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Abstract: Despite worldwide prevention programs, the incidence for cutaneous melanoma is
continuously increasing. Mucosal melanoma (MM) represents a rare but highly aggressive phenotype
of common melanoma with predilection in the sinonasal system. Far away from ultraviolet sun
exposure, the molecular mechanisms underlying tumorigenesis and the highly aggressive clinical
behavior are poorly understood. In many solid malignomas of the head and neck region, p53 tumor
suppressor functions as oncogene due to p53 protein stabilizing mutation. Interestingly, the vast
majority of MM demonstrates constitutively expressed p53 protein, with protein stabilizing mutations
being rare. Abrogated activation of p53 target genes results in derogation of the apoptotic signal
cascade and contributes to the strong resistance against chemotherapeutic agents activating p53
dependent apoptosis. The current review illustrates the role of p53 and its pathway in MM.
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1. Introduction

Mucosal melanoma is a rare but highly aggressive phenotype of melanomas representing 1–5%
of the overall cohort [1–3]. Mucosal melanomas (MMs) originate from melanocytes of the mucosal
surfaces in the eye, epithelia of sinonasal system, oropharynx and anus. The majority of MM is
located in the head and neck region and most commonly found in the nasal cavity, paranasal sinuses
and oral cavity [4–6]. Melanocytes which function as ultraviolet (UV)-light protector in the skin
are peculiarly found in the mucosa. In the oral mucosa, melanocytes can be found from 20 weeks
of gestation [7]. Their function is not fully understood, but it seems that these melanocytes have
antimicrobial and immunological functions, such as antigen presentation and cytokine production [8].
MM demonstrates a dramatically decreased 5-year survival rate (17%) when compared with their
cutaneous (CM) counterparts in early disease stages (80%) [2]. The Union for National Cancer
Control (UICC) staging system takes the poor prognosis into account and relinquishes T1/2 status.
Poor prognosis in MM might be explained by the close localization to the orbit, skull base and brain,
leading to a difficult operability with insufficient R-status [9,10]. In contrast, lymph node positivity
and distant metastasis that usually result in advanced UICC disease stages occur infrequently. At time
of diagnosis, only 10–20% of MM patients exhibit lymph node metastases and also tend to exhibit
distant metastases less frequently [9,10]. Molecular mechanisms in MM that contribute to the highly
aggressive phenotype remain unclear [11].

2. Physiology of the p53 Tumor Suppressor

The p53 tumor suppressor gene (TP53) is the most common mutated gene in solid cancers
harboring mutated p53 (mtp53) in 42–50% of tumor specimens [12,13]. The p53’s function as
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a transcription factor is crucial for deciding cell fate, by activating growth arrest, cellular senescence,
DNA repair or apoptotic signal pathways. After DNA damage and oxidative stress p53 is activated
through blockage of Mdm2 (mouse double minute 2), which is responsible for p53 degradation [14].
Further posttranslational modifications (PTM) such as acetylation, methylation and phosphorylation
will lead to enhanced p53 protein stability and increased site–specific DNA binding. The p53 binds as
tetrameric complex to p53 responsive elements and recruits cofactors to mediate transcriptional
induction or repression [15]. Under physiological conditions, latent expression of p53 has no
effect on cell survival, cell cycle regulation, or transcription rate. Accumulation of active p53
is predominantly mediated by PTM in response to cellular stresses [16]. Among these PTMs,
the blockage of Mdm2 is achieved through Thr18 phosphorylation. Additionally, p53 stabilization is
induced by phosphorylation of Ser15 and Ser20 through stress-induced kinases ataxia telangiectasia
mutated (ATM), ATR, checkpoint kinase 1 (Chk1), Chk2 and DNA-dependent protein kinase
(DNA-PK), probably leading to inhibition of Mdm2 binding [14]. Interestingly, several feedback
loops regulate the p53 pathway, including p53 dependent proteins who themselves are influencing
the activation (phosphatase and tensin homolog (PTEN)-Akt , p14/19 alternative reading frame
(ARF) and retinoblastoma (Rb)) or the downregulation (Mdm2, Cop-1, Pirh-2, p73deltaN, Cyclin G,
wild-type p53 unduced phosphatase 1 (wip-1) and Siah-1 (seven in absentia homolog 1)) of p53 [17].
Therefore, derogation of p53 apoptosis, growth arrest or DNA repair downstream pathways will
subsequently result in the activation of positive feedback loops and stabilization of wildtype p53
(Figure 1) [18]. Knowledge about the interconnections between signal transduction pathways will be
of major importance to understand the role of the p53 tumor suppressor gene in MM.
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Figure 1. Normal and feedback regulation of p53: (a) Usually, after cellular stresses p53 stabilization is
regulated through posttranslational modifications (PTMs) and inhibition of proteasomal degradation,
resulting in apoptosis. (b) Derogation of the p53 depended apoptotic cascade results in activation of
positive feedback loops that enhance (fat arrows) p53 stabilization and inhibition of degradation to
induce apoptosis. Thus, accumulation of wildtype p53 and nonregulation of apoptosis results from
lack of function.

3. Genetic Aberrations in Mucosal Melanoma

In comparison to squamous cell carcinomas, the most frequent histology in mucosal head and
neck malignancy, both CM and MM show distinct mutational landscape. The mutational load in MM
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was significantly lower when compared with their cutaneous counterparts [12]. In a cohort of CM
and MM investigated by Ragnarsson-Olding et al. p53 mutations occurred in 18% of CM and in 29%
of MM (half of them were silent). There were no differences in CC/TT tandem mutations, that were
considered to be typical UV-induced lesions. N-ras mutations were detected in 32% of CM derived
from sun-exposed head and neck areas, but only in 7% of MM, suggesting UV-radiation induces N-ras
but not TP53 mutations [19]. Interestingly, Gwosdz et al. detected an accumulation of the p53 protein
in most of the CM and MM of the head and neck region (71% and 58%), whereas mutations that lead
to protein stabilization were found in 14% of CM specimens but not in MM [20].

4. p53 Protein Expression in Mucosal Melanoma

Regarding the findings that wildtype p53 is rapidly degraded and solely stabilized through
posttranslational modifications after stress induction, one can assume that immunhistochemical (IHC)
detection of p53 is based on its mutational prolonged stability. Accumulation of wildtype p53 protein
ranged from 50–94% in CM and 21–80% in MM [10,19–22]. Different p53 expression levels refer, most
likely, to different cut-off levels in the underlying cohort ranging from 1–25% of immunohistochemically
stained tumor cells [19]. All studies failed to achieve statistical significance between different staining
pattern in MM and CM. However, several studies could not identify a concordance between p53
mutations and p53 protein expression in MM or in CM. Accordingly, the accumulation of p53 detected
in IHC despite the low mutation rate can be explained by a loss of p53 function and the resulting
activated positive feedback loop (Figure 2). This stabilizes p53 through inhibition of degradation and
protein stabilization by PTMs. Therefore, it is not surprising that p53 positive tumors showed reduced
overall and disease specific survival [22–24] highlighting the impact of a derogated p53 dependent
apoptosis in the tumorigenesis of both MM and CM.

5. p53 Signaling in Mucosal Melanoma

Although wildtype p53 is present in most CM and MM, chemotherapeutics targeting the p53
pathway such as cisplatin or carboplatin are barely successful suggesting abrogated functional
integrity of the accumulated protein [25]. The principle cellular antagonist of p53 is Mdm2, an E3
ubiquitin ligase which recruits p53 to nuclear and cytoplasmic proteasomes for degradation by
mono-ubiquitinylation [26]. In malignant melanoma, neither mutations of Mdm2, nor dysfunctional
Mdm2-p53 interaction have been found. Moreover, the signaling pathway from DNA damage to
activation of p53 by using cisplatin as pathway inductor is unaffected [27]. Considering the p53
downstream pathway in malignant melanoma cells compared to melanocytes, a notably lower
expression of cyclin dependent kinase inhibitor 1A (CDKN1A), growth arrest and DNA damage
inducible alpha (GADD45A) and BBC3 (Bcl2 binding component 3, also p53 upregulated modulator of
apoptosis) mRNA expression was observed, corroborating the hypothesis of a disrupted p53 dependent
apoptosis [27]. In previous experiments we showed, that p53 target genes BBC3, Bcl2 associated X
(BAX) and caspase 9 (CASP9) had no distinctions in mRNA and protein expression in formalin-fixed
paraffin-empedded tissue (FFPE) samples and untreated melanoma cells of cutaneous and mucosal
origin (except for a MM with a higher BAX mRNA expression). Notably, there were no differences
in CDK1/Cdk1 (cyclin dependent kinase 1) expression detectable in FFPE samples and cells in
IHC, Western Blot and qRT-PCR. However, after cisplatin treatment, only MM cells decreased Cdk1
expression, whereas CM stabilized the Cdk1 expression and thereby maintaining cell cycle progression.
But most interestingly was the observation that p53 upregulated modulator of apoptosis (Puma) failed
to be detected in MM cells by Western Blot experiments, whereas Puma protein was detectable in FFPE
samples in some patients. However, in this study a positive staining was defined as greater than 10%
positive cells [10]. They did not quantify the staining intensity, as loss of Puma expression may be
a marker for malignant transformation [28]. This protein is a member of the BH3-only Bcl-2 family,
and is one of the most potent inductor of apoptosis among this protein family. Puma is expressed at low
levels under normal conditions and can be rapidly induced transcriptionally by p53. p53 is recruited
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to the two p53 responsive elements in the Puma promotor, in which both p53 and its binding sites on
the promoter are indispensable. The mechanism of Puma mediated apoptosis includes the indirect
activation of the pro-apoptotic proteins Bax and/or Bak through interaction with the anti-apoptotic
Bcl-2 family members, and/or the direct activation of Bax/Bak. Nevertheless, both mechanisms lead
to mitochondrial dysfunction and caspase activation, ultimately leading to apoptosis (Figure 2) [29].
It was not only shown that Puma expression is significantly reduced in melanoma and inversely
correlated with disease progression, but is also shown to be less expressed in MM. Therefore, one can
assume Puma as a marker for disease aggressiveness [10,28]. There is different research done in other
tumor entities which could explain the reduced Puma expression and therefore the lacking ability
to induce apoptosis. It was shown that Puma is a target of autophagy in CM and that apoptosis
can be induced through restoration of Puma expression through Chloroquine [30–32]. Furthermore,
it was reported that the miRNAs miR-221 and miR-222 target Puma to maintain cell proliferation in
glioblastoma and epithelial cancers, [33,34]. So far, in MM Puma seems to play a significant role in
apoptosis induction and the regulation of its expression needs to be investigated further. Nevertheless,
more research needs to be done so that Puma can be targeted in therapy to overcome resistance to
chemotherapy and improve the patient’s prognosis.
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Figure 2. Function of p53 upregulated modulator of apoptosis (Puma) in apoptosis: After activation
of p53, its target gene Puma is transcribed. Puma functions in mediating apoptosis through indirect
activation of Bcl2 associated X/Bcl2 antagonist/Killer (Bax/Bak) through inhibiting Bcl-2 family
member proteins or through direct activation of Bax/Bak, which mediate mitochondrial outer
membrane permeabilization and thereby releasing cyctochrome c and activating apoptosis. Puma
plays a critical role in mediating p53 mediated induction of apoptosis and non-functional Puma will
lead to an obstructed apoptosis.

6. Conclusions

In conclusion, due to the low mutation load in MM and the poor response against chemotherapy,
the low expression and missing inducibility of Puma seems to be of further interest. Despite lacking
apoptosis, the transcriptional function of p53 seems to be functionally intact, as it was approved
by induction of mRNA expression of its targets. This leads to the hypothesis, that a missing Puma
functionality might be responsible for the poor response to chemotherapy. This hypothesis is supported
by the fact, that reduced Puma expression was observed in melanoma and that the Puma expression
inversely correlates with disease progression. Therefore, targeting Puma in therapy might overcome
resistance to chemotherapy and improve the patient’s prognosis.

Author Contributions: Both authors contributed equally in outlining, writing and correction of this review.
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