Supplementary material

NgNsrR	MYLTQHTDYGLRVLIYTAVNDD-A-LV <u>NIATIASTYGISKSHLMKV</u> VTALVKGGFL	54
RcNsrR	MHLLASTDFALRALLFLATDPE-R-LV <u>NTETMSRDLGISRNHLQKV</u> VQALVAGGFA	54
BsNsrR	MKLTNYTDYSLRVLIFLAAERPGE-LS <u>NIKQIAETYSISKNHLMKV</u> IYRLGQLGYV	55
NeNsrR	MRLTNYSDYALRILTYLGLKR-EE-LS <u>TITEIADCYGISRNHVVKI</u> VHHLGQLGYV	54
EcNsrR	MQLTSFTDYGLRALIYMASLPEGR-MT <u>SISEVTDVYGVSRNHMVKI</u> INQLSRAGYV	55
ScNsrR	MRLTKFTDLALRSLMRLAVVRDGDEP <u>LATREVAEVVGVPYTHAAK</u> AITRLQHLGVV	56
GlBadM	MMELTRKGDYAIRGIIYLASQPPNK-I <u>SLLSEIAVAVDVPQTFLAKI</u> FQQFSKTGIV	56
TthNsrR	MALRSLLKREESYALHALLLLAEEPGLS <u>ALEIAERLKAPPAFMAKVLQKLAK</u> AGLV	56
	*: :	
NqNsrR	HSVRGKGGGLRLAAPPERINIGAVVRHLEPM-QLVECMG-PNNECLITPSCRLTGIL	109
RcNsrR	RTIKGPRGGVRLAHPATEIRIGAVVRHFEEHQPIVACFA-PEGQCVIEPICGLKGVL	110
BsNsrR	ETIRGRGGGIRLGMDPEDINIGEVVRKTEDDFNIVECFDVNKNLCVISPVCGLKHVL	112
NeNsrR	DTLRGKNGGIRLAHAPEKINIGEVIRHTETSMDIVECFS-NQNSCIIGCSCVLRTAI	110
EcNsrR	TAVRGKNGGIRLGKPASAIRIGDVVRELEPL-SLVNCSSEFCHITPACRLKQAL	108
ScNsrR	EARRGRGGGLTLTDLGRRVSVGWLVRELEGEAEVVDCEGDNPCPLRGACRLRRAL	111
GlBadM	KSFRGTGGGFLLAGPPESITLLQVVEAVEGPILPNRCVLKP-GECERDASCTVHPVW	112
TthNsrR	ESRVGRKGGVWPKLPPGEISLLKVMEALSGPVVLDL <mark>C</mark> ATLKRCPTEERRGFCYLKPGL	114
	: * **. :::: * * * *:	
NgNsrR	GGAMKSFFTYLDGFTLQDLLNKPTYDLLYESKIPIAVR- 147	
RcNsrR	AGAQSQYYDFLNGYTLADCLRRPRFLSPAP 140	
BsNsrR	NEALMAYLAVLDNYTLRDLVKNKEDIMKLLRMKE 146	
NeNsrR	SEALSAFMAVLDDYTLADLIAPRRQLSRKLHVMQISDSLSD 151	
EcNsrR	SKAVQSFLTELDNYTLADLVEENQPLYKLLLVE 141	
ScNsrR	RDAQEAFYAALDPLTVTDLVAAPTGPVLLGLTDR-PSG 148	
GlBadM	RQVQQQVRSILAGITLKDLATL 134	
TthNsrR	ARTGLEIRKALAGLTLKDLLPENPPGA 141	
	· * *: *	

Figure S1. Sequence alignment of NsrRTh with NsrR family members. The DNA-binding HTH domain is underlined, and conserved cysteines and glutamic acid responsible for the coordination of the iron-sulfur cluster in other NsrR members in gray. Note that the E residue conserved in all the NsrR homologs is absent in NsrRTh. Cysteine labeled in red was replaced in the C93A mutant. NgNsrR (YP_208569) from *Neisseria gonorrhoeae* FA 1090. RcNsrR (AAQ18178) from *Rhodobacter capsulatus*. BsNsrR (AEP85883) from *Bacillus subtilis* subsp. spizizenii TU-B-10. NeNsrR (NP_841002) from *Nitrosomonas europaea* ATCC19718. EcNsrR (NP_418599) from *Escherichia coli* K-12 substr. MG1655. ScNsrR (NP_632476.1) from *Streptomyces coelicolor* A3(2). GlBadM from *Geobacter lovleyi* SZ (YP_001951483). TthNsrR from *T. thermophilus* PRQ25 (FN666415).

Figure S2. Transcriptional activity from the putative promoters of the *nsrR*, *nsrS* and *nsrT* genes. β -galactosidase activity was measured both in the obligate HB27 (**a**) and its denitrifying derivative HB27d (**b**) carrying the promoter probe plasmids pMHPnsrRbgaA (*PnsrR*, 303 bp), pMHPnsrSbgaA (*PnsrS*, 311 bp) or the empty plasmid pMHbgaA (no promoter). Transcriptional activity was measured in aerobic cultures (1) or after induction for 16 h under anaerobic conditions in the absence (2) or presence of 20 mM nitrate (3), 5 mM nitrite (4), or 100 M SNP (5). β -galactosidase activity is expressed as nanomoles of *o*-nitrophenol produced per min and per mg of protein. Data represent mean values from triplicate samples in at least two independent experiments; bars indicate standard error.

Figure S3. Production of recombinant His-tagged proteins. (**a**) Domains identified in DnrT, NsrRTh, NsrS and NsrT. (**b**) SDS-PAGE of purified proteins after Ni-NTA affinity chromatography purification. The theoretical mass of each protein (in kDa) are: DnrT (27.0), NsrRTh (17.3), NsrS (9.1) and NsrT (12.6). 500 ng BSA was used as a loading control.

Figure S4. Production and spectroscopic analysis of NsrRTh and its C93A mutant. Recombinant His-tagged NsrRTh (A) and NsrR^{C93A} (B) were overexpressed in *E. coli* BL21 and purified. Photographs of the culture pellets are shown in the right upper panel. The UV-visible spectrum of the corresponding purified proteins is shown. Dashed line corresponds to NsrR^{C93A} and continuous line to NsrRTh.

Figure S5. Effects of NsrT and NsrS on the binding of NsrRTh to the *PnorC* promoter. EMSA assays were performed with *PnorC* in the presence (+) or absence (-) of the indicated proteins at a protein:DNA molar ratio of 1:75. Arrows indicate the specific DNA-protein complex; bands at the bottom show unbound free promoter.

Figure S6. NsrRTh binds to a conserved palindromic sequence. (**a**) Scheme of the *PnorC* promoter and fragments used to test the NsrRTh binding capacity. Numbers indicate the 5' end of the promoter fragments relative to the translation start codon. The putative NsrRTh binding site, the ribosome binding site (RBS) and the ATG codon are also indicated. (**b**) EMSA assays on *PnorC* fragments. Promoter probes (50 nM) were incubated in interaction buffer without (-) or with (+) NsrRTh at a 1:10 ratio for 10 min at 60 °C. White and black arrows indicate the unbound or bound DNA respectively.