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Abstract: A woman with rectal cancer was scheduled for surgery. However, she also had hypokalemia,
hyperreninemia, and hyperaldosteronism in the absence of any known predisposing factors or
endocrine tumors. She was given intravenous potassium, and her blood abnormalities stabilized
after tumor resection. Genetic analysis revealed mutations in several genes associated with
Bartter syndrome (BS) and Gitelman syndrome, including SLC12A1, CLCNKB, CASR, SLC26A3,
and SLC12A3. Prostaglandin E2 (PGE2) plays an important role in BS and worsens electrolyte
abnormalities. The PGE2 level is reportedly increased in colorectal cancer, and in the present case,
immunohistochemical examination revealed an increased PGE2 level in the tumor. We concluded that
the tumor-related PGE2 elevation had worsened the patient’s BS, which became more manageable
after tumor resection.

Keywords: Bartter syndrome; colorectal cancer; prostaglandin E2; whole-exome sequencing;
next-generation sequencing

1. Introduction

Bartter syndrome (BS) is a rare metabolic disorder that was first reported in 1962 [1]. It is
characterized by persistent hypokalemia, hypochloremia, metabolic alkalosis, hyperreninemia, and
hyperaldosteronism in the absence of hypertension [2]. BS is caused by impairment of sodium and
chloride resorption in the thick ascending limb of Henle’s loop and is clinically classified into two
phenotypes. One is neonatal BS, which presents early in life and is characterized by severe salt loss
and marked prostaglandinuria. The other is classic BS, which is characterized by a milder phenotype
or later disease onset [3]. It is now known that loss-of-function mutations of several genes encoding
the transporters involved in salt reabsorption at the thick ascending loop cause different types of
BS. BS is currently classified into five different subtypes according to the gene mutations involved:
mutation of SLC12A1 (Na-K-2Cl cotransporter (NKCC2)) causes type I BS [4], mutation of KCNJ1
(ATP-Regulated Potassium Channel (ROMK)) causes type II BS [4], mutation of CLCNKB (Chloride
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channel Kb (CLCNKB)) causes type III BS [5], mutation of BSND (chloride channel protein ClC-Ka
(CLCNKA) and subunit of ClC-Kb (BRTTIN)) causes type IV-A BS [6], mutation of CLCNKB and
CLCNKA cause type IV-B BS [7], and mutation of CASR (Calcium-Sensing Receptor) causes type V BS [8].
Gitelman syndrome (GS) is another rare metabolic disorder, and its clinical symptoms may overlap with
those of BS. Genetic mutations in SLC12A3 (Solute Carrier Family 12 Member 3, Na-Cl cotransporter) [9]
and CLCNKB [10] have been reported in patients with GS. Additionally, SLC26A3 (Cl-HCO3 exchanger)
has been reported in patients with BS and GS [11,12].

Prostaglandin E2 (PGE2) levels are elevated secondary to hypokalemia in patients with BS, and
consistent hypokalemia with genetic loss of Na-K-2Cl function results in a secondary increase in
PGE2 [13]. Several studies have revealed that PGE2 plays an important role in colorectal cancer [14,15].

We herein report a case involving a patient with rectal cancer and electrolyte abnormalities in
whom whole-exome sequencing revealed BS. We discuss the cause of severe hypokalemia before
surgical resection for advanced rectal cancer and the genetic analysis of BS.

2. Case Report

A 51-year-old Korean woman underwent colonoscopy to determine the cause of anemia.
Colonoscopy showed a type 2 tumor in rectum (Figure 1A), and pathological examination by biopsy
revealed colorectal cancer. Enhanced computed tomography showed a high-density tumor in the
rectum (Figure 1B) and no metastases. She was admitted to our hospital for surgery. Preoperative
blood testing showed hypokalemia (1.6 mEq/L) and hypomagnesemia (1.8 mEq/L) (Figure 2A).
Her blood pressure was normal despite markedly elevated plasma renin activity and aldosterone
levels (Figure 2B). She had a medical history of right lobectomy for hemangioma of the liver at the age
of 46 years. Blood tests also showed hypokalemia at that time, but her potassium level was slightly
higher (2–3 mEq/L) than at the current presentation. The plasma renin activity and aldosterone level
were also elevated at the time of the right lobectomy. She was not taking any medications such as
antihypertensives or diuretics, and she had no family history of hypokalemia.
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Figure 1. Endoscopic and radiographic features of rectal cancer. (A) Endoscopic examination showed 
type 2 cancer (white arrows); (B) Axial computed tomography scans showed the tumor (white 
arrowheads) in the rectum. 

She was administered intravenous potassium and underwent surgery for the rectal cancer. Her 
hemodynamics remained stable perioperatively. Her serum potassium level stabilized after surgery. 
She was discharged on postoperative day 20 with no complications. The rectal cancer was a type 2 
tumor, and pathological diagnosis showed rectal adenocarcinoma. Rectal cancer was stage IIIb 
according to the Japanese Guidelines for the Treatment of Colorectal Cancer [16], and adjuvant 
chemotherapy was administered. She was alive without recurrence at the time of this writing (about 
three years, postoperatively). 

Figure 1. Endoscopic and radiographic features of rectal cancer. (A) Endoscopic examination showed
type 2 cancer (white arrows); (B) Axial computed tomography scans showed the tumor (white
arrowheads) in the rectum.

She was administered intravenous potassium and underwent surgery for the rectal cancer.
Her hemodynamics remained stable perioperatively. Her serum potassium level stabilized after
surgery. She was discharged on postoperative day 20 with no complications. The rectal cancer was
a type 2 tumor, and pathological diagnosis showed rectal adenocarcinoma. Rectal cancer was stage
IIIb according to the Japanese Guidelines for the Treatment of Colorectal Cancer [16], and adjuvant
chemotherapy was administered. She was alive without recurrence at the time of this writing (about
three years, postoperatively).
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Figure 2. Graphs of serum potassium, renin, and aldosterone. (A) The serum potassium levels and 
potassium administered during the perioperative period are shown. After the operation, the serum 
potassium level improved with less administered potassium; (B) The aldosterone and renin activity 
in the perioperative period is shown. The activity of both increased temporarily after surgery and 
stabilized before surgery. Reference ranges: renin, 0.3–2.9 ng/mL/h (light blue); aldosterone, 29.9–159 
pg/mL (light yellow). POD; postoperative day. 
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This study was approved by the institutional review board of Osaka Medical Center for Cancer 
and Cardiovascular Diseases (Ethical code, 1502132254). The patient gave written informed consent 
before undergoing evaluation and testing. 

3.1. Genetic Analyses Using a Next-Generation Sequencer 

Whole-exome sequencing was performed using DNA from the surgically resected specimen 
(AllPrep DNA/RNA Mini Kit; QIAGEN, Hilden, Germany). Gene-specific analysis was carried out 
using an Ion Torrent Proton system with Ion AmpliSeq Exome Kit (4487084; Life Technologies, 
Carlsbad, CA, USA) and analyzed using Ion Reporter software (Life Technologies).  

3.2. Immunohistochemical Study of PGE2 

The surgically resected specimen was fixed in 10% buffered formalin, processed through graded 
ethanol, and embedded in paraffin blocks. A 3-μm section including both normal colonic mucosa and 
cancerous tissue was used. Deparaffinized sections were created, and the slide was boiled for 10 min. 

Figure 2. Graphs of serum potassium, renin, and aldosterone. (A) The serum potassium levels and
potassium administered during the perioperative period are shown. After the operation, the serum
potassium level improved with less administered potassium; (B) The aldosterone and renin activity in
the perioperative period is shown. The activity of both increased temporarily after surgery and stabilized
before surgery. Reference ranges: renin, 0.3–2.9 ng/mL/h (light blue); aldosterone, 29.9–159 pg/mL
(light yellow). POD; postoperative day.

3. Methods

This study was approved by the institutional review board of Osaka Medical Center for Cancer
and Cardiovascular Diseases (Ethical code, 1502132254). The patient gave written informed consent
before undergoing evaluation and testing.

3.1. Genetic Analyses Using a Next-Generation Sequencer

Whole-exome sequencing was performed using DNA from the surgically resected specimen
(AllPrep DNA/RNA Mini Kit; QIAGEN, Hilden, Germany). Gene-specific analysis was carried
out using an Ion Torrent Proton system with Ion AmpliSeq Exome Kit (4487084; Life Technologies,
Carlsbad, CA, USA) and analyzed using Ion Reporter software (Life Technologies).

3.2. Immunohistochemical Study of PGE2

The surgically resected specimen was fixed in 10% buffered formalin, processed through graded
ethanol, and embedded in paraffin blocks. A 3-µm section including both normal colonic mucosa
and cancerous tissue was used. Deparaffinized sections were created, and the slide was boiled for
10 min. To quench endogenous peroxidase activity, the slide was immersed in mixed methanol and
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H2O2 for 25 min at room temperature. PGE2 expression was examined using rabbit anti-human PGE2
antibody (Abcam, Cambridge, UK) and VECTASTAIN Elite ABC Rabbit IgG Kit (Vector Laboratories,
Burlingame, CA, USA). The slide was blocked by blocking serum for 20 min at room temperature
and incubated with a primary antibody (rabbit anti-human PGE2 antibody; Abcam, Cambridge,
UK) (1:100) overnight at 4 ◦C. After overnight incubation, the slide was incubated with a secondary
antibody (biotinylated goat anti-rabbit antibody) for 30 min at room temperature and incubated with
Reagent A and B mixed for 20 min at room temperature. It was then incubated with Histofine (Nichirei
Biosciences Inc., Tokyo, Japan) for 14 min. Finally, the slide was stained with Meyer’s hematoxylin
(Wako Pure Chemical Industries, Osaka, Japan) for 3 min.

4. Results

4.1. Identification of Gene Mutations

BS and/or GS was suspected based on the patient’s clinical features, and gene-specific analysis
was focused on several genes that have been reported to be related to BS and/or GS: SLC12A1, KCNJ1,
CLCNKB, BSND, CLCNKA, CASR, SLC26A3, and SLC12A3. Mutations were found in five genes:
CLCNKB, CASR, SLC12A1, SLC26A3, and SLC12A3. Seven mutations were identified in the CLCNKB
gene (Figures S1–S7 in Supplementary Materials), two mutations in CASR (Figures S8 and S9 in
Supplementary Materials), three mutations in SLC12A1 (Figures S10–S12 in Supplementary Materials),
two mutations in SLC26A3 (Figures S13 and S14 in Supplementary Materials), and four mutations in
SLC12A3 (Figures S15–S18 in Supplementary Materials). These mutations are summarized in Table 1.
Genetic analysis revealed both BS and GS.

Table 1. Mutations associated with Bartter syndrome and Gitelman syndrome.

Gene Transcript Function Codon Exon Coding

CLCNKB NM_000085.4 synonymous TCG 4 c.324A>G
CLCNKB NM_000085.4|NM_001165945.2 synonymous GGC 5 c.492G>C|
CLCNKB NM_000085.4|NM_001165945.2 missense GTG 2 c.860C>T|c.353C>T
CLCNKB NM_000085.4|NM_001165945.2 synonymous TGC 3 c.876T>C|c.369T>C
CLCNKB NM_000085.4|NM_001165945.2 missense ACG 9 c.1685T>C|c.1178T>C
CLCNKB NM_000085.4|NM_001165945.2 missense GAG 9 c.1732A>G|c.1225A>G
CLCNKB NM_000085.4|NM_001165945.2 synonymous TTG 9 c.1741C>T|c.1234C>T

CASR NM_001178065.1 synonymous CCC 7 c.2274G>C
CASR NM_001178065.1 missense CAG 7 c.3061G>C

SLC12A1 NM_001184832.1 synonymous CAT 2 c.405C>T
SLC12A1 NM_001184832.1 synonymous TAC 13 c.1614T>C
SLC12A1 NM_001184832.1 missense GCA 23 c.2873T>C
SLC26A3 NM_000111.2 synonymous CTC 17 c.1953T>C
SLC26A3 NM_000111.2 synonymous GCA 11 c.1299G>A
SLC12A3 NM_000339.2 missense GGC 6 c.791C>G
SLC12A3 NM_000339.2 synonymous GCA 11 c.1392C>A
SLC12A3 NM_000339.2 synonymous GCT 17 c.2142C>T
SLC12A3 NM_000339.2 synonymous GGT 22 c.2625C>T

CLCNKB: Chloride channel Kb; CASR: Calcium Sensing Receptor ; SLC: Solute Carrier.

4.2. Increased PGE2 Levels in the Tumor

The PGE2 level is reportedly increased in patients with advanced colorectal cancer, and an increased
PGE2 level worsens hypokalemia in patients with BS and/or GS. The renin-angiotensin-aldosterone (RAA)
axis is stimulated, and this results in a secondary increase in PGE2. The expression of PGE2 in the colorectal
cancer tissue is shown in Figure 3. Immunostaining was observed in the cancer region but was scant in
the normal mucosa cells. The PGE2 level was increased in the tumor but not in the normal colon.
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Figure 3. Immunohistochemistry of Prostaglandin E2 (PGE2) in rectal cancer. (A) The normal rectal 
tissue did not express PGE2; (B) The rectal adenocarcinoma and surrounding stroma expressed PGE2 
(scale bar: 100 μm). 
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Figure 3. Immunohistochemistry of Prostaglandin E2 (PGE2) in rectal cancer. (A) The normal rectal
tissue did not express PGE2; (B) The rectal adenocarcinoma and surrounding stroma expressed PGE2
(scale bar: 100 µm).

5. Discussion

In the past, BS and GS were diagnosed by clinical features. These syndromes are now diagnosed
by several gene mutations. In recent years, however, these metabolic disorders have been considered
hereditary salt-losing tubulopathies [17]. Recent studies have found that patients with BS and/or GS
have several genetic mutations [18,19]. This is the first reported patient in whom the genes suspected
to cause BS and/or GS were examined, and several mutations were identified in CLCNKB, CASR,
SLC12A3, SLC12A1, and SLC26A3. These findings suggest that BS and/or GS are hereditary salt-losing
tubulopathies caused by not just one mutation, but several overlapped mutations.

In patients with BS, loss of sodium and chloride stimulates the RAA axis. Aldosterone stimulates
the secretion of potassium with sodium uptake, precipitating hypokalemia, secretion of hydrogen ions,
and metabolic alkalosis. Hypokalemia increases the production of PGE2. Furthermore, PGE2 stimulates
the RAA axis, resulting in a secondary increase in PGE2 [13]. In the present case, the hypokalemia
became easier to control after the rectal cancer operation. It was reported that surgical stress causes
a renin activity and aldosterone elevation in non-BS patients [20]. However, the postoperative
responses of the RAA axis in BS patients were not reported. In this case, a temporal elevation
was observed postoperatively.

We considered that the RAA was also stimulated by the cancer-derived PGE2 (Figure 4). PGE2,
a proinflammatory mediator, is the most abundant prostaglandin found in colorectal cancer [21]. It is
associated with recurrence and metastasis, resulting in a poor prognosis [14,22]. The serum PGE2 level
could not be measured in our institution; therefore, immunohistochemical examination of PGE2 was
performed. We found that the PGE2 expression was higher in the rectal cancer than in the normal
colon mucosa. After resection of the primary rectal cancer, the potassium level was easily controlled.
The cancer-derived PGE2 might increase renin secretion in kidney and cause severe preoperative
hypokalemia. She was alive without recurrence and the potassium level was 2–3 mEq/L. However,
the PGE2 level is reportedly increased in liver metastases [14,23]. We consider that if the rectal cancer
recurs in this patient, her potassium level will be more difficult to control. We plan to follow the
patient’s clinical course and examine the relationship between BS and colorectal cancer.

In conclusion, we have herein reported a case of colorectal cancer-related PGE2 production that
seems to be responsible for severe preoperative hypokalemia, represented in BS syndrome.

Hypokalemia causes express PGE2 production that causes secondary renin secretion.
Th cancer-derived PGE2 might also stimulate renin secretion.
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Figure 4. A scheme of mechanisms of Bartter syndrome and PGE2. TAL: thick ascending limb; ACE: 
angiotensin-converting enzyme. 
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