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Abstract: Humans are arguably the most complex organisms present on Earth with their ability to
imagine, create, and problem solve. As underlying mechanisms enabling these capacities reside in the
brain, it is not surprising that the brain has undergone an extraordinary increase in size and complexity
within the last few million years. Human induced pluripotent stem cells (hiPSCs) can be differentiated
into many cell types that were virtually inaccessible historically, such as neurons. Here, we used
hiPSC-derived neurons to investigate the cellular response to activation at the transcript level.
Neuronal activation was performed with potassium chloride (KCl) and its effects were assessed by
RNA sequencing. Our results revealed the involvement of long non-coding RNAs and human-specific
genetic variants in response to neuronal activation and help validate hiPSCs as a valuable resource
for the study of human neuronal networks. In summary, we find that genes affected by KCl-triggered
activation are implicated in pathways that drive cell proliferation, differentiation, and the emergence
of specialized morphological features. Interestingly, non-coding RNAs of various classes are amongst
the most highly expressed genes in activated hiPSC-derived neurons, thus suggesting these play
crucial roles in neural pathways and may significantly contribute to the unique functioning of the
human brain.
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1. Introduction

The brain underwent a very significant increase in size when humanoids diverged from
non-human primates, with parts of the human brain being three times larger than its analogue in the
chimpanzee brain [1]. This size increase was driven by the expansion of the most recently evolved
brain structure, the neocortex, which is exclusive to complex primates [2]. Additionally, humans have
the highest level of cortical folding (i.e., gyrification) amongst all mammals [3]. Although these and
other features characterize the human brain as a unique and fascinating structure, our understanding
of its molecular subtleties is still very limited.

At the genomic level, the number of protein-coding genes has remained strikingly constant
throughout primates, with humans differing by only ~1% at the nucleotide level from our closest
related species, the chimpanzee [4]. On the other hand, it has been observed that the number
of non-coding RNAs (ncRNAs) has dramatically increased, to a point where the human genome
contains at least as many ncRNA genes as protein-coding genes [5], most of which are not conserved
beyond primates [6,7]. Also, further investigation showed that the number of ncRNAs correlate with
organism complexity, indicating a possible link between these two observations [8,9]. Long non-coding
RNAs (lncRNAs) are defined as ncRNAs longer than 200 nucleotides without protein-coding capacity
and have been implicated in many roles, which include primate brain development and neuronal
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function [10,11]. According to the NONCODE project [5], lncRNAs can be classified according to their
relative localization as antisense (~15%), intergenic (~40%), sense exonic (~25%), and sense non-exonic
(~20%). A comparison between human, chimpanzee, and macaque brain transcriptomes revealed
that intergenic transcripts were the most variable across species and overall differences increased
with evolutionary distance [12]. Functionally, many of these intergenic RNAs seem to regulate gene
expression by binding to chromatin modification complexes [13]. Furthermore, an initial study found
over 800 antisense transcripts to naturally occur in the human transcriptome, suggesting an important
role for such lncRNAs, which seem to be involved with the regulation of gene expression [14].

Although still in the initial stages of functional understanding, many lncRNAs have been
associated with major human diseases such as cancer [15], cardiovascular disease [16], and diabetes [17].
In the brain, several lncRNAs play a major role in its development and function [18], as well as in
the pathogenesis of psychiatric disorders [11,19]. Recent research shows important involvement of
lncRNAs in a variety of diseases including neurodegenerative disorders, such as Parkinson’s disease,
Alzheimer’s disease, spinocerebellar ataxia, Huntington’s disease, and psychiatric disorders such as
schizophrenia and bipolar disorder [20]. Additionally, over 50 candidate lncRNA genes were reported
in a study connecting the noncoding human genome with intellectual disability, approximately half
of which were further shown to be involved with synaptic transmission, neurogenesis, and nervous
system development [21].

In a recent study, authors investigated transcribed RNA at three time points after simulating
long-term potentiation to assess synaptic plasticity in rats and found many dynamically altered
lncRNAs [22]. Human induced pluripotent stem cell (iPSC)-derived neurons were reported as a robust
model for studying synaptic function [23]. Here, we investigate the shift in gene expression after
iPSC-derived neurons were treated with potassium chloride (KCl), mimicking neuronal activation.
Identifying differentially expressed genes in response to neural activation is important, as such
events are essential in processes such as learning and memory formation. Indeed, disorders such as
schizophrenia and autism are widely considered disorders of neuronal transmission [24].

2. Materials and Methods

2.1. Generation and Differentiation of Induced Pluripotent Stem Cells

We sequenced total RNA content of hiPSC-derived neurons, both untreated and activated with
50 mM of KCl for 3 h. The studies were performed on de-identified human samples obtained
for broadly consented scientific research. Details for the generation, activation, and sequencing of
hiPSC-derived neurons were previously reported [25]. Briefly, human fibroblasts from apparently
healthy individuals with normal psychiatric evaluations were obtained from Coriell collections GM04506
(female, 22 years of age), AG09319 (female, 24 years of age), and AG09429 (female, 25 years of age).
Cells were cultured in human fibroblast (HF) cell medium and reprogrammed using lentiviruses
expressing the transcription factor OCT4 and packaged in 293T human embryonic kidney (HEK)
cells transfected with polyethylenimine. Human fibroblasts were infected daily for 5 days with
tetracycline-inducible lentiviruses, and further transduced and split onto mouse embryonic fibroblasts.
Cells were switched to human embryonic stem cells (HUES) medium supplemented with doxycycline
for the first 21–28 days of reprogramming. Resulting embryoid bodies were transferred to non-adherent
plates, kept in suspension in N2 medium for seven days, and plated onto polyornithine/laminin-coated
plates. Rosettes were manually dissected and cultured in neural progenitor cells (NPCs) medium
with laminin and fibroblast growth factor 2 (FGF2); the emerging NPCs were maintained at high
density in NPC medium on polyornithine/laminin-coated plates and split regularly. For neural
differentiation, NPCs were dissociated and plated at low density in neural differentiation medium onto
polyornithine/laminin-coated plates. The hiPSC-derived neurons were differentiated for 1–3 months
in fetal bovine serum (FBS)-supplemented co-culture with cerebellar astrocytes to improve conditions
for in vitro synapse maturation.
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The RNA-Sequencing (RNA-Seq) results were submitted to the sequence read archive (SRA)
database and can be found under the accession numbers SAMN08095602, SAMN08095604,
SAMN08095606 (controls) and SAMN08095601, SAMN08095603, SAMN08095605 (activated).

2.2. Neuronal Activation and RNA Sequencing

Neurons were treated with 50 mM KCl (or phosphate-buffered saline (PBS) vehicle control) for
the final three hours prior to harvest. KCl was dissolved in PBS as previously described [26], and,
in all experiments, an equivalent volume of PBS was used as a vehicle control. The effects of this KCl
dosage for treatment were previously investigated in molecular [26] and neurotransmitter release [27]
studies. A 500 ng of ribosomal RNA (rRNA)-depleted total RNA was used as input material for library
preparation, performed with the TruSeq Stranded Total RNA Kit (Illumina, San Diego, CA, USA),
according to manufacturer-defined protocol. The resulting libraries were sequenced in the RapidRun
V2 mode of Illumina HiSeq 2500 (Illumina) platform to generate 20–100 nt-long paired-end reads that
were further analysed through a Bioinformatics pipeline (Figure 1).
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Figure 1. Bioinformatics pipeline for RNA-Sequencing (RNA-Seq) analysis. The figure schematically
shows the steps for RNA-Seq analysis. After paired-end reads were generated by sequencing total RNA
from human induced pluripotent stem cells (iPSC)-derived neurons using the Illumina HiSeq 2500
platform (Illumina, San Diego, CA, USA) and delivered as FastQ files. Bioinformatics tools were used
to perform quality control (FastQC, version 0.11.5) [28] and adaptor trimming (Trimmomatic, version
0.36 [29]). From this point, reads were submitted to two parallel methods of transcript abundance
estimation: an alignment-independent method where reads are simultaneously pseudoaligned and
counted by Kallisto (version 0.43.0) [30]; and an alignment-based strategy where reads are first aligned
to the reference transcriptome with Spliced Transcripts Alignment to a Reference (STAR)and then
counted with RNA-Seq by Expectation Maximization (RSEM) (hereby the STAR+RSEM method)
(versions 2.5.2 and 1.2.30, respectively) [31,32]. Both strategies generate count tables which are further
normalized and can be assessed with EdgeR (R version 3.4.0) [33] for differential expression analysis.
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2.3. Bioinformatics Analysis of RNA Sequencing Results

Each condition (control and activated with KCl) was sequenced in triplicate to allow statistical
significance of subsequent analyses. Sequencing results were assessed for read length, per-base and
per-sequence quality, GC content, and overall read composition with FastQC (version 0.11.5) [28].
Adaptor and other possible contaminants were trimmed with Trimmomatic (version 0.36) [29].
Reads were scanned with a 4-base wide sliding window and trimmed when the average quality per
base was lower than 20 and only reads above our defined size cutoff of 40 nt were kept in the dataset.
Two different strategies were chosen for read count to estimate transcript abundance, one using Kallisto
(version 0.43.0) [30] and another using STAR+RSEM (versions 2.5.2 and 1.2.30, respectively) [31,32].
Kallisto is an alignment-free method, which does not need reads to be mapped to the genome or
transcriptome, but instead relies on pseudoalignments to generate read counts based on k-mers (which
we defined as 31 nucleotides in length). Reads were counted for transcript quantification using default
parameters and a number of bootstrap samples of 100. STAR+RSEM, on the other hand, are two
separate tools integrated into our pipeline to first align all reads to the reference transcriptome and
further count reads based on the resulting alignment and provided annotation. Resulting alignment
files were treated using Samtools (version 1.3) [34] and sorted with Novosort (version 1.2.30) [35]
as an intermediate step. Regardless of the method, estimated read counts were submitted to EdgeR
(R version 3.4.0) [33] for differential expression analyses, which include normalization and statistical
tests of significance. A minimum of 5 counts per million was set as limit for transcript expression,
with transcripts below this threshold being regarded as false-positives or transcriptional leakage.
Normalized counts for all the remaining transcripts were contrasted between control and activated cell
samples to reveal the set of differentially expressed transcripts, likely contributing to or being regulated
by neuronal activation. Differential expression was reported, with limits being a p-value of less than
0.001 and a false discovery rate of less than 0.01. The sets of differentially expressed transcripts,
resulting from both the alignment-free and alignment-based methodologies, were compared, and
only the overlapping transcripts were used for subsequent analyses. Genes of interest were validated
for activity-treated alterations using quantitative polymerase chain reaction(qPCR). Briefly, 500 ng of
total RNA was used for complementary (cDNA) synthesis, and each cDNA sample was amplified in
triplicate using SYBR Green PCR Master Mix (ThermoFisher Scientific, Waltham, MA, USA). For this
experiment, two additional cell lines were included: Coriell collection GM03440 (male, 20 years) and
GM03651 (female, 25 years).

2.4. Functional Analyses of Differentially Expressed Genes

Functional analyses of differentially expressed genes were carried out using two different approaches.
First, we used tools available at the Mississippi State University AgBase portal (version 2.0) [36] to
assign ontologies to the transcripts of interest. GoAnna annotates genes by transferring ontologies
based on sequence homology, and GoSlim further summarizes the results by providing a high-level
annotation to analyzed genes. Basic local alignment search tool Protein (BLASTP) was used as
the underlying algorithm, and search parameters were an e-value cutoff of 10 × 10−50, with blocks
substitution matrix 62 (BLOSUM62), a minimum of 80% sequence identity plus 75% coverage, and
default word size and gap penalty values. Significance of results was assessed using Fisher’s exact
test to determine the respective p-value for each class when compared with the entire set of human
proteins. In parallel, we used Bioconductor FGNet (version 3.6) [37] to build and enable visualization
of functional gene networks, generated based on the functional enrichment analyses performed with
the inbuilt GeneTerm Linker.
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3. Results and Discussion

3.1. Overall Quality of RNA-Sequencing Data

The RNA-Seq experiments generated over 75 million reads in total for control and over 60 million
reads in total for activated neurons. Although we did not further investigate this discrepancy, the
difference may be explained by a more specialized gene expression in activated neurons against
a more scattered expression in control cells. The mode for overall read quality in the Phred scale
(which is logarithmically correlated to the error probability during base-calling) is of 38 for forward
reads (~1.6 errors in every 10,000 bases, or an accuracy of 99.98%) and 36 for reverse reads (~2.5 errors
in every 10,000 bases, or an accuracy of 99.97%). Since a Phred score of 36 still represents very high
accuracy, this small decrease in quality should not affect our analyses. Furthermore, although not
properly discussed in the literature, it is generally observed that reverse reads tend to have lower
quality values. In our case, it is due to lower quality scores at the end of the reads, which is expected,
since errors tend to accumulate throughout the sequencing cycles and gradually decrease quality.
Overall, the median Phred score is within the range considered for very good quality calls across all
positions for both forward and reverse reads. In summary, our sequencing results were of very high
overall quality and allow us to retrieve reliable information.

3.2. Differentially Expressed Transcripts

Using the alignment-based method for read counting, performed with STAR+RSEM, we found
853 transcripts to be differentially expressed (Table S1, 426 less expressed after neuronal activation
and 427 more expressed after activation compared with inactive controls), coming from 798 different
genes. From these, 14 are not protein-coding, with 7 transcripts downregulated upon activation and
7 upregulated upon activation (3 of which are intergenic lncRNAs). The alignment-free method of
transcript abundance estimation using Kallisto reported 803 transcripts (Table S1, 394 downregulated
and 409 transcripts upregulated after neuronal activation) from 751 genes, being 29 not protein-coding
(15 downregulated upon activation and 14 upregulated upon activation).

For each expression pattern (downregulated after activation or upregulated after activation), most
the transcripts are consistently designated and differentially expressed by both methodologies, with
255 reported by both methods as upregulated and 226 as downregulated (both these overlaps have
p-values of virtually 0) (Figure 2). It should be noted that because we only investigate one-time point
(3 h) post KCl activation and not a time course, we are unsure of the dynamics of each transcript
with respect to their peak change, onset, and duration. The fact that most transcripts are assigned
the same behavior using different methods, and also that the number of transcripts in each group is
similar regardless of the method, is suggestive of a robust result. Additionally, by using two different
approaches we are likely to minimize any potential bias introduced by each tool.
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Figure 2. Differentially expressed genes between potassium chloride (KCl)-activated and control
iPSC-derived neurons. Differentially expressed genes were identified using the alignment-free method
implemented in Kallisto, and the alignment-based combined approach of STAR+RSEM. (A) Venn
diagram showing genes with decreased expression in KCl-activated neurons were identified by each
strategy and compared, revealing an intersection of 226 transcripts that were characterized as the
valid set of downregulated transcripts. (B) Genes with increased expression in KCl-activated neurons
were identified by each strategy and compared, revealing an intersection of 255 transcripts that were
characterized as the valid set of upregulated transcripts. (C) Expression of downregulated genes
(226 genes) and (D) expression of upregulated genes (255 genes) visualized as a heatmap where the
color of each cell represents estimated and normalized read counts from purple to orange (i.e., low to
high expression, in a logarithmic scale). KI: control sample assessed by Kallisto; KA: activated neurons
sample assessed by Kallisto; RI: control sample with read counts from RSEM; RA: activated neurons
sample with read counts from RSEM.

Using all (>0) estimate counts reported by Kallisto and STAR+RSEM, we calculated the Pearson
(linear) and Spearman (ranking) correlations between results from both methods. We found these to be of
0.82 and 0.97, respectively (Figure S1). This high correlation, together with the fact that most transcripts
were characterized in both methods by the same trend (upregulated/unaffected/downregulated) by
neuronal activation—Figure 2 and Figure S2) support a robust qualitative result.
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3.3. Functional Analysis of Differentially Expressed Transcripts

A total of 481 transcripts were consistently designated as being differentially expressed upon
neuronal activation, using the two different bioinformatics methods (Figure 2). To investigate the
functional impact of the protein-coding transcripts, we assigned ontology terms to each possible
transcript and grouped them in different granularities by broad categories with umbrella terms.
We further investigated the statistical significance of the abundance (proportional number of transcripts
it comprises) per category, in contrast to the entire set of all human protein-coding genes. In total,
three categories were found to be significantly (p-value < 0.05) over-represented and one to be
significantly under-represented within the transcripts repressed by neuronal activation, while 24
were over-represented within transcripts induced by neuronal activation (Figure 3). These numbers
alone may indicate that most of the impact of KCl activation comes from increasing the expression of
transcripts from specific functional categories, in a regulated pattern.
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Figure 3. Gene ontology (GO) enrichment of differentially expressed transcripts between KCl-activated
and control iPSC-derived neurons. The set of proteins derived from consistent differentially expressed
transcripts was submitted to a gene ontology assignment protocol using tools from the AgBase portal
(version 2.0) [25]. Results for the biological processes output were compared with the biological
processes output for the entire set of annotated human proteins. Each broad class was quantitatively
assessed to compare the percentage of entries from differentially expressed transcripts (brown) and the
percentage of entries from the entire human proteome (yellow). A p-value was calculated for each class
and the significantly overrepresented classes are shown in this figure. The blue color scale on the right
represents the relative strength of each p-value, although all are below the significance cutoff of 0.05.
DE: differentially expressed.
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The set of functions significantly associated with transcriptional upregulation following activation
suggest the neurons are mainly altering their proliferation rates and differentiation state. Biological
processes involved in these contexts include pathways of cell differentiation, cell cycle, cell proliferation,
cell morphogenesis, and cell death. These categories also include a high number of differentially
expressed genes, always above average, corroborating their responsiveness to neuronal activation.
Interestingly, activation with KCl was previously reported to influence stem cell proliferation in
the brain, thus complying with our findings [38]. It is also known that neuroblasts develop a
mature neuronal phenotype in the presence of 25 mM KCl, while, in contrast, neurons undergo
KCl withdrawal-induced apoptosis when KCl concentrations are lowered to 5 mM [39]. Long-term
treatment with 25 mM KCl (~2 days exposure), on the other hand, resulted in a selective loss of cells
committed to neuronal fate by both decreasing the rate of cell proliferation and increasing the rate of
cell death [40]. In summary, there are multiple evidences of an interplay between neuronal activation
via KCl exposure and the balance between cell proliferation and cell death.

To complement the ontology analysis, a functional network for the differentially expressed
genes was generated, depicting protein-protein interactions and functional clusterization. In total,
20 metagroups were generated arising from the clustering of 273 genes (Figure S3). Three metagroups
fail to produce a positive silhouette width (a negative silhouette width usually signals groups of genes
with low functional coherence) and were filtered out of the original network. When a more stringent
cutoff of 0.2 was applied as minimum silhouette size, four metagroups survived (Figure 4). Interestingly,
the two most populated (and most significant, with lowest p-values) amongst these four groups are
Metagroup 12 (21 genes associated with categories involved with synapse assembly, axonogenesis,
microtubule dynamics, and neuron differentiation) and Metagroup 17 (17 genes associated with
categories including long-term potentiation).
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Figure 4. Functional network of differentially expressed transcripts. A functional network was built
with functional gene networks (FGNet) (version 3.6) [37] based on the set of differentially expressed
transcripts. The figure shows a filtered version of the full network, in which only metagroups
of silhouette size greater than 0.2 are represented. On the left, the four surviving metagroups
are graphically described, clustered by functional relationship in color-delimited areas. Genes are
represented by circles and the connections between them by lines. White circles depict genes that were
assigned to multiple metagroups. The number of genes, silhouette size, and p-value are also shown for
all groups, as well as the functional categories they include (BP: Biological processes; MF: Molecular
functions; CC: Cellular components).
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3.4. Differentially Expressed Non-Coding RNAs

From the 481 transcripts shown to be differentially expressed, 7 were annotated as non
protein-coding genes, with 3 upregulated in activated cells and 4 downregulated, compared with
controls. We explored the functional annotations of these ncRNAs to contextualize their differential
expression after activation of neurons. The ncRNAs that are upregulated upon activation are MT-RNR1,
MT-RNR2, and SOX2-OT, while those downregulated are LINC01021, TRY-GTA5-1, ZNF658B, and
CTC-351M12.1 (Figure 5A). These genes were also assessed by qPCR to confirm their differential
expression, and results are in agreement with observations from the RNA-Seq (Figure 5B and Table S2)
for fold change relative to GAPDH expression (GAPDH was shown by RNA-Seq to not alter its
expression in response to neuronal activation with KCl).
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analysis of variance (ANOVA) with post-hoc Tukey’s multiple comparison test). 

MT-RNR1 and MT-RNR2 are mitochondrially encoded 12S and 16S RNAs, respectively. 
Interestingly, MT-RNR2 (ENST00000387347) is one of the very few characterized examples of a 
bifunctional ncRNA, producing a protein called humanin, which was described as a neurosurvival 
factor in brains of Alzheimer’s disease patients [41]. Further studies propose that humanin may 
protect cells from apoptosis induced by amyloid β 1–43 by binding to Bcl2-associated X protein 
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Figure 5. Differential expression of non-coding RNAs (ncRNA) genes between KCl-activated and
control iPSC-derived neurons. Differentially expressed ncRNA genes were classified as either
upregulated (MT-RNR1, MT-RNR2, and SOX2-OT) or downregulated (LINC01021, TRY-GTA5-1,
ZNF658B, and CTC-351M12.1) by neuronal activation. (A) Fold-changes calculated based on RNA-Seq
data are shown in the table based on both Kallisto-generated and RSEM-generated read counts.
In red are the genes that are upregulated in response to neuronal activation, with their respective
fold-change (in logarithmic scale) and p-values. The same is shown in blue for downregulated genes.
(B) Quantitative polymerase chain reaction (qPCR) for all significantly regulated, activity-dependent
ncRNA genes predicted by the RNA-Seq results (n = 5; * p-value < 0.05; ** p-value < 0.01; one-way
analysis of variance (ANOVA) with post-hoc Tukey’s multiple comparison test).

MT-RNR1 and MT-RNR2 are mitochondrially encoded 12S and 16S RNAs, respectively.
Interestingly, MT-RNR2 (ENST00000387347) is one of the very few characterized examples of a
bifunctional ncRNA, producing a protein called humanin, which was described as a neurosurvival
factor in brains of Alzheimer’s disease patients [41]. Further studies propose that humanin may
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protect cells from apoptosis induced by amyloid β 1–43 by binding to Bcl2-associated X protein
(BAX), an apoptosis-inducing factor, and preventing its translocation to the mitochondria [42–44].
Recently, MT-RNR1 (ENST00000389680) was also shown to generate a peptide (MOTS-C) that regulates
sensitivity to insulin and metabolic homeostasis, protecting against insulin resistance triggered by
ageing or diet [45]. These two peptide-encoding ribosomal RNA genes suggest that mitochondria
may actively influence cell death and metabolism via peptides encoded by their ncRNAs and may be
triggered by neuronal activity.

The lncRNA locus SOX2-OT produces overlapping transcripts to the SOX2 gene, an important
regulator of neurogenesis. Accordingly, SOX2-OT expression seems to be confined to the brain, with
a very low but detectable expression in testis [46]. A recent study using single-cell RNA sequencing
determined SOX2-OT to be one of the few highly expressed lncRNAs in the human neocortex [47].
The expression patterns of SOX2-OT are highly regulated throughout vertebrate development [48]
and have been detected in mouse adult neurogenic regions [49]. SOX2-OT has also been observed to
be differentially expressed in many types of cancer [50–53] and was strongly associated with eating
disorders in bipolar patients [54].

LINC01021 (ENST00000512067) is a long intergenic non-protein coding RNA (lincRNA),
also known as p53 upregulated regulator of p53 levels (PURPL). PURPL suppresses basal p53 levels,
leading to tumorigenicity [55]. Expression levels for LINC01021 (calculated herein) are higher in
control samples, before KCl-mediated activation. High levels of this lincRNA suppress p53, avoiding
cell cycle arrest and apoptosis. PURPL expression in human neural progenitor cells was also shown to
be controlled by CHD8, a leading autism spectrum disorder candidate gene [56], which we observe
to follow LINC01201 expression pattern. Another gene significantly downregulated upon activation
is TRY-GTA5-1 (ENST00000517961), a transfer RNA for tyrosine with reported high expression in
testis [46]. The zinc finger protein 658 (ZNF658) is a transcription factor of the C2H2-type zinc-finger
protein family. ZNF658B (ENST00000602828) is a pseudogene, which our results suggest to be
significantly downregulated upon neuronal activation. ZNF658 was recently shown to mediate
the cell transcriptional response in response to zinc, especially regarding ribosome biogenesis [57].
Lastly, CTC-351M12.1 (ENST0000062483) is a currently uncategorized ncRNA, still to be experimentally
confirmed, and our results may be one of the few to show its regulated expression. This gene is listed
in a database of genes involved in angiogenesis but has yet to be experimentally validated [58].

3.5. Human-Specific Differentially Expressed Genes

Young genes (i.e., genes that have recently evolved, mainly after the divergence between hominids
and other primates) are strikingly often recruited to the brain, more specifically, the neocortex [59].
For this reason, we decided to investigate genes that have been previously associated with brain
function and/or development and have recently evolved or significantly changed. The list presented
below is intended to represent an overview of such interplay between new genes and brain evolution,
and these examples are not comprehensive.

Genes with human-specific features that are differentially expressed upon neuronal activation
include CAPN1, which is required for immune function [60]; TLK2, actively involved in mitosis [61,62];
AFF3, a transcription factor involved in cellular migration and cortical development that when deficient
leads to intellectual disability [63]; KIAA0319L, which may be involved in language dysfunction [64];
and RBM39, an RNA-binding protein that plays a role in messenger RNA (mRNA) splicing [65].
Only CAPN1 is upregulated upon neuronal activation with KCl, and all additional four genes are
downregulated (Table S3). RBM39 is the most downregulated transcript of all (not only amongst
human-specific transcripts), shifting from very high expression levels before activation to being
virtually absent after activation.

While KIAA0319 is involved in neural migration and outgrowth and is associated with dyslexia
susceptibility [66], its structural homologue KIAA0319L is an adeno-associated virus receptor that
mediates viral infection [67]. It is interesting that two structural homologues have neurological or
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immunological roles, maybe as a result of both systems being highly adaptable and evolutionarily
and developmentally interlinked [68,69]. TLK2, another differentially expressed gene is required
for placental development and, while coupling with TLK1, supports genomic stability in mice by
recovery of damaged DNA in preparation for mitosis [70,71]. When coupled with ASF1, TLK2 restores
chromatin structure after DNA damage and assists further progression through the cell cycle [71].

3.6. Highly Expressed Transcripts

In addition to activation-dependent, differentially expressed transcripts, highly expressed
transcripts, although not significantly affected by neuronal activation, may be of interest in our
human neural system. Considering that the distribution of estimate counts is strongly positively
skewed (the average values for both Kallisto and STAR+RSEM estimated counts are ~200, while the
medians are set at ~25), we have defined transcripts with counts above average as highly expressed.
This defined set comprises ~10,000 transcripts, which represents ~5% of the total number of transcripts.
From the 10,437 highly expressed transcripts reported by Kallisto and the 9589 transcripts reported
by STAR+RSEM, 9301 (nearly 90%) are reported by both methods, suggesting a high consistency
(Figure 6).
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Figure 6. Transcripts that are highly expressed in activated neurons. Strategy used to assess transcripts
with high expression in activated neurons. Transcript abundance is estimated by Kallisto (purple) and
STAR+RSEM (yellow). The color intensity represents expression level in estimated counts. A lower
limit for expression confidence was established at 5 counts (blue dashed line). To be considered highly
expressed the average number of estimated counts was above approximately 200 (red dashed line).
There were approximately 10,000 highly expressed transcripts defined by each method, more than 9000
of which were consistently reported by both methods. From these, approximately 10% were ncRNAs,
a total of more than 800 transcripts. The pie chart represents the distribution of these ncRNAs in their
molecular classes and highlights the set of 102 highly expressed ncRNAs, described in more detail in
the text, in which a higher degree of functional data is available. lincRNA: large intergenic non-coding
RNA; snoRNA: small nucleolar RNA.

3.7. Highly Expressed Protein-Coding Transcripts Involved in Brain Function, Development, and Evolution

As a proof of principle, we briefly describe some highly expressed protein-coding genes to
highlight the idea that high expression is related to a high degree of functionality. Furthermore,
we only focus on genes with critical human neural function. For example, the highly expressed
abnormal spindle-like microcephaly associated (ASPM) gene displays accelerated sequence evolution
after the split of humans and chimpanzees, controls brain development, and is one of the main
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genes that dictate brain size [72]. The highly expressed microcephalin (MCPH1) gene also regulates
brain size, being essential for normal cerebral cortical growth, which suggests critical roles for
these two genes in the substantial increase in brain cortex size in humans [73]. Similarly, the
evolution of the highly expressed CDK5 regulatory subunit associated protein 2 encoding gene
(CDK5RAP2) is also strongly correlated with brain size, suggesting it carries out important functions
in brain development [74]. While mice have only one copy of the cortical development gene
SLIT-ROBO Rho guanosine-5

′
-triphosphatase (GTPase)-activating protein 2 (SRGAP2), the inversion

and segmental duplication on human chromosome 1 created new human-specific paralogs, including
SRGAP2C [74,75]. SRGAP2C (which is the only SRGAP2 transcript highly expressed in our dataset)
is of particular importance, since it was recently shown to slow the maturation of certain brain cells,
trigger the development of a denser array of neuronal spines, and influence how neurons migrate in a
developing brain [75]. In addition to SRGAP2, the inversion on chromosome 1 contains copy number
increases of the developmental gene, HYDIN, and the neuroblastoma breakpoint family (NBPF), from
which we observed NBPF1 to be very highly expressed, and this gene is involved in human-specific
development [76]. Finally, SOX2 transcripts are amongst the 1% most highly expressed, and this
protein is a classical promoter of neurogenesis [77]. There are many more examples in our dataset
of highly expressed protein-coding genes that contain human-specific sequence and are involved in
brain function (Box S1). However, our goal was to identify potential non-coding RNAs involved in
human brain function, and these protein-coding examples support the idea that high expression may
be relevant for increased confidence of functionality.

3.8. Highly Expressed ncRNAs

From our set of 9301 transcripts (originating from ~6800 genes), almost 10% are transcripts that
do not seem to encode proteins (813, from 669 genes), including 8 of the top 10 most highly expressed
transcripts. Interestingly, nearly 20 ncRNAs are contained in the top 10% of these highly expressed
transcripts, including MALAT1, MT-RNR1, and MT-RNR2 (which are upregulated upon neuronal
activation, as previously discussed). Amongst these non protein-coding, highly expressed transcripts
(Figure 6), most are either truncated transcription products that undergo nonsense-mediated decay
(283), retained introns (234), or processed transcripts, which is any transcript lacking an open reading
frame (154). The next most abundant categories (with a combined number of 102 genes) are long
intervening noncoding RNAs (lincRNAs) (55), antisense transcripts (24), and small nucleolar RNAs
(snoRNAs) (23), followed by subclasses of the former categories, or minor classes, each representing
less than 10% of the 813 transcripts. Here we focus on the middle strata, the set of 102 transcripts that
we believe are of particular interest due to the presence of some knowledge of functionality for these
classes of RNA.

From the lincRNAs, MALAT1 is highly expressed (with one isoform in the top 10 most expressed
transcripts), which is a frequently reported lncRNA and was previously shown to promote neurite
outgrowth, prevent cell death, and be important in the early stage of neuronal differentiation [78].
Also highly expressed was Gomafu, a lincRNA previously shown by our group to be involved with
schizophrenia and respond to neuronal activation [79]. Further, rhabdomyosarcoma 2-associated
transcript (RMST), is a highly expressed lncRNA and a crucial regulator of neurogenesis that
physically interact with SOX2 [80]. NEAT1, an essential component of nuclear paraspeckles previously
investigated by our group and shown to respond to neuronal activity [81], is also highly expressed.
Other highly expressed transcripts include the uncharacterized LINC00461, with reported brain-specific
expression; LINC00998, implicated in major depression disorder susceptibility [82]; EPB41L4A,
a candidate regulator of anxiety disorders [83]; C1orf132, a gene for which methylation levels accurately
correlate with chronological age [84,85]; and BAIAP2, which was previously associated with memory
maintenance and linked to attention deficit and hyperactivity disorder [86,87].

Highly expressed antisense transcripts include SNHG14, previously shown to promote microglia
activation [88] that may therefore also be involved with neuronal activation; antisense transcripts to a
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proteasome component and a deubiquitinating enzyme (PSMA3-AS1 and OTUD6B-AS1, respectively),
therefore implicating protein degradation as a possible mechanism involved with neuronal activation;
OIP5-AS1 (also known as cyrano), a lncRNA with reported high abundance in mammals that regulates
cell proliferation and maintenance of self-renewal in stem-cells [89,90]; and KCNQ1OT1 (also known
as LIT1), a DNMT1-interacting ncRNA that mediates transcriptional silencing [91,92]. These examples
uncover new potential genes involved in human neuronal function and future mechanistic work may
determine their precise involvement.

4. Conclusions

The human brain is one of the most complex structures known. Its intricate architecture is still
mysterious and this is partially due to the fact that human brains (especially healthy ones or those
that carry rare diseases) are not available to study in the laboratory at a molecular level. The advent
of iPSC technology and the capacity of iPSCs to be transformed into dynamic neuronal networks
is an innovative strategy to help overcome this gap. In the past few years, neurons generated from
iPSCs have fueled the study of neurologic and psychiatric diseases, as well as contributing to the
overall understanding of the normal brain [93,94]. These cellular constructs provide a platform
for the study of the human brain, which is now unprecedentedly accessible. Here we have used
KCl-treated hiPSC-derived neurons to shed light on transcripts that may participate in neuronal activity.
Our RNA-Seq results uncover multiple lncRNAs as dynamically altered in response to KCl-mediated
neuronal activation and implicate pathways that drive cellular proliferation, differentiation, and the
emergence of specialized morphological features (such as dendrites, axons, and nuclear paraspeckles).
Many lncRNAs are present in the list of highly expressed genes in activated neurons, and some respond
to activation with KCl. These RNAs are likely to function alongside proteins in orchestrated molecular
networks that ultimately create what we define as higher intelligence.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/12/401/s1.
Figure S1: Correlation between the two methodological approaches for transcript abundance estimation; Figure S2:
Intersection between methods in terms of transcript expression; Figure S3: Full functional network for differentially
expressed genes between controls and KCl-activated neurons; Box S1: Other examples of highly expressed
transcripts with previously reported roles in the brain; Table S1: Differentially expressed transcripts; Table S2:
qPCR primers; Table S3: Metrics for expression of genes/transcript of interest.
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