Next Article in Journal
Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD)
Previous Article in Journal
The Role of the Transcriptional Response to DNA Replication Stress
Article Menu

Export Article

Open AccessReview
Genes 2017, 8(3), 94; doi:10.3390/genes8030094

Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer—The Case for Combined Delivery?

UCIBIO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
*
Authors to whom correspondence should be addressed.
Academic Editor: Selvarangan Ponnazhagan
Received: 28 October 2016 / Revised: 25 January 2017 / Accepted: 23 February 2017 / Published: 2 March 2017
(This article belongs to the Section Human Genomics and Genetic Diseases)
View Full-Text   |   Download PDF [618 KB, uploaded 2 March 2017]   |  

Abstract

Gene therapy arises as a great promise for cancer therapeutics due to its potential to silence genes involved in tumor development. In fact, there are some pivotal gene drivers that suffer critical alterations leading to cell transformation and ultimately to tumor growth. In this vein, gene silencing has been proposed as an active tool to selectively silence these molecular triggers of cancer, thus improving treatment. However, naked nucleic acid (DNA/RNA) sequences are reported to have a short lifetime in the body, promptly degraded by circulating enzymes, which in turn speed up elimination and decrease the therapeutic potential of these drugs. The use of nanoparticles for the effective delivery of these silencers to the specific target locations has allowed researchers to overcome this issue. Particularly, gold nanoparticles (AuNPs) have been used as attractive vehicles for the target-specific delivery of gene-silencing moieties, alone or in combination with other drugs. We shall discuss current trends in AuNP-based delivery of gene-silencing tools, considering the promising road ahead without overlooking existing concerns for their translation to clinics. View Full-Text
Keywords: gene silencing; interfering RNA; nanotechnology; gold nanoparticles; combinatory therapy gene silencing; interfering RNA; nanotechnology; gold nanoparticles; combinatory therapy
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Mendes, R.; Fernandes, A.R.; Baptista, P.V. Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer—The Case for Combined Delivery? Genes 2017, 8, 94.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Genes EISSN 2073-4425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top