NAD1 controls defense-like responses in *Medicago truncatula* symbiotic nitrogen fixing nodules following rhizobial colonization in a BacA-independent manner.

Ágota Domonkos¹, Szilárd Kovács^{2,3}, Anikó Gombár¹, Ernő Kiss³, Beatrix Horváth¹, Gyöngyi Z. Kováts¹, Attila Farkas², Mónika T. Tóth¹, Ferhan Ayaydin⁴, Károly Bóka⁵, Lili Fodor¹, Pascal Ratet^{6,7}, Attila Kereszt², Gabriella Endre^{2,3} and Péter Kaló¹

Figure S1. The symbiotic phenotype of *nad1-3* and wild-type (Jemalong) plants 18 dpi with *S. medicae* strain WSM 419. Ineffective symbiotic mutant displayed the symptoms of nitrogen starvation (reduced growth) when grown under symbiotic conditions (A). Pink elongated nodules characteristic of an efficient symbiosis were observed on wild-type roots (B and D). *nad1-3* mutant developed small slightly spherical and brownish nodules (C and E). Scale bars: A 20 mm, B and C 5 mm, D and E 1 mm

Figure S2. Positional cloning identified the mutant locus of *nad1-3* between the genetic markers MtB249 and MtB183 on chromosome 7 (A). Fine mapping defined a genomic region of 153 kb containing 24 gene models represented by arrows, including the *NAD1* (7g022640, black arrow) gene, based on the genome assembly of *M. truncatula*.

RT-PCR products of *nad1* and wild-type (Jemalong accession and 2HA genotype) nodules induced either by *S. medicae* WSM419 (WSM419) or *S. meliloti* strain 1021 (Sm1021) indicate the absence of *NAD1* expression in *nad1-4* (B). RT-PCR products were generated using a primer pair located on the first and the second exon of *NAD1* from nodule samples 14 dpi. The size of the PCR fragment is the same in the wild-type Jemalong and 2HA parents of the *nad1-3* and *nad1-4* mutant lines, respectively. We could not detect *NAD1* transcript in *nad1-4* nodules and the RT-PCR produced a smaller fragment from *nad1-3* compared to the wild-type due to the 50-bp deletion.

Figure S3. (A-N) Both coding and non-coding exons of NAD1 are required for efficient restoration of the nodulation phenotype of nad1-3. The NAD1 gene was introduced into nad1-3 with Agrobacterium rhizogenes and transformed roots were inoculated with S. medicae WSM419 (pXLGD4). Complementation was assessed by the disappearance of the brown pigmentation typical for nad1 mutants and colonization of the zones of the indeterminate nodules. Transgenic roots were identified by red fluorescent protein. Nodules on transgenic roots of wild-type (A-C) and nad1-3 (D-F) plants induced by the empty vector showed the nodule phenotype typical for wild-type and *nad1*-3 mutant plants, respectively. Mixture of nodules presenting the absence or the presence of brown pigmentation were developed on roots transformed with the construct containing the first exon of NAD1 indicating the partial complementation of nad1-3 (J and K). Complementation of the nad1-3 mutant was carried out with the construct containing both exons of NAD1 (G-I and M). The constructs containing an intron predicted based on the BG582085 EST sequence failed to restore the nodulation phenotype of nad1-3 (L and N). Both wild type and nodules with brown pigmentation were developed on roots transformed with the construct containing the first exon of NAD1 indicating the partial complementation of *nad1-3*. In all construct the *NAD1* gene and its deletion versions were driven by NAD1 native promoter. Arrows indicate the composition of the construct used for transformation. Grey bars show promoter and intronic regions, grey arrows present the 3' UTR, blank bars show exons and black regions display the coding sequence of NAD1. Striped boxes show the intronic sequence presumed based on the EST BG582085. Scale bars: A, B, D, E, G and H 1 mm, C, F, I, J-N 200 µm

Figure S4. The appearance of brown pigmentation is synchronized in *nad1-3*, *dnf2-1* and *nad1-3/dnf2-1* mutants. Nodule sections were stained for β -galactosidase activity after 4, 6, 8, 10, and 12 dpi with *S. medicae* WSM419 (pXLGD4). The production of brown pigments (natural color), detected with no staining for pigmentation in these sections, corresponding to phenolic compounds (Figure 4) is induced between 6 and 8 dpi only in the mutant nodules. Note that the blue β -galactosidase staining observed at 6 dpi is only maintained in wild-type nodules at 8, 10 and 12 dpi. wt (wild-type, panel A-E), *nad1-3* (panel F-J), *nad1-3/dnf2* (panel K-O) and *dnf2* (panel P-T). Nodules were harvested at 4 (A-P), 6 (B-Q), 8 (C-R), 10 (D-S) and 12 dpi (E-T). Scale bars: 200 µm

Figure S5. Live/dead staining of *S. medicae* WSM419 rhizobia indicates rapid death of bacteria in *nad1-3, dnf2-1* and *nad1-3/dnf2-1* mutant nodules. Mutant and wild-type nodules stained for β -galactosidase activity (A, D, G, J, M, P, S and V) and with a mixture of SYTO9 (green signal) and propidium iodide (red signal in plant nuclei) (B, C, E, F, H, I, K, L, N, O, Q, R, T, U, W and X) were indistinguishable 6 dpi (columns 1 to 3) but mutant phenotype appeared 8 dpi (columns 4-6). Strong autofluorescence, pseudocolored in red, was observed in the proximal part of mutant nodules and few cells with dead bacteria fluorescing red were found in the transition zone between the colonized host cells and the area showing autofluorescence indicating the rapid necrosis of rhizobia in mutant nodules (L, R, X).

Wild-type nodules: A-F, *nad1-3* nodules: G-L, *dnf2* nodules: M-R, *nad1-3/dnf2* nodules: S-X Scale bars: A, B, D, E, G, H, J, K, M, N, P, Q, S, T, V and W 200 µm, C, F, I, L, O, R, U and X 20 µm

Figure S6. Symbiotic cells in *nad1-3* nodules undergo necrosis. Scanning electron microscope images of 8-dpi wild type nodules show the symbiotic cells colonized by elongated bacteroids (A-C). In *nad1-3* nodules cells devoid of bacteria or containing necrotic bacteria were detected (D-F). The transmission electron microscope images of wild-type nodule at 18 dpi show differentiated bacteria orientated towards the central vacuole in a cell of the nitrogen fixation zone (G and J). Nodule cells in *nad1-3* nodules undergo rapid decomposition (H, I, K and L) resulting in empty cells (L). Boxes on panels A, B and D show magnified regions presented in panels B, C and E, F, respectively. b: differentiated bacteroids (B, C G and J) nb: necrotic bacteria (F and H) arrows: thickened cell walls (E, F, H and I); asterisk: thickened plant cell walls surrounding necrotic bacteria (H); arrowheads: hydrolyzed cell wall remnants (K). Scale bars: A and D 100 μ m, B, E, F, G, I, J and L 10 μ m, C 1 μ m, H and K 2 μ m

Medicago truncatula line	Features	Reference	
Jemalong	wild-type control in analyses of nad1-3		
A20	wild-type crossing partner in genetic mapping		
2HA	wild-type control in analyses of nad1-4		
nad1-3	Jemalong background	[35]	
nad1-4	Jemalong genotype 2HA background	this study	
dnf2-1	Jemalong background	[19, 45]	
ipd3-1	Jemalong background	[60]	
dnf1-1	Jemalong background	[7]	
lin-2	Jemalong genotype A17 background	[59]	

в

Rhizobial strain	Features		kindly provided by
Sinorhizobium (Ensifer) meliloti 1021	wild-type		
Sinorhizobium (Ensifer) medicae WSM419 (pXLGD4)	wt bacteria constitutively expressing <i>lacZ</i> reporter gene		J. Terpolilli (Murdoch University).
Sinorhizobium (Ensifer) medicae WSM419 (pMEpTrpGFPGUS)	wt bacteria constitutively expressing the β- glucuronidase gene	this study	
Sinorhizobium (Ensifer) meliloti 1021 nodA mutant	deficient in nodulation factor (NF) production	this study	
Sinorhizobium (Ensifer) meliloti 1021 exoY mutant	mutant in succinoglycan (EPS-I) production	[16]	Hai-Ping Cheng (Univ. New York)
Sinorhizobium (Ensifer) meliloti 1021 bacA mutant (∆bacA null mutant; bacA654::Spc)	transport of macromolecules; deficiency in bacteroid development	[29]	Graham C. Walker (MIT)

Table S1 A and B. M. truncatula lines and rhizobial strains used in this study

	Forward primer 5'-3'	Reverse primer 5'-3'	Reference	Gene ID
primers used for q RT-PCR				
7Y - NAD1	GTGTTGTGGGCAGGATTTGGC	CCATCCAAAGGTGCAGGTGC	this study	Medtr7g022640
UBP (Ubiquitin-like protein)	GGCCCTAGAACATTTCCTGTGG	CAGTCTTCAAAACTCTTGGGCAG	[37]	Medtr3g091400
PTB	CGCCTTGTCAGCATTGATGTC	TGAACCAGTGCCTGGAATCCT	[37]	Medtr3g090960
chitinase	GGGCTTGAATGCGGAAGAGG	CAAGATTGTCTCCATATCCAACTCC	[38]	Medtr3g118390
NDR1	GGGAAATTGAAGCTTCCCAAAAT	CCTAAACCTAAATTTACAACTACTGCTCC	[38]	Medtr5g076170
flavonol synthase	CACCGATGCTTTTGTCATAAACG	TGAATAATGCAGGCCTTTCAGG	this study	Medtr5g055680
PR10	TGTTGAAGATGGTGAGACCAAGC	GTCTGGAAGGCCAACACCTCC	this study	Medtr2g035150
plant invertase	TTTGGGTAAGGCTAAGGGAGAGG	TGCTTGGAGGCAAAGTTATTAACC	this study	Medtr4g101760
Kunitz type trypsin inhibitor	TATCATACTACGGTGTGGAAGC	CTGGTAGGGAACATCACTAAGAG	this study	Medtr6g078250
primers used for confirmation of M. t	runcatula double mutants			
lin-2 mut F-R	ACATATGAGTTCAATTGTAGGGTGG	GGAACAACCTTCTTGCTTGAGG	this study	Medtr1g090320
7Y F8-R8	TATTCTCATCTTGTTTACACCTTTGG	GCCAAATCCTGCCCACAACAC	this study	Medtr7g022640
IPD3 F13-R13	ATCCTGTTGATAGAGA	GAGTATGAAGATTTATTG	[60]	Medtr5g026850
DNF1 F1-R1	CAATGAGACCCCACCGAATAC	GACACATCAACACCGACAATAAT	this study	Medtr3g027890
primers used for cloning and express	ion studies			
7Y_GWF6	ggggacaagtttgtacaaaaaagcaggctGGCTCAATCCATCATAGTGTAT		this study	Medtr7g022640
7Y_GWFR6	ggggaccactttgtacaagaaagctgggtCACTGCACTTGTTATTGTAGCACC		this study	Medtr7g022640
7Y_promGWR	ggggaccactttgtacaagaaagctgggtCTTTTTTCTTCTTCTCAAGATACAATTATG		this study	Medtr7g022640
7Y_GWR10	ggggaccactttgtacaagaaagctgggtAAAGAGTTATAAGGAAACTCTCAAAATAAG		this study	Medtr7g022640
7Y_F9	TCCATTTCGTAAAGCAAATTTCAG		this study	Medtr7g022640
7Y_R9	CATTTAACATCTTTTTTCTTCTTCTTCTC		this study	Medtr7g022640
7Y_F8	TATTCTCATCTTGTTTACACCTTTGG		this study	Medtr7g022640
7Y_qR6	GGGACATCATAGTATGGGTCTTGC		this study	Medtr7g022640
Medtr7g022640_Fstart	ATGTTAAATGGTAAAGAAAAATTGC		this study	Medtr7g022640
Medtr7g022640_Rend	ATCTCCATCCAAAGGTGCAGGTG		this study	Medtr7g022640
Medtr7g022640.1_F5UTR	GTTAGTGCCAAGATCACATATATTC		this study	Medtr7g022640
Medtr7g022640.1_Rstop	CTAATCTCCATCCAAAGGTGCAG		this study	Medtr7g022640

Table S2. Primers used in this study. Small characters in primer sequences indicate nucleotides of the attenuation sites required for Gateway cloning.