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Abstract: Amphibian and bird karyotypes typically have a complex organization, which makes them
difficult for standard cytogenetic analysis. That is, amphibian chromosomes are generally large,
enriched with repetitive elements, and characterized by the absence of informative banding patterns.
The majority of avian karyotypes comprise a small number of relatively large macrochromosomes
and numerous tiny morphologically undistinguishable microchromosomes. A good progress in
investigation of amphibian and avian chromosome evolution became possible with the usage of
giant lampbrush chromosomes typical for growing oocytes. Due to the giant size, peculiarities
of organization and enrichment with cytological markers, lampbrush chromosomes can serve as
an opportune model for comprehensive high-resolution cytogenetic and cytological investigations.
Here, we review the main findings on chromosome evolution in amphibians and birds that were
obtained using lampbrush chromosomes. In particular, we discuss the data on evolutionary
chromosomal rearrangements, accumulation of polymorphisms, evolution of sex chromosomes
as well as chromosomal changes during clonal reproduction of interspecies hybrids.
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1. Peculiarities of Amphibian and Avian Genomes and Karyotypes

In general, amphibian and avian species are characterized by specific and complexly organized
genomes. In particular, the size of amphibian genomes exhibits the greatest variety among vertebrates:
in two orders, Anurans and Apoda, genome size ranges from 0.95 to 16 pg/N, while in Urodeles DNA
value is extremely high and varies from 13.5 to 150 pg/N [1]. Such large genomes are enriched with
repetitive sequences [2,3]. Moreover, certain Urodeles exhibit the longest intron length in comparison to
other vertebrates [4]. Currently, only three amphibian genomes have been sequenced, Xenopus tropicalis,
Xenopus laevis and Nanorana parkeri genomes, and all of them reveal quite small or average size [5–7].

Amphibian metaphase chromosomes are frequently characterized by the absence of informative
banding patterns [8,9]. The number of chromosomes in diploid sets is generally low and usually
does not exceed 26. Several primitive species of Urodels, Anurans and Apoda possess higher number
of chromosomes sometimes including microchromosomes [10,11]. Similarities in sex chromosomes
in the majority of amphibian species also complicate the karyotype analysis [12–14]. Furthermore,
amphibians tend to hybridize and form viable and fertile interspecies hybrids that often become
polyploid [15,16]. It makes investigation of amphibian genomes even more complex.

Birds have relatively small genomes with a diploid chromosome number being about 80 [17–23].
Typical avian karyotype comprises several pairs of relatively large macrochromosomes and numerous
tiny morphologically undistinguishable microchromosomes. Notably, the microchromosomes
represent a gene-dense part of the karyotype and possess about 50% of the genes [20,21,24,25].
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At the same time, due to their size and DNA composition the cytogenetic and genomic data on
microchromosomes remain quite limited. Currently, the most investigated avian karyotypes belong
to representatives of the order Galliformes (including chicken, quails, turkey, paves, partridges,
and pheasants), mainly due to their agricultural significance and importance as animal models
in biological and biomedical research. Chicken (Gallus gallus domesticus) genome is the most
comprehensively investigated avian genome. In particular, several improved drafts of chicken
genome assembly have been released [21,26], the detailed description of chicken karyotype has
been provided [22] and molecular fluorescent in situ hybridization (FISH) probes to individual chicken
chromosomes and their particular regions have been generated [22,27–30]. It serves a reliable basis for
comparative investigations of genomes and karyotypes in various bird species and representatives of
other animal taxonomic groups [23,31–37]. At the same time, even in case of chicken, cytogenetic and
genomic data on at least the microchromosomal part of the karyotype are still limited.

Taking into account the complexity of amphibian and avian karyotypes, standard cytogenetic and
cytological approaches to their investigation using compact metaphase chromosomes often prove to
be inappropriate. In avian and amphibian growing diplotene oocytes, chromosomes take the so-called
lampbrush form. As compared with mitotic metaphase chromosomes, lampbrush chromosomes
are highly decondensed, transcriptionally active and characterized by specific chromomere-loop
organization [38–41]. Lampbrush chromosomes are considerably larger than their metaphase
counterparts. As an example, the size of meiotic bivalents in urodeles can reach up to 700 µm as in case
of a salamander Salamandra salamandra and a newt Lissotriton vulgaris (previously Triturus vulgaris) [38].
Lampbrush chromosomes may form loci-specific prominent loops and structures with complex
morphology [38–40]. The nature and function of such entities mainly remain to be discovered.
Nevertheless, the specific structures can serve as reliable landmarks for identification of lampbrush
chromosomes and their particular regions. Based on chromomere-loop pattern, unique for each
individual chromosome, as well as the distribution of marker structures, detailed cytological maps of
lampbrush chromosomes can be constructed [38,42–51].

Thus, due to the enormous size, peculiarities of the organization and enrichment with cytological
markers, lampbrush chromosomes can serve as an opportune model for comprehensive cytogenetic and
cytological investigations. Currently, the detailed protocols for preparation of lampbrush chromosomes
were developed [52]. In particular, both chromosomal spreads and intact growing oocyte nuclei
(germinal vesicles) can be subjected to immunofluorescent staining or different procedures of FISH
(Figures 1 and 2) [52,53].
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Figure 1. Comparison of the usage of amphibian lampbrush chromosome (a,b) and metaphase
chromosome (c), for high-resolution fluorescent in situ hybridization (FISH)-mapping. Lampbrush
chromosomes exhibit marker loops (indicated by arrows in (a)) and other landmarks (including
nucleolus, nu in (a,b)), which allows to construct cytological chromosomal maps (d). Such maps facilitate
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identification of individual chromosomes and their particular regions. Mapping of interstitial
telomeric sites (shown by square brackets) in: lampbrush chromosome (b); and metaphase
chromosome (c). Arrowheads indicate centromeres. Chromosomes are counterstained with DAPI
(4′ 6-diamidino-2-phenylindole). Scale bar = 10 µm.
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Figure 2. High-resolution FISH-mapping on avian lampbrush chromosomes (an example). FISH with
chicken nuclear-membrane-associated repeat (CNM repeat)-specific probe (red) and bacterial artificial
chromosome (BAC) clones WAG12C15 (green) and WAG30L03 (yellow) on chicken lampbrush
chromosome 3. Chromosome is counterstained with DAPI. Scale bar = 10 µm. Chromosome coordinates
of BACs and CNM clusters are given in megabases (Mb) according to the chicken genome assembly
Gallus_gallus-5.0 (https://www.ncbi.nlm.nih.gov/genome/111) [26]. BACs were kindly provided
by Richard Crooijmans and Martin Groenen (Wageningen chicken BAC library, Crooijmans et al.,
2000 [29]). The data on precise genome positioning of the centromere and two CNM-repeat clusters
from chicken chromosome 3 are published in Zlotina et al., 2010 [54].

Lampbrush chromosomes are also known in other vertebrate species including fishes and
reptilians [38,55,56]. However, there is a lack of data on lampbrush chromosomes in these classes
of vertebrates. In fact, studies involving reptilian lampbrush chromosomes are restricted to
histological observations of ovary development [56,57] or analysis of lampbrush chromosomes
in intact oocyte nuclei [58]. However, Lukina and Kupriyanova demonstrated the possibility of
lampbrush chromosomes isolation for several lizard species [59,60]. Nevertheless, an adapted protocol
for preparation of lampbrush chromosomes spreads, the description of chromosomal morphology
and construction of detailed cytological maps are still required. Rare usage of reptilian lampbrush
chromosomes is hardly explained by technical difficulties in chromosome preparation but is rather due
to low interest from the cytogenetic point of view, absence of model organisms and until recently lack
of reliable molecular markers (e.g., bacterial artificial chromosome (BAC)-clones and paints) [61–64].

https://www.ncbi.nlm.nih.gov/genome/111
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Thus, here we focus on the main findings on chromosomal evolution that were obtained using avian
and amphibian lampbrush chromosomes.

2. Lampbrush Chromosomes as a Tool to Study Amphibian Chromosomal Evolution

2.1. Interspecies Differences

From pioneer works, amphibian lampbrush chromosomes represent an appropriate and
convenient tool for analysis of amphibian karyotypes due to the abundance and variety of
marker structures [38,43,51,65–67]. To facilitate lampbrush chromosomes identification authors
constructed cytological maps with relative position of landmarks for variety of Urodeles and Anuran
species [38,43,47,50,51,65,68]. Here, we focus on some of the most fascinating cases concerning
karyotype evolution, accumulation of polymorphisms and sex chromosome origin provided by
lampbrush chromosomes studies.

Chromosomal rearrangements acquired through amphibian karyotypes evolution are less frequent
compared to mammalian karyotypes [69]. Nevertheless, the level of chromosomal rearrangements
in amphibian karyotypes had been underestimated for the long time and proved to be comparable
with birds, reptilians and fishes [69]. Advanced salamanders and frogs species underwent quite
massive karyotype rearrangements, including fusion of the ancestral chromosomes [7,69,70]. Intra- and
interchromosomal rearrangements such as inversions, fusions and translocations can be detected by
the analysis of orthologous lampbrush chromosomes (Figure 3) [38,51,71,72]. Based on analysis of
marker structures distribution on lampbrush chromosomes, Callan [38] observed no translocations
in interspecific hybrids of European newt species (genus Triturus). He concluded that reciprocal
translocations had not occurred in chromosomes of European newts, which is in agreement with
generally conservative chromosome evolution described in this genus [51,73].
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Figure 3. Example of lampbrush chromosome application to study chromosomal rearrangements.
Inverted order of marker structures (special loops and granules) indicates the inversion of
a chromosomal segment. Additional marker structures appear after accumulation of genetic
polymorphisms in the absence of recombination.

Positions and distribution of various landmark loops on lampbrush chromosomes correlate
with phylogenetic relationships between different species [38,51,74]. Thus, closely related species
usually have more similar landmark patterns [51,74]. Comparison of landmarks on lampbrush
chromosomes allowed to find phylogenetic relationships between different species from Urodeles
and Anura, even before reliable phylogenetic markers were obtained [51,66,74]. Such comparison
for three closely related Triturus species Triturus cristatus, Triturus carnifer and Triturus karelinii
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revealed similar distribution patterns of landmarks [51,75]. Lampbrush chromosomes of a sister
species Triturus marmoratus strongly differ from lampbrush chromosomes of the species within
Triturus christatus groups [51,75]. Nevertheless, phylogeny of more distant species is difficult to
unravel via lampbrush chromosome analysis [51,66,67].

2.2. Interpopulation Differences

In addition to interspecies divergence, intraspecies genetic polymorphisms between populations
can also be investigated using lampbrush chromosomes as an instrument [50,66,76,77]. Variability of
lampbrush chromosome landmarks in animals from isolated populations indicates accumulation
of polymorphisms (Figure 3). Such polymorphisms inevitably appear during reduced genetic flow
between separate populations [78]. Thus, lampbrush chromosomes can be used as a tool for studying
polymorphisms accumulation that is considered as an initial stage of allopatric speciation [78].

Moreover, analysis of landmarks polymorphisms allows to track distribution of species in new
habitants [76]. Thorough analysis of landmarks on lampbrush chromosomes from continental and
Japan populations of Pelophylax nigromaculata allowed to conclude that the species spread after
invasion [76]. Japanese P. nigromaculata genetically differentiated into four groups that appeared
after the termination of migration caused by geographic obstacles. Ohtani detected similarities of
lampbrush marker structures between frogs from continental and certain Japanese populations [76].
This fact was considered as an evidence of introgression of genetic material in the Japanese populations
after a secondary contact with the continental population of P. nigromaculata [76].

Another example of interpopulational polymorphism together with the detection of chromosomal
rearrangements came from the analysis of Rana rugosa sex chromosomes in the lampbrush
form. R. rugosa represents a system where sex determination type differs in distinct populations:
in some populations, males are heterogametic (XX/XY) while in the other females are heterogametic
(ZZ/ZW) [79]. However, in two additional populations, these frogs exhibit homomorphic sex
chromosomes [79]. Analysis of marker structures on sex chromosomes in the lampbrush form
revealed similarities between all different types of R. rugosa sex chromosomes indicating their
common origin from the ancestral chromosome similar to the homomorphic one [71,72,79]. Data on
distribution of chiasmata and patterns of landmarks on lampbrush chromosomes demonstrated two
independent inversions resulted in the emergence of several types of sex chromosomes in this species:
W/X sex chromosomes appeared after a terminal inversion, while Z/Y chromosomes appeared after
a pericentric inversion of the ancestral chromosomes and subsequent deletion of approximately 10%
of the chromosome [71,72,79].

2.3. Sex Chromosomes

Analysis of landmarks and chiasmata distribution in lampbrush chromosome allows to solve
a problem of sex chromosomes identification if they are undistinguishable at metaphase. In the case of
female heterogametic sex (ZW), one can detect Z and W sex chromosomes as a bivalent between
two homologs with various patterns of marker loops and sometimes with a decreased level of
chiasmata [12,14]. Using this approach, sex chromosomes in Pleurodeles potreti were identified due to
a short heteromorphic region near the middle of the lampbrush bivalent 4 [14]. At the same time,
in frog Buergeria buergeri, sex chromosomes were identified as a lampbrush bivalent with the only
terminal chiasmata [80]. In another fascinating study, lampbrush chromosomes were obtained from
males reversed into females after hormonal treatment [13]. Even when males’ sex is heterogametic,
it is possible to apply lampbrush chromosomes to reveal differences in sex chromosomes [13].
Sex reversal experiments confirmed female heterogamety in P. potreti: neofemales (WW) exhibited
similarity in the same region on the bivalent 4 [14]. Nevertheless, it is not always possible to observe
differences between sex chromosomes during the lampbrush chromosome stage. Both females and
reversed males of Triturus species that have XX/XY sex determination type did not exhibit any
significant differences in sex chromosomes morphology [12].



Genes 2017, 8, 311 6 of 14

Interesting example of sex chromosome evolution was observed after lampbrush chromosome
analysis of seven species from Triturus genus [51,75]. In all of these species, bivalent 1 consists of
a longer homolog with an extended achiasmatic region of compact loops and a shorter one with
a more regular loop pattern [12,38,51,81]. Such unusual morphology is based on crucial differences
in heterochromatic component of long arms between two homologous chromosomes 1: 1A and
1B [82]. Moreover, in homomorphic state (A1A1 or A2A2), all embryos usually die or exhibit severe
development abnormalities [13,82]. One of the hypothesis aimed to explain the origin of this locus
suggested a reciprocal translocation between two homologous autosomes in the common ancestor of
species from T. cristatus subgenus [82,83]. Other more plausible explanation is based on the assumption
that chromosome 1 is a relict sex chromosome [12]. After switching from WZ/WW to XY/XX sex
determination system the majority of modern Triturus species are thought to eliminate Z chromosome
and retain a WW chromosome pair while ancestors of species from a T. cristatus group probably
retained ZW chromosomes which are currently known as A1 and A2 chromosomes [12,84].

An additional example of the application of lampbrush chromosomes in the field of karyotype
evolution and sex chromosome emergence comes from investigations of frog Leopelma hochstetteri.
Sex chromosome (W) of this species is represented by a supernumerary chromosome that highly
varies in size, centromeric index and heterochromatin amount [85–87]. As Z chromosome was not
found, authors suggested a W0/00 sex determination system for the species [85,86,88]. However,
after lampbrush chromosomes analysis of frogs from one population researches did not find any
supernumerary chromosomes but detected a heteromorphic lampbrush bivalent [89]. This bivalent
was considered to represent a sex WZ bivalent where one homolog shared some kind of similarity in
a marker loops pattern with supernumerary sex chromosomes in frogs from other populations [89].
Authors suggested that either loss of Z chromosome or its homogenization in occasional ZZW
trisomy cases resulted in such a peculiar W0/00 or WZZ/ZZ sex determination type spread in
other populations [86,89]. Subsequently, either translocation from W chromosome or degradation of W
chromosome occurred independently in each population under Muller’s ratchet mechanism producing
a variety of supernumerary W chromosomes [86,89]. In addition to supernumerary W chromosome,
extra supernumerary B chromosomes varying in number, morphology and heterochromatin amount
were revealed in the majority of populations [85,86]. These results indicate a higher chromosome
evolution rate in L. hochstetteri than in other amphibians [88,90]. To explain this phenomenon,
Bogart [90] proposed that rates of chromosomal evolution in amphibians might depend on the
population size and animals reproductive behavior. For instance, in amphibians that form large
breeding groups (Ranidae or Bufonidae) chromosomal evolution will be slower as compared to a small
inbred population of neotropical frogs (such as Leopelma) with the unique breeding behavior [88–90].

2.4. Interspecies Hybrids

Amphibian species reveal a specific way of obtaining chromosomal novelties via interspecies
hybridization [15,16,91]. Usually interspecies hybrids die during early development and even in case
of survival cannot produce gametes [78]. After analysis of lampbrush chromosomes from oocytes of
such interspecies hybrids, researchers found occasional chiasmata between orthologous chromosomes,
which probably can provide chromosome separation and partial fertility [38,92]. Such hybrids represent
a unique model for identification of homology regions between orthologous chromosomes after
chiasmata analysis.

Some interspecies hybrids can produce progeny via modifications of their gametogenesis
including selective elimination of chromosomes originating from one parental species and/or genome
duplication [91,93,94]. Such alterations of gametogenesis frequently lead to the emergence of
polyploid hybrids [15,16,93,94]. Owing to the presence of species-specific landmarks, lampbrush
chromosomes analysis is a useful and reliable approach to identify genomes transmitted in
oocytes of di- and polyploid hybrids and to reveal genome elimination and/or duplication
during hybrid gametogenesis [50,66,67,95–97]. Based on analysis of lampbrush chromosomes
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from interspecies hybrid salamanders (genus Ambystoma), Macgregor and Uzzell [95] inferred that
genome endoreplication occurred premeiotically in germline cells allowing gynogenetic reproduction.
Moreover, both elimination of one parental genome and endoreplication of another one were revealed
using lampbrush chromosomes analysis in diploid and triploid hybrids from Pelophylax esculentus
complex that reproduces via hybridogenesis [66,96].

Genome elimination and duplication prevent recombination events between genomes of separate
species [91,93,94]. Nevertheless, occasional introgression of genetic material was observed between
their genomes [98,99]. For example, having applied genomic in situ hybridization (GISH) on lampbrush
chromosomes of hybrid salamanders, Bogart and coauthors [99] demonstrated extensive chromosomal
exchange between genomes of parental species. According to the hypothesis of Ohno [100],
such occasional recombination events result in homogenization and diploidization of parental
genomes within a hybrid individual. Otherwise, the absence of recombination in the allopolyploid
hybrids can subsequently lead to the independent evolution of each parental chromosomal set
within the allopolyploid hybrid genome. It was clearly demonstrated for an allopolyploid frog
X. laevis [7]. Dissimilarity in centromeric repeats between two different chromosomal sets of
X. laevis was proven by FISH on lampbrush chromosomes. This approach allowed to identify
chromosomes bearing centromeric repeat whereas in mitosis these chromosomes are of an equal
size [101]. Moreover, in X. laevis, two genomes are characterized by different chromosomal length,
chromosomal rearrangements and transposon families spread after hybridization [7].

3. Lampbrush Chromosomes as a Tool to Study Avian Chromosomal Evolution

Comparative molecular–cytogenetic studies involving lampbrush chromosomes proved to
be helpful to reveal new evolutional changes, both inter- and intrachromosomal rearrangements,
and to specify the breakpoints with high-resolution in Galliform species. In particular, it is known that
some variation in chromosome number among Galliform species is mainly caused by the
interchromosomal rearrangements involving ancestral chromosomes 2 and 4 [23,102–105].
As an example, using standard cytogenetic and molecular–cytogenetic approaches, it had been
earlier suggested that chicken (Gallus g. domesticus, GGA) and turkey (Meleagris gallopavo, MGA)
karyotypes are discriminated by two interchromosomal rearrangements with the orthologs of chicken
chromosomes 2 (GGA2) and 4 (GGA4) being composed of turkey chromosomes 3 (MGA3) and
6 (MGA6), and 4 (MGA4) and 9 (MGA9), correspondingly [23]. The application of turkey chromosome
painting probes for MGA3 and MGA6, as well as for MGA4 to chicken lampbrush chromosomes
clearly demonstrated that the breakpoint of the interchromosomal rearrangements corresponds to the
centromere of chicken chromosome 2 (GGA2) and 4 (GGA4) [105].

The karyotypes of chicken and Japanese quail (Coturnix coturnix japonica, CCO) are very similar,
with the same diploid number (2n = 78) and high synteny conservation demonstrated repeatedly
by comparative physical mapping [32,44,49,106,107], chromosome painting [31,102] and genetic
linkage analysis [107,108]. At the same time, centromere position on the majority of orthologous
chromosomes differs between these two species. In particular, based on the mismatch of some blocks
of G-banded chromosomes [109–111] and the pattern of comparative FISH with cloned chicken genome
sequences [32,106,107] it was suggested that pericentric inversions are responsible for the discrepancy
in centromere position between chicken and quail macrochromosomes 1, 2 and 4. Dense comparative
FISH-mapping of chicken BACs to chicken and quail lampbrush chromosomes confirmed the presence
of the pericentric inversion between GGA2 and CCO2, revealed the inversion between GGA11 and
CCO11, and allowed to narrow down their breakpoint positions [49]. At the same time, FISH on
lampbrush chromosomes demonstrated the same order of molecular markers along GGA1 and
CCO1 [49] as well as GGA4 and CCO4 [44] with centromeres being flanked by different genomic
material in the two species. Additionally, FISH on lampbrush chromosomes revealed the inversion
on chromosome 3 but, again, the difference in centromere positions between GGA3 and CCO3 could
not be explained by the inversion event only [49]. The phenomenon of “centromere repositioning”
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or “evolutionary new centromere” (ENC) formation, where a centromere could arise during the
evolution in a new chromosomal locus without any changes in the gene order, has been described
repeatedly in different taxonomic groups [112–118]. Among birds, single cases of ENCs events have
been suggested in Galliformes by comparison of orthologous chromosomes 4 of chicken and red-legged
partridge [119] as well as chromosomes Z of chicken and Pekin duck [120]. The usage of elongated
lampbrush chromosomes for high-resolution comparative cytogenetic analysis clearly demonstrated
that “centromere repositioning” events could also take place during the divergence of chicken and
Japanese quail karyotypes.

Regarding the microchromosomal part of chicken and quail karyotypes, the usage of lampbrush
chromosomes [121] and synaptonemal complex spreads from pachytene nuclei [122] allowed
demonstrating that the majority of Japanese quail microchromosomes are submetacentric which
differs them from the chicken orthologs known to be acrocentric [121,123,124]. In particular,
the dissimilarity in centromere localization was unambiguously shown by immunofluorescent
detection of cohesin-enriched protein granules that serve as a reliable marker of centromeres
on Galliform lampbrush chromosomes as well as by FISH-mapping of pericentromeric chicken
nuclear-membrane-associated repeat (CNM) and BglII- repeat [121]. Comprehensive investigation
of epigenetic chromatin state of Japanese quail microbivalents demonstrated that short arms of
submetacentric microchromosomes are not completely condensed but enriched with heterochromatin
protein 1 (HP1β) and repressive histone modifications, including H3K27me3 [125]. Together with
the data on high-resolution comparative BAC-clone mapping on the five largest chicken
microchromosomes and their quail orthologs [49], these results suggest that the discrepancy in
centromere position on microchromosomes between the two species might be due to the accumulation
of species-specific distinct type of heterochromatin constituting the polymorphic short arms of quail
microchromosomes [125].

Thus, the usage of lampbrush chromosomes as a powerful tool for high-resolution physical
mapping allows extending our knowledge of chromosomal rearrangements accompanied Galliform
karyotype evolution. That is, the data obtained support the idea that the number of intrachromosomal
imbalances affected highly conserved avian karyotypes seems to be higher than it could be assumed
based on results of standard cytogenetic and molecular–cytogenetic analysis, which is consistent with
the comprehensive molecular and in silico data on both macro- and microchromosomes rearrangements
in avian genome evolution [126–128].

4. Conclusions

The application of classical cytological approaches, mainly based on the analysis of cytological
maps and distribution of marker structures, to lampbrush chromosomes allowed to shed light
on various aspects of chromosome evolution in diverse amphibian species. In comparison,
avian lampbrush chromosomes possess a much lower number of cytological landmarks. In this regard,
the detailed studies on avian chromosome evolution using lampbrush chromosomes became
possible since modern molecular–cytogenetic techniques (FISH-mapping, chromosomal painting,
etc.) became widespread. The application of lampbrush chromosomes as a tool for high-resolution
cytological and cytogenetic analysis allows to obtain unique data on chromosome evolution and gives
prospects for exploration of complex karyotypes, as in the case of amphibians and birds. Moreover,
lampbrush chromosome analysis seems to be promising in investigation the details of chromosomal
evolution in other animals including reptiles and fishes.
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