4 0 0 2

Diabetes (up) 8 15 13 5 1 1 4 2
Leukemia (down) 7 15 16 5 1 0 0 6

Leukemia (up) 7 18 15 9 1 0 0 2
Gender (down) 8 17 15 9 2 0 1 2

Gender (up) 9 18 15 10 2 0 0 1
p53 (down) 6 14 14 11 1 0 1 3

p53 (up) 6 13 15 8 0 0 2 2

3.6. Novel Pathways

As shown in Section 3.3, our algorithms usually report more significant pathways than ORA.
A careful inspection of these additional pathways suggests that many of them are biologically relevant
and important. Here we only discuss a few of these pathways.

For the diabetes down-regulated input gene set, NetPEA ranks the pathway “glycerolipid
metabolism”, as 5th with a significant z-score 3.5 (p-value = 2.3 × 10−4), and NetPEA’ ranks it as
1st with a significant z-score 7.9 (p-value = 1.4 × 10−15). The same pathway has a p-value 0.12 in ORA
and is ranked 37th by EnrichNet. Extensive literature review shows that “glycerolipid metabolism”
plays an important role in the pathogenesis of obesity and type 2 diabetes [21,22].

Another good example is the Leukemia up-regulated input gene set, where NetPEA’ ranks the
pathway “chronic myeloid leukemia” 4th with a significant z-score 3.12 (p-value = 9.0 × 10−14). ORA
ranks it 63rd with an insignificant p-value, and EnrichNet ranks it 77th. This pathway is missed by
NetPEA (z-score = 0.23). For the Leukemia down-regulated gene set, both NetPEA and NetPEA’ rank
“folate biosynthesis” as the most significant pathway (z-score = 5.0 and 6.5 respectively), while the
same pathway is ranked 22nd in EnrichNet and has a p-value 0.05 in ORA. A search through the
literature confirms that the relationship between the pathway, “folate biosynthesis”, and leukemia can
be verified [23].

Other verifiable significant associations that are identified by our methods but missed by both
EnrichNet (rank > 30) and ORA (p-value > 0.05) include “pathways in cancer” for the p53 up-regulated
gene set, “steroid hormone biosynthesis” and “sphingolipid metabolism” in Parkinson’s disease,
“natural killer cell mediated cytotoxicity” in diabetes, as well as “MAPK signaling”, “ERBB signaling”,
“PPAR signaling”, “focal adhesion” and “ECM receptor interaction” for various cancer gene sets,
to mention a few.

4. Conclusions

In this paper, we propose two novel network-based algorithms to analyze functional associations
between input gene sets and annotated gene sets (e.g., KEGG pathways). The two algorithms apply
different randomization strategies to evaluate the statistical significance of the associations and often
return complementary results. Compared to the well-adopted over representation analysis (ORA),
our methods extend beyond overlap-based comparison, and as a result they are able to identify
more significant pathways, report more common pathways shared by different gene sets of the same
diseases and gain more GSEA support on the pathways rankings. Compared to another network-based
approach, EnrichNet, our algorithms usually report fewer false negative pathways, have a better
discriminative power and provide statistical significance. We demonstrate that novel significant
pathways reported by our algorithms are biologically meaningful and are confirmed by previous
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publications. In the future, we plan to extend the methods to be applied to multiple heterogeneous
terms and contexts.
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