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Abstract: The basic principles of chromosomal organization in eukaryotic cells remain elusive.
Current mainstream research efforts largely concentrate on searching for critical packaging proteins
involved in organizing chromosomes. I have taken a different perspective, by considering the role
of genomic information in chromatins. In particular, I put forward the concept that repetitive DNA
elements are key chromosomal packaging modules, and their intrinsic property of homology-based
interaction can drive chromatin folding. Many repetitive DNA families have high copy numbers and
clustered distribution patterns in the linear genomes. These features may facilitate the interactions
among members in the same repeat families. In this paper, the potential liquid–liquid phase transition
of repetitive DNAs that is induced by their extensive interaction in chromosomes will be considered.
I propose that the interaction among repetitive DNAs may lead to phase separation of interacting
repetitive DNAs from bulk chromatins. Phase separation of repetitive DNA may provide a physical
mechanism that drives rapid massive changes of chromosomal conformation.

Keywords: repetitive DNA; ‘junk’ DNA; repeat assembly; chromosome; chromatin; phase separation;
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1. Introduction

Phase separation is a common physical mechanism by which material organization and
morphologies are controlled [1,2]. The transition from one phase to another phase of a material or a
mixture of materials results from changes in their organization and is often accompanied by drastic
alterations in their morphologies. Phase transition is induced by the changes of specific physical and/or
chemical parameters that lead to re-organization of the materials or specific components of the system.
These include external parameters such as temperature that controls solid–liquid and liquid–gas
transitions, and order parameters that characterize different phases, such as density of molecules in
the transitions [1,2]. Phase transition provides a mechanism for coordinated or synchronized alteration
of the organization of the population of the materials in the system.

Recent studies indicate that phase separation plays a key role in intracellular compartmentalization
of specific proteins and RNAs to form various structural and functional units in the cytoplasm and
nucleus [3]. In contrast to classical cell organelles compartmentalized by membranes (e.g., mitochondria
and endosomes), the intracellular compartments formed by phase separation are without membrane
barriers and are known under various names such as liquid droplets, membrane-less organelles or
assemblages. The membrane-less nature of these organelles allows them to freely exchange their
components with the surrounding milieu and assemble/disassemble dynamically according to
the change of the intracellular environment. Many membrane-less organelles have been reported,
including nucleolus, paraspeckles, nuclear speckles, Cajal bodies and promyelocytic leukemia (PML)
bodies in the nucleus, and P-bodies, stress granules, germ granules and mRNA-protein (mRNP)
granules in the cytoplasm [3,4].
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Emerging evidence suggests that inter-molecular interactions among proteins and RNAs are
crucial for phase separation-based formation of membrane-less organelles [3,4]. The seeding proteins
usually have the potential for multivalency in their interactions with other macromolecules via
specific interacting modules and/or weak interactions by disorganized regions in proteins. The initial
interaction of the multivalent protein nucleates the phase transition and recruits more macromolecules
to form the gel-like network of liquid droplets [3,4]. Apparently, the assembling and disassembling of
the liquid droplets are modulated by the concentration of the participating seeding proteins and other
macromolecules, the modification of these molecules, ionic strength and other intracellular biophysical
conditions that change the properties of the involved macromolecules.

A significant fraction of human and other eukaryotic genomes is made up of repetitive DNA [5,6].
Based on the fact of evolutional dynamic changes of repetitive sequences, repetitive DNAs are
considered as major drivers for structural and functional evolution of the genomes and chromosomes.
Repeat elements may evolve to become genes and/or transcriptional regulatory elements such as
enhancers and promoters [7]. In addition, some landmark structures of chromosomes such as telomere,
centromere and pericentromere regions are concentrated with various repetitive DNAs, indicating
a key role of these sequences in formatting chromosomes. Lines of evidence suggest that DNA
and chromatins with homologous sequences such as repetitive DNA elements have an intrinsic
property/tendency for self-interaction [8–12]. I have formulated the CORE (chromosome organization
by repetitive elements) theory to describe the critical roles of repetitive DNA in organizing chromatin
folding in the higher-order structure of chromosomes. This theory is based on the singular assumption
that repeat interaction/pairing (RP) causes the formation of repeat assemblies (RAs) and an RA-based
chromosomal skeleton [8,13,14]. According to this theory, the linear distribution of repetitive DNA
elements along the chromatins provides structural codes for chromosomal organization. The concept
of repeat-directed chromosomal organization is consistent with multiple lines of evidence [8,13,14].
However, the mechanism by which the activity of numerous repeats in the same family is coordinated is
unclear. Given the rapid temporal progress of chromosomal dynamics during cell cycles, a mechanism
to synchronize the action of RA formation is desirable so that the RAs among repeat members can be
formed in a short time period to support rapid chromosomal conformation changes. In this paper,
I propose phase separation of repetitive DNA as a potential mechanism.

The high copy numbers of specific repeats along chromatins may generate a local concentration
that is sufficient to cause extensive interactions and phase transition of repetitive DNAs. The possibility
of phase separation of repetitive DNA, and the structural consequences of the phase separation on
chromosomal organization and conformation dynamics will be discussed. I suggest that the population
behavior of repetitive DNA in chromosomes follows the physical law of phase separation. This insight
may help explain how repetitive DNA elements can reversibly change the morphology of chromosomes
in a short time scale.

2. A Model of Repetitive DNA Phase Separation-Mediated Chromosome Organization

Emerging evidence supports the general notion that seeding proteins with the potential of
multivalent interaction with other macromolecules can initiate phase separation and the formation of
droplets when a threshold concentration is reached under specific conditions [3,4]. I have previously
suggested the potential that repetitive DNAs interact with multiple other homologous sequences
(or chromatins) during RA assembly [8,13,14], based on published data, including the observation that
many repetitive DNA families have large copy numbers. These properties of repetitive DNAs fulfill the
basic requirement for intracellular phase separation. Based on these considerations and the emerging
evidence, I propose that specific families of repetitive DNAs will undergo RA formation via phase
separation at specific cell states. Phase separation of repetitive DNAs may provide an environment
that promotes rapid repeat compartmentalization and RA formation and thus a mechanism for a
synchronized completion of RA formation on a large scale (Figure 1). The conceived phase separation
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of repetitive DNAs might significantly contribute to the process of chromosome organization. I intend
to suggest a model that entails the following critical ideas:
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Figure 1. Hypothetical phase separation of DNA repeats in chromosomes. Repeats in two different
families (indicated with red and green colors) are used to illustrate the idea of phase transition of repeat
DNA in a chromatin segment. Before phase transition (left), the repeats are randomly distributed in the
territory of an uncondensed chromosome. After transition (right), repeats are phase-separated from the
bulk chromatin and form repeat assemblages (indicated by circles), which likely contain other molecules
such as proteins and RNAs. The formation of the assemblages causes chromosome condensation.
Assemblages of different repeats may have the potential to merge into bigger chromosomal domains
under specific conditions (not shown).

(1) Families of repetitive DNAs in chromosomes undergo phase separation. I propose that in the
higher-order chromosomal organization specific families of repetitive DNAs tend to phase-separate
from bulk chromatin DNA. Both tandem and dispersed families of repeats are expected to undergo
phase separation under suitable conditions. However, different types (tandem vs. dispersed) or
families (e.g., different families of tandem or dispersed repeats) of repeats may behave differently
(see below). Furthermore, I suggest that these phase-separated repetitive DNA elements form
intrachromosomal membrane-less organelles—RAs—that are composed of repetitive DNAs and
other associated macromolecules such as proteins and RNAs. I have previously summarized
the evidence of repetitive DNA spatial clustering in the nucleus and chromosomes, including
dispersed repeats and tandem repeats [8,13,14]. In supporting the idea of phase separation of
repetitive DNA in chromosomes, recent studies have shown that tandem repeat ribosomal DNAs
(rDNAs) form nucleoli by phase separations [15,16]. Another study found that heterochromatins,
which are enriched with repetitive DNAs, are also condensed—a mechanism involving phase
separation [17].

(2) Repetitive DNA phase separation is initiated by molecular processes that involve RPs and
probably other types of intermolecular interactions among proteins and RNAs. I propose that
that RP is a critical form of interaction among repetitive DNAs undergoing phase separation.
Homology-sensing-based DNA interaction is a general phenomenon, as suggested by evidence
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discussed previously [8]. Multiple mechanisms of RPs have been suggested, including direct
interaction between chromatins with repetitive DNAs and indirect interaction mediated/stabilized
by other molecules such as proteins and RNAs [8]. One repetitive DNA may have the potential
for multivalent interactions with multiple other homologous repeats via different parts/motifs,
different surfaces, and/or different mediators [8].

(3) Repetitive DNA phase separation facilitates the organization of chromosome structures.
I conceive that the proposed repetitive DNA phase separation would significantly impact
chromosome organization in several ways. First, phase separation of specific families of repetitive
DNA elements would create a physical driving force to change chromosomal conformation.
Second, phase separation probably creates an environment to synchronize the behavior of the
numerous members of repetitive DNA elements in the chromosomes and thus can coordinate the
activity of repeats in chromosomal organization on a short time scale. Third, phase-separated
RAs may form relatively stable chromosomal structures to support a specific conformation of a
chromosome. Finally, the dynamic nature of phase-separated structures such as RAs provides a
plastic mechanism for the changes of chromosomal organization during cell cycles and transitions
to different cell states with different functions.

3. Regulation of the Phase Separation of Repetitive DNA Elements in Chromosomes

Based on the findings of intracellular phase separation in the formation of various membrane-less
organelles, I expect that the phase separation of repetitive DNAs is regulated by multiple
factors. They include intrinsic and external factors, corresponding to the order and external
parameters respectively.

Critical intrinsic factors include copy number and distribution patterns of repeats. Copy numbers
of repetitive DNA elements in a specific family would presumably affect phase separation of that
repeat family. Different families of repetitive DNAs vary in their copy numbers and thus can be
classified into high-, medium- and low-copy repeats in the genomes [5,6]. The copy number would
directly relate to the concentration or density of the element in the nuclear space, and consequently to
the interaction of repeats.

Repeats in a specific family often unevenly distribute in the linear genome [5,6]. For example,
tandem repeats often form head-to-tail arrays in specific loci such as pericentromeric regions.
Even interdispersed repeats also tend to unevenly cluster in specific chromosomal regions [18].
The distribution patterns on chromatin (such as clustering) of repeats in the same family would
obviously affect the local concentration of the repeats in a specific nuclear domain occupied by the
chromatin regions. For instance, tandem repeats and clustered dispersed repeated would increase
the local concentration of given families and thus promote RA formation and phase separation of
the repeats.

External factors, including repeat-interacting molecules, intracellular ions and modification or
transcription of repeats, may play significant roles in regulation of phase transition of repeats, by
modulating RP kinetics. The sequences of repeat elements likely contain information that directs their
interaction with other repeats and molecules such as proteins and RNAs. Different DNA sequences
may have different intrinsic tendencies for self-interaction. For example, different sequences may
provide unique surfaces for different interaction affinity. The same repeat, especially a long repeat,
may interact with different repeats via different segments. In addition, repeats may also contain
different binding sites for other interacting ligands (e.g., proteins and RNAs). In these potential ways,
repeats may acquire multivalency of interactions with homologous repeats and other molecules to
form an interacting network, which is a hallmark for the formation of membrane-less organelles via
phase separation.

DNA repeats are often epigenetically modified [5,6], including by cytosine and histone
methylation. Such chromatin modifications on repeats play a key role in suppressing their expression.
They likely also change the conformation and biophysical properties of the local chromatin regions
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and thus affect their interaction capacity with other repeats, proteins and/or RNAs that modulate
phase separation.

The intracellular ionic environment is very dynamic and changes according to different cell states.
As discussed previously, the ionic strength of various cations such as Ca2+ and Mg2+ may be crucial in
regulating RA-based chromatin folding [19]. I expect that the cell state-based changes of ionic strength
would play an important role in regulating the separation of repeats.

In addition to alterations of ionic strength, different cell states may change other critical factors
that modulate repeat phase separation. For instance, different cell states may synthesize (or change
the expression levels of) different proteins that can bind to repetitive DNA elements to modulate
RA formation.

It is well known that many repeats can be transcribed, especially in response to various stresses.
These transcribed repeats include interdispersed and tandem repeats [20–23]. Transcription has been
suggested as a critical mechanism for the formation of certain chromosomal membrane-less organelles
such as nucleoli [16]. I conceive that the transcription states of repeats will have a significant effect
on repeat phase separation, and co-activation of transcription of repeats in the same family would
promote their agglomeration.

4. Novel Features of the Model

There are several novel features in the current model. First, the model suggests the possibility
of intramolecular phase separation. Previous studies of phase separation-mediated intracellular
organization have focused on membrane-less organelles that are formed by inter-molecular interactions,
seeded by proteins with the capacity for multivalent interactions. Here, I propose that phase separation
of repeat DNAs occurs intra-molecularly (intra-chromatin) during chromosomal organization.

Second, the current model suggests that intra-chromatin phase separation of repeats plays an
important role in organizing chromosomal conformation, and phase-in and phase-out of repeats
may drive the dynamic alterations of chromosome conformation. Previous models of intracellular
membrane-less organelles mainly describe the organization of specific cellular components such as
proteins, based on inter-molecular interactions. In contrast, the current model describes the role of
repeat phase separation in organizing the conformation of a single chromatin fiber.

Third, the phase separation described in the current model may provide a potential mechanism
for synchronizing repeat action in RA assembly during chromosome organization. The current model
does not change the basic ideas of the CORE theory [8]. According to the CORE theory, numerous
RPs (and thus RAs) are expected to contribute to the organization of a specific conformation of a
chromosome. Because a switch of chromosome conformation can be completed a relatively short period
of time in vitro and during cell cycles, a mechanism needs to be in place to promote the completion of
RA assembly and/or disassembly in a synchronized manner. The idea of phase separation of repetitive
DNA elements proposed here may provide such a mechanism.

5. Considerations of Potential Problems

Although I propose here that repeats have an intrinsic tendency for phase separation and that the
phase separation of repeats has a role in organizing chromosome structures, some key questions remain
to be answered. For example, in genomes of higher eukaryotic organisms (e.g., mammals), there are
many different repeat families. It is not clear how the behavior of phase separation would differ
between various types of repeat families or whether repeats in all families have the capacity for phase
separation. Nonetheless, because repeats in different families are intrinsically different in aspects that
may critically relate to phase separation (as discussed above), including their sequences, distribution
patterns on chromatins and copy numbers; I expect that they likely show different behaviors in their
phase separation. For instance, repeats in different families may undergo phase separation in different
stages of the cell cycle. Different physiological states of the cells that associate with different sets of
intracellular conditions that modulate repeat phase separation—such as cation concentration and the



Genes 2017, 8, 279 6 of 8

expression levels of repeat interaction proteins and/or RNAs—may also play a role. The conceived
differences in phase separation characteristics of repeats in different families are likely coupled with
different functional states of the cells or are in response to different external stimuli such as stress
or other environmental factors. Under a specific condition or cell state, repeats in some families are
phase-separated, while some others may be mixing with bulk chromatins. The conformation of the
chromosome under different cell states is governed by the repeats that are phase separated at those
states. The transition of chromosomal conformation in different cell states may be associated with both
the phase separation of some repeat families and the loss of phase separation of other families, which
may allow them to mix with bulk chromatins. The combination of the two processes of different repeat
families could drive the switch of chromosomal conformation.

I think that RPs are critical for the phase separation of repeats. However, I do not exclude
other forms of molecular interactions that may be involved in the phase separation of repeats.
The involvement of molecules such as proteins, RNA and transcription factors that facilitate or
modulate RPs is highly probable. As suggested in the bacterial ParABS system, protein-DNA
complex formation may facilitate phase separation of DNA [24]. The future characterization of the
molecular composition of RAs will help further our understanding of repeat phase separation-mediated
changes in chromosomal conformation. Although I conceive that RP-mediated separation is a
thermodynamically driven process, it is unclear whether recruiting specific macromolecules such as
proteins to the phase-separated repeat assemblages involves active processes, as recently identified in
other systems [25,26].

In the CORE theory [8], I suggest that RP-based RA formation is a molecular mechanism that
underlies the organization of chromosome conformation. Here, I propose a role of repeat phase
separation in chromosomal organization. It is important to point out that these suggestions do not
contradict each other in nature. In fact, I think RA formation is a process that underlies the phase
separation of repeats. On the other hand, phase separation of repeats probably generates an ideal
environment for the formation of RAs; while the loss of phase separation may disrupt the environment
that supports the formation and stabilization of RAs and cause rapid massive disruption of RAs.

I conceive repeat phase separation as a major potential physical mechanism that drives the
organization or plasticity of specific chromosomal conformations. This suggestion is based on
multiple considerations. First of all, phase separation may facilitate numerous weak interactions
among homologous repeats, and the massive action of repeats is expected to drive instantaneous
conformational changes. Second, analogous to the role of weak interactions such as hydrophobic
interactions in protein folding, weak interactions among homologous repeats facilitated by phase
separation may also play a crucial role in chromatin folding in chromosome organization. Third, the
phase separation of repeats would cause their de-mixing from the other chromatin regions in the same
chromatin fibers, and this might naturally bury the phase-separated repeats and their complexes (RAs)
in bulk chromatins to form skeleton-like structures in chromosomes.

Emerging evidence from studies on phase separation during the formation of nucleoli and
heterochromatins supports the idea of repeat phase separation in chromosomes [16,17]. To directly test
this hypothesis, further experimentation is needed. For example, it would be interesting to demonstrate
phase separation of repeats using in vitro assays and determine the conditions for the phase separation
of different repeat families. Furthermore, it would be critical to show the phase separation behavior of
specific repeat families in cells.

6. Conclusions

Based on the intrinsic property of repetitive DNA in homology-sensing-based interactions,
I propose that they are subjected to phase separation in the nucleus under suitable conditions.
Although this idea remains to be tested directly, it is consistent with the emerging evidence from
the observations of phase separation of rDNA and heterochromatins that are associated with or
contain high amounts of repetitive DNAs [16,17]. In addition, repetitive DNAs are often spatially
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clustered [8,27]. Phase separation has been considered as a primary mechanism for compartmentalizing
the intracellular space to form functional assemblages (i.e., membrane-less organelles). Our model
expands this conceptual framework by extending the role of liquid–liquid phase separation in
chromosomal organization. In contrast to many membrane-less organelles that are formed from
phase separation, this is intra-chromatin phase separation in nature. Phase separation provides an
attractive physical mechanism to coordinate the partitioning and condensing of repetitive DNAs
(repeat assemblies/RAs) to form the proposed chromosome skeleton that supports the structure of
chromosomes. Evolutionary changes of copy numbers and distribution patterns of repetitive DNAs
on chromatin may have a significant impact on chromosomal organization by modulating their phase
separation behavior.
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