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Abstract: Wintersweet (Chimonanthus praecox) is a popular garden plant because of its flowering
time, sweet fragrance, and ornamental value. However, research into the molecular mechanism that
regulates flower development in wintersweet is still limited. In this study, we sought to investigate
the molecular characteristics, expression patterns, and potential functions of two C3H-type zinc
finger (CZF) protein genes, CpCZF1 and CpCZF2, which were isolated from the wintersweet flowers
based on the flower developmental transcriptome database. CpCZF1 and CpCZF2 were more highly
expressed in flower organs than in vegetative tissues, and during the flower development, their
expression profiles were associated with flower primordial differentiation, especially that of petal and
stamen primordial differentiation. Overexpression of either CpCZF1 or CpCZF2 caused alterations on
stamens in transgenic Arabidopsis. The expression levels of the stamen identity-related genes, such as
AGAMOUS (AG), PISTILLATA (PI), SEPALLATA1 (SEP1), SEPALLATA2 (SEP2), SEPALLATA3 (SEP3),
APETALA1 (AP1), APETALA2 (AP2), and boundary gene RABBIT EAR (RBE) were significantly
up-regulated in CpCZF1 overexpression lines. Additionally, the transcripts of AG, PI, APETALA3
SEP1-3, AP1, and RBE were markedly increased in CpCZF2 overexpressed plant inflorescences.
Moreover, CpCZF1 and CpCZF2 could interact with each other by using yeast two-hybrid and
bimolecular fluorescence complementation assays. Our results suggest that CpCZF1 and CpCZF2
may be involved in the regulation of stamen development and cause the formation of abnormal
flowers in transgenic Arabidopsis plants.
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1. Introduction

Flowering plants are one of the most diverse groups of organisms on earth, constituting 295,383
of the 374,000 known plant species in the wild [1]. So far, the genes governing flower development
and organ identities have been extensively studied in various plants. As a model plant, the flower
of Arabidopsis has four whorls of organs. The A-, B-, C-, D-, and E-function of the floral homeotic
genes were found to be vital for flora primordial identity specification [2–8], and constitute the most
regulators of the flower organ identities. Most of the regulators are transcriptional factors, where
APETALA2 (AP2) encodes an AP2/EREBP transcriptional factor protein [9], and the rest of the A-, B-,
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C-, D-, and E-function genes code for MADS-box domain transcriptional factor proteins [10]. Moreover,
members of other transcriptional factor families have been identified for their role in directly or
indirectly regulating flower development. For example, the flowering time in maize is controlled by an
Ap2-like gene (ZmRap2.7) orthologous to Rap2.7, a transcription factor that regulates the flowering time
in Arabidopsis [11]. SPATULA (SPT), a basic helix-loop-helix (bHLH) type transcriptional factor, controls
carpel development in Arabidopsis [12,13]. HUA1, a zinc finger protein with six CCCH motifs, indirectly
determines carpel and stamen identity specification by acting in the processing of AGAMOUS (AG)
Pre-mRNA in a certain genetic background [14–16]. In plants, zinc finger proteins (ZFPs) are among
the most abundant proteins, and they were reported to be involved in various activities of plant
growth, development, phytohormone signaling, and stress responses [17]. According to the number
and order of conserved cysteine and histone residues, ZFPs were classified into several distinct types,
such as C2H2, C3H, C2H2, C3HC4, C2HC5, and C3H2C3 [18]. Among them, the C3H-type zinc finger
proteins are characterized by a typical motif consisting of three cysteine residues and one histidine
residue; they usually contain 1–6 C-X6-14-C-X4-5-C-X3-H motifs, wherein the X is any amino acid [19],
with the exception of ZmC3H3 from Zea mays, which contains seven CCCH motifs [20]. In recent
years, a small number of C3H-type genes have been identified and functionally studied, which were
known to function in various life processes in plants. OsLIC, a C3H-type zinc finger protein with a
single CCCH zinc finger motif, acts as a negative regulator of the leaf and tiller angle in rice through
mediating the brassinosteroids responses [21]. OsDOS and OsTZF1 were found to delay the leaf
senescence in rice [22,23]. CsSEF1, a tandem C3H-type zinc finger protein gene from cucumber, plays
a role in the signal transduction pathway from the photoassimilate limitation to growth cessation [24].
AtTZF4/SOMNUS, AtTZF5, and AtTZF6/PEI1 all code for proteins with a tandem CCCH zinc finger
motif, and are involved in the light-, abscisic acid-, and gibberellic acid- mediated regulation of seed
germination [25,26]. AtSZF1 and AtSZF2 are involved in salt stress responses in Arabidopsis and
their mutants display more sensitive responses to salt stress than wild-type plants [27]. Moreover,
AtC3H14 and AtC3H15 have overlapping roles in the regulation of second wall thickening and flower
development [28,29]. GhZFP1, a novel C3H-type zinc finger protein from cotton, enhances salt stress
tolerance and fungal disease resistance in tobacco [30]. MsZFN from alfalfa delays the flowering time
by repressing the flowering genes in transgenic Arabidopsis [31].

Wintersweet (Chimonanthus praecox), a basal angiosperm belongs to the Calycanthaceae family, is a
precious shrub endemic to China. The wintersweet flowers are characterized by a strong fragrance and
blossom in winter, from November to March. Its prized ornamental value, unique flowering time, and
attractive sweet scent make it an admired landscape plant or cut flower plant in China. There are several
traits and properties of wintersweet that are important in a commercial context, including flower
development, senescence, scent biosynthesis and emission, and resistance to abiotic stresses [32,33].
Researches have mainly focused on the identification of abiotic stress responsive genes [32,34] and
analysis of essential oil in wintersweet [35]. To date, however, only two genes involved in flower
organ identity have been reported. CpAP3, a B-function gene, caused rich alterations in the petals
and stamens of petunia, partially rescuing the stamen development and fertility in the Arabidopsis
ap3 mutant; CpAGL6, a SEP1-like gene, regulated the stamen and carpel identities and caused partial
sterility in transgenic Arabidopsis. Nevertheless, the molecular mechanism regulating flower organ
identity in wintersweet is still largely unknown [36].

A former transcriptomic analysis of flower development in wintersweet revealed that a large
number of candidate genes expressed differentially during flower development [33]. Among them,
some C3H-type zinc finger protein genes, such as CpCZF1 and CpCZF2, were found to be more highly
expressed in the flower bud stage and less expressed in the senescence stage. In this study, the results
show that these two C3H-type Zinc Finger genes, CpCZF1 and CpCZF2, isolated from wintersweet,
may be involved in the regulation of flower organ identity in transgenic Arabidopsis. Our study thus
provides useful knowledge for better understanding the regulation of flower development and the
functional roles of C3H-type zinc finger proteins in plants.
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2. Materials and Methods

2.1. Plants and Growing Conditions

For the dynamic expression assays in flower development, flower buds at four primordial
differentiation stages and whole flowers at six flowering stages were harvested. The former were
associated with sepal primordia differentiation in early April, followed by that of the petal in late
April, the stamen in early May, and the pistil in early July [37]. Following Ma et al. [38], flowering stage
separation occured as follows: Stage 1 (flower-bud), Stage 2 (petal-display), Stage 3 (initiating bloom),
Stage 4 (bloom), Stage 5 (early-withering), and Stage 6 (late-withering). For gene expression analysis
in tissues, the wintersweet seeds were treated with 70% sulfuric acid for 30 minutes and cleaned
before being sown directly into pots containing a mixture of substrate and vermiculite (3:1, v/v);
the wintersweet adults were planted in the nursery at Southwest University (Chongqing, China). The
cotyledons were harvested when they emerged from beneath the seed coat; the root, stem, and young
leaves were harvested from the four-leaf stage plants. The mature leaves, and petals, stamens, and
pistils from the flowers at stage1 were harvested from adult plants.

For the subcellular localization and bimolecular fluorescence complementation (BIFC)
analyses [39], tobacco (Nicotiana benthamiana) seeds were sown directly into pots containing a mixture of
substrate and vermiculite (3:1, v/v) and grown under a 16-h light (28 ◦C)/8-h dark (22 ◦C) photoperiod.

For plant transformation, the Arabidopsis thaliana seeds were sown on Murashige and Skoog (MS)
solid medium containing 3% (w/v) sucrose and 0.7% (w/v) agar, stratified for three days at 4 ◦C, and
then transferred to a growth room at 70% relative humidity under a 16-h light (22 ◦C)/8-h dark (20 ◦C)
photoperiod and 120 µmol·m−2·s−1of cool white fluorescent light. For those Arabidopsis plants used in
the phenotypic analysis, 12-day-old seedlings were transplanted into plastic pots containing a mixture
of substrate and vermiculite (3:1, v/v) under the same controlled environmental conditions.

2.2. Cloning and Sequence Analysis

Total RNA was extracted from the flowers of wintersweet by using the RNAprep pure kit (Tiangen
Biotech, Beijing, China). This RNA sample was used to synthesize the cDNA sample, which was then
used to perform 5′ rapid amplification cDNA end (RACE) following the protocol of the SMARTer RACE
5′/3′ Kit (Clontech, CA, USA). Primers for 5′RACE were designed using the Primer 5 Program, as based
on the sequence which encoded the 3′ ends of putative ‘C3H’ genes obtained from the transcriptome
database of flower development [33]. The 5′RACE PCR procedure consisted of: five cycles at 94 ◦C for
30 s, 72 ◦C for 3 min; five cycles at 94 ◦C for 30 s, 70 ◦C for 30 s, 72 ◦C for 3 min; 25 cycles at 94 ◦C for
30 s, 68 ◦C for 30 s, and 72 ◦C for 3 min. Full-length cDNA of these two putative ‘C3H’ genes were
generated using PCR with the specific primers (Supplementary Materials Table S1). The PCR products
were cloned into the pMD19-T Easy vector (Takara, Dalian, China) and sequenced. The full-length
cDNA was analyzed by the BLAST program at the National Center for Biotechnology Information
(NCBI) website (http://www.ncbi.nlm.nih.gov/). Multiple Sequence Alignment was carried out using
the online tool MSA (http://www.ebi.ac.uk/Tools/msa/). A phylogenetic tree was constructed using
Molecular Evolutionary Genetics analysis version 6.0 (http://www.megasoftware.net/) based on the
neighbor joining method.

2.3. Subcellular Localization

The coding sequences of CpCZF1 and CpCZF2 were cloned into the modified pCAMBIA 1300
vector (35S promoter, C-GFP), respectively, at the BamHI and SaiI, SacI, and BamHI sites. The primers
for this construction are listed in Supplementary Materials Table S1. Agrobacterium tumefaciens
GV3101 was transformed by the control vectors 35S:GFP (i.e., the modified pCAMBIA 1300), and the
35S:CpCZF1-GFP and 35S:CpCZF2-GFP constructs were used to separately infiltrate the underside
of the top leaves of the tobacco plants. After incubation in the dark at 22 ◦C for 36 h, a 2-mm ×
2-mm area portion of the infiltrated leaves was cut out and incubated in distilled water supplemented
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with 5 µg/mL 4′,6-diamidino-2-phenylindole (DAPI; Sigma, St. Louis, MO, USA) for 30 min [40].
Afterwards, leaf sections were mounted on a microscope slide and covered with distilled water for
observing the green fluorescent protein via confocal microscopy (Olympus, FV-10-ASW, Tokyo, Japan).

2.4. Quantitative Real Time-PCR

Total RNA was extracted by using the RNAprep pure kit (Tiangen, Beijing, China), and it was
reverse-transcribed with a gDNA eraser according to the instructions of the Primescript RT reagent kit
(Takara, Tokyo, Japan). The cDNA solution was used as a template for PCR amplification by specific
primers (Supplementary Materials Table S1). Each 10 µL reaction mixture contained 5 µL of Ssofast
EvaGreen Supermix and 0.5 µL of each gene-specific primer (500 nM final concentrations), 3.5 µL water,
and 0.5 µL of the cDNA template. PCR amplifications were conducted by Bio-Rad CFX96 (Bio-Rad
CFX Manager Software Version 1.6), followed by a PCR procedure with an initial denaturation at 95 ◦C
for 30 s followed by 40 cycles of 95 ◦C for 5 s and 58 ◦C for 5 s. The CpActin and CpTubulin genes
were used as the internal control for the expression analyses in wintersweet [32]; Atactin was used as
the internal control for expression analyses in Arabidopsis. The comparative CT method was used to
quantify gene expression [41].

2.5. Plasmid Constructs and Plant Transformation

The full-length coding sequences of CpCZF1 and CpCZF2 were cloned into the modified plant
binary vector pCAMBIA 2301G with the 35S promoter at the BamHI and SacI, and the EcoRI and BamHI
restriction sites, respectively, to generate the 35S:CpCZF1 and 35S:CpCZF2 constructs. The primers are
listed in Supplementary Materials Table S1. The plant binary constructs were first transformed into
the Agrobacterium tumefaciens strain GV3101 which were then transformed to Arabidopsis plants via
the floral dip method. The transformants were selected on a MS medium with 50 mg/L Kanamycin.
Homozygous T3 or T4 transgenic seedlings were used for the phenotypic investigation and the
molecular assay.

2.6. Yeast Two-Hybrid Assay

The interaction between proteins was analyzed by the Matchmaker® Gold Yeast Two-Hybrid
System (Clontech, CA, USA). The full-length coding sequence of CpCZF1 was cloned into a pGBKT7
(BD) vector at the EcoRI and BamHI sites to generate the BD-CpCZF1 construct. Additionally, the
coding sequence of CpCZF2 was then cloned into the AD domain of the vector pGADT7 to generate
pGADT7-CpCZF2 (AD-CpCZF2) at BamHI and SaII sites. The constructs BD-CpCZF1 and AD-CpCZF2
were then co-transformed into the yeast strain Y2HGold according to the supplier’s instructions. The
plasmids AD-T, BD-53 provided by Clontech were co-transformed into the yeast strain Y2HGold
to serve as the positive control; BD-CpCZF1, empty vector AD; AD-CpCZF2, empty vector BD and
empty vector AD, empty vector BD were co-transformed, respectively, into the yeast strain Y2HGold
to serve as negative controls. The co-transformed yeast cells were spread onto DDO/X plates to
confirm the co-transformation efficiency. At the same time, the yeast cells were spread on selective
medium QDO/X/A to assess the protein interactions of different pairs. The primers used are listed in
Supplementary Materials Table S1.

2.7. BIFC Assay

The full-length coding sequence of CpCZF1 was cloned into the vector pSATNA-nEYFP-N1 that
had an N-terminal fragment (aa 1–174) of yellow fluorescent protein (YFP) at the SaiI and BamHI sites;
CpCZF2 was cloned into the vector pSATNA-cEYFP-N1 that had a C-terminal fragment (175–239) of
YFP at the XhoI and BamHI sites. The constructs CpCZF1-nEYFP and CpCZF2-cEYFP were introduced
into the Agrobacterium tumefaciens strain GV3101 and suspended to OD600 = 0.5, and were then mixed
equally to infiltrate the lower epidermal cells of tobacco plants [42]. Specifically, if CpCZF1-nEYFP
and CpCZF2-cEYFP were co-expressed in the lower epidermal cells of tobacco plants, a reconstituted
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fluorescence of YFP in the nucleus should be observed. After incubation in the dark at 22 ◦C for 36 h,
a 2-mm × 2-mm area portion of the infiltrated leaves was cut out to observe the YFP under confocal
microscopy (Olympus, FV-10-ASW, Tokyo, Japan). By following the BIFC control setting method of
Horstman et al. [43], AtSZF1, a C3H-type zinc finger protein which is located in the nucleus [27], and
belongs to the same subfamily as CpCZF1 and CpCZF2, was used as the partner of the negative control
pairs. AtSZF1 was cloned into the vector pSATNA-cEYFP-N1, pSATNA-nEYFP-N1, pSATN-nEYFP-C1,
and pSATN-cEYFP-C1 to generate the constructs of AtSZF1-cEYFP, AtSZF1-nEYFP, nEYFP- AtSZF1,
and cEYFP-AtSZF1. CpCZF1 was cloned into the vector pSATNA-cEYFP-N1, pSATN-nEYFP-C1, and
pSATN-cEYFP-C1 to generate CpCZF1-cEYFP, nEYFP-CpCZF1, and cEYFP-CpCZF1. The construct
pairs CpCZF1-nEYFP and AtSZF1-cEYFP, CpCZF1-nEYFP and cEYFP-AtSZF1, nEYFP-CpCZF1
and AtSZF1-cEYFP, nEYFP-CpCZF1 and cEYFP-AtSZF1, CpCZF1-cEYFP and AtSZF1-nEYFP,
CpCZF1-cEYFP and nEYFP-AtSZF1, cEYFP-CpCZF1 and AtSZF1-nEYFP, and cEYFP-CpCZF1 and
nEYFP-AtSZF1 were used as negative controls. The primers for these constructions are listed in
Supplementary Materials Table S1.

3. Results

3.1. Isolation and Characterization of CpCZF1 and CpCZF2

Two C3H-type zinc finger protein genes (hereafter denominated as CpCZF1 and CpCZF2) were
isolated from flowers of wintersweet by using the RACE method. CpCZF1 (Gene bank accession
number: KY435926) contains a 909 bp open read frame (ORF) that encodes a peptide of 302 amino
acid residues with a calculated molecular mass of 32.07 kDa and a theoretical isoelectric point of 9.35.
Sequence analysis showed that three putative conserved motifs including two C-x8-C-x5-C-x3-H motifs
on the N-terminal, one C-x7-C-x5-C-x3-H motif which is located in the C-terminal region of the peptide,
and one RNA or single-stranded DNA binding KH-1 domain were detected (Figure 1a). CpCZF2 (Gene
bank accession number: KY435927) contains a 1056 bp ORF, which encodes a peptide of 351 amino
acid residues with a calculated molecular mass of 39.19 kDa and a theoretical isoelectric point of 8.74.
Sequence analysis showed that CpCZF2 contains one C-x7-C-x5-C-x3-H motif on the N-terminal region
which is followed by two C-x8-C-x5-C-x3-H motifs (Figure 1b).

Alignment of the deduced amino acid showed that CpCZF1 and CpCZF2 share the same sequence
structure and conserved motifs with their homologues from Populus trichocarpa, Zea mays, and Oryza
sativa (Figure 1b–c). AtC3H36 and AtC3H52, the homologues of CpCZF1 from Arabidopsis, contain
two CCCH motifs and one KH-1 domain, while CpCZF1 and other homologues contain three CCCH
motifs and one KH-1 domain, but the data also showed that AtC3H36 and AtC3H52 (E-value = 9 ×
10−35, identity = 50%; E-value = 7 × 10−42, identity= 46%, respectively) are highly homologous to
CpCZF1 (Figure 1b). AtC3H39, the homologue of CpCZF2 from Arabidopsis, which shares the same
number and type of CCCH motifs with CpCZF2, is highly homologous to CpCZF2 (E-value = 5× 10−49,
identity= 38%). Further analysis of the phylogenetic relationship between CpCZF1, CpCZF2, and the
C3H-type proteins from Arabidopsis revealed that CpCZF1, CpCZF2, and 11 Arabidopsis C3H-type
proteins were clustered together on a branch of the tree. AtC3H14 and AtC3H15, which function in
anther development [28], were included in this branch. CpCZF1 has a close relation with AtC3H36
and AtC3H52, while CpCZF2 has a close relation with AtC3H39 (Figure 2).
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Figure 1. Sequence analysis of CpCZF1 and CpCZF2. Schematic diagrams of protein CpCZF1 (a) and 
CpCZF2 (b). Multiple Sequence Alignment of CpCZF1 (c), CpCZF2 (d), and their orthologs from 
Populus trichocarpa, Arabidopsis, Zea mays, and Oryza sativa, respectively. The boxes in blue indicate the 
C-X7-C-X5-C-X3-H type motif; the boxes in sky-blue indicate the C-X8-C-X5-C-X3-H type motif; the 

Figure 1. Sequence analysis of CpCZF1 and CpCZF2. Schematic diagrams of protein CpCZF1 (a) and
CpCZF2 (b). Multiple Sequence Alignment of CpCZF1 (c), CpCZF2 (d), and their orthologs from
Populus trichocarpa, Arabidopsis, Zea mays, and Oryza sativa, respectively. The boxes in blue indicate the
C-X7-C-X5-C-X3-H type motif; the boxes in sky-blue indicate the C-X8-C-X5-C-X3-H type motif; the
green box indicates the KH-1 domain which is a RNA or single stranded DNA biding domain. The red
box indicates the positions of the conserved domains.

3.2. CpCZF1 and CpCZF2 Located to Nucleus

To examine the subcellular localization of CpCZF1 and CpCZF2 in planta, a GFP (green fluorescent
protein) reporter gene was fused in-frame to the C-terminus of CpCZF1 and CpCZF2 and transiently
transformed into tobacco lower epidermal cells, separately. As shown in Figure 3, the GFP fluorescence
of CpCZF1-GFP and CpCZF2-GFP was observed in the nucleus, whereas that of the control appeared
in the cytoplasm and the nucleus. These results indicated that CpCZF1 and CpCZF2 are both
nuclear-localized proteins and may function as transcriptional factors.



Genes 2017, 8, 199 7 of 18

Genes 2017, 8, 199  6 of 17 

 

green box indicates the KH-1 domain which is a RNA or single stranded DNA biding domain. The 
red box indicates the positions of the conserved domains. 

Alignment of the deduced amino acid showed that CpCZF1 and CpCZF2 share the same 
sequence structure and conserved motifs with their homologues from Populus trichocarpa, Zea mays, 
and Oryza sativa (Figure 1b–c). AtC3H36 and AtC3H52, the homologues of CpCZF1 from Arabidopsis, 
contain two CCCH motifs and one KH-1 domain, while CpCZF1 and other homologues contain three 
CCCH motifs and one KH-1 domain, but the data also showed that AtC3H36 and AtC3H52 (E-value 
= 9 × 10−35, identity = 50%; E-value = 7 × 10−42, identity= 46%, respectively) are highly homologous to 
CpCZF1 (Figure 1b). AtC3H39, the homologue of CpCZF2 from Arabidopsis, which shares the same 
number and type of CCCH motifs with CpCZF2, is highly homologous to CpCZF2 (E-value = 5 × 10−49, 
identity= 38%). Further analysis of the phylogenetic relationship between CpCZF1, CpCZF2, and the 
C3H-type proteins from Arabidopsis revealed that CpCZF1, CpCZF2, and 11 Arabidopsis C3H-type 
proteins were clustered together on a branch of the tree. AtC3H14 and AtC3H15, which function in 
anther development [28], were included in this branch. CpCZF1 has a close relation with AtC3H36 
and AtC3H52, while CpCZF2 has a close relation with AtC3H39 (Figure 2). 

 
Figure 2. Phylogenetic analysis of CpCZF1, CpCZF2, and C3H-type proteins in Arabidopsis. CpCZF1, 
CpCZF2, and the accession numbers of zinc finger protein genes are shown in the phylogenetic tree. 
The blank line indicates the branch which CpCZF1 and CpCZF2 are clustered to. The red boxes 

Figure 2. Phylogenetic analysis of CpCZF1, CpCZF2, and C3H-type proteins in Arabidopsis. CpCZF1,
CpCZF2, and the accession numbers of zinc finger protein genes are shown in the phylogenetic tree.
The blank line indicates the branch which CpCZF1 and CpCZF2 are clustered to. The red boxes indicate
the position of CpCZF1 and CpCZF1; the blank box indicates the position of AtC3H14 and AtC3H15.
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with 35S-GFP, 35S:CpCZF1-GFP, and 35S:CpCZF2-GFP constructs by an Agrobacterium mediated
infection. In this experiment, 35S-GFP was used as the control. The position of the nucleus was
ensured by DAPI staining and bright-field images were compared.

3.3. The Spatiotemporal Expression Patterns of CpCZF1 and CpCZF2

The qRT-PCR in flower buds (flowers) from all ten stages (Figure 4a) was performed to analyze the
dynamic expression patterns of CpCZF1 and CpCZF2 in flower development. As shown in Figure 4b,
the CpCZF1 expression was at least 10-fold higher in flower buds at the floral primordia differentiation
stages than in the flowers at the flowering stages; this was especially true for the petal primordial
differentiation stage, which was approximately five-fold higher than expression at the sepal, stamen,
and pistil primordia differentiation stages. After primordia differentiation, the transcripts of CpCZF1
decreased dramatically. In addition, the transcript levels of CpCZF2 were much higher in the three
inner whorls’ primordial differentiation stages, especially in the petal primordial differentiation stage
(Figure 4d). Moreover, the qRT-PCR was also performed for the root, stem, cotyledon, young leaves,
mature leaves, and petals, stamens, and pistils from flowers of stage1 to analyze the expression patterns
of CpCZF1 and CpCZF2 in different tissues of wintersweet. The CpCZF1 expression level was extremely
high in the flower organs, especially in the petals and stamens, but relatively low in the vegetative
tissues (Figure 4c). The transcriptional level of CpCZF2 in mature leaves was the highest among the
vegetative tissues; however, the levels of petals and stamens were about 40-fold of those of mature
leaves. Meanwhile, CpCZF2 transcripts were also higher in flower organs than in vegetative tissues,
especially for the stamens that had approximately 90-fold the expression level seen in mature leaves,
which had the highest expression level among the vegetative tissues (Figure 4e). Unlike CpCZF1,
which was highly expressed in both petals and stamens, CpCZF2 was expressed more in stamens than
in petals. These results showed that the expression patterns of CpCZF1 and CpCZF2 were similar,
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and were more abundantly expressed in flower organs and more highly expressed in primordial
differentiation stages than in opening stages.
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Figure 4. Expression patterns of CpCZF1 and CpCZF2 in different flower developmental stages.
(a) Flower developmental stages. The transcriptional levels of CpCZF1 (b) and CpCZF2 (d) in flower
buds (flowers) in the process of flower development. Relative expression of CpCZF1 (c) and CpCZF2
(e) in the tissues of wintersweet. SDS, sepal primordia differentiation stage; PDS, Petal primordia
differentiation stage; PiDS, pistil primordia differentiation stage; StDS, stamen primordia differentiation
stage; S1–S6, Stage1–Stage 6. Data were expressed relative to CpActin and CpTublin that served as the
internal controls; the error bars represent the standard deviation per triplicate.

3.4. Effects of CpCZF1 and CpCZF2 Genes on Flower Organ Identities in Arabidopsis

The functional roles of CpCZF1 and CpCZF2 were investigated in transgenic Arabidopsis. Eighteen
35S:CpCZF1 and 30 35S:CpCZF2 transgenic lines obtained by Kanamycin selection were further
confirmed as transgenic plants harboring CpCZF1 and CpCZF2 by PCR amplication (Supplementary
Materials Figure S1a,b). As a typical cruciferous plant, Arabidopsis Col-0 flowers produce six stamens
with two short lateral stamens and four medial stamens of identical length which are as long as the
carpel at Stage 13 (Figure 5a) [10]. In our study, changes to the stamens in 35S:CpCZF1 and 35S:CpCZF2
transgenic plants were observed by comparing them to those of wild type (WT) organisms which were
planted in the same condition as transgenic plants.

In the 18 lines of 35S:CpCZF1 plants, four kinds of alterations were observed in transgenic flowers
(Figure 5, Table 1): the loss of one (Figure 5b) or both lateral stamen(s) (Figure 5c), one partial petaliod
lateral stamen (Figure 5d–e), and withering of the anthers occurred before the pistil could be fertilized
(Figure 5f), and were observed in transgenic flowers. b, c, and f occurred in six lines (type1); b, c, d,
and e were observed in 12 lines (type2). Statistical results of phenotype type 1 and type 2 showed that
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almost 30 out of 90 observed flowers lost one lateral stamen; approximately 12 flowers lost both lateral
stamens; 11 flowers had a petaliod stamen and 12 had withered anthers. The ratio of flowers with
abnormal stamens was 64% in phenotype type 1 and 59% in phenotype type 2 (Table 2).
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35S:CpCZF1 
6 

stamen number reduced and/or anthers withered before the pistil 
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12 
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Figure 5. Phenotypic effects of CpCZF1 and CpCZF2 on transgenic Arabidopsis. (a) A WT flower with
four long medial stamens and two short lateral stamens; (b–f) Flowers of 35S:CpCZF1 plants; (b)
Flower with one lateral stamen lost; (c) Flower with both lateral stamens lost. (d) Flower with one
lateral stamen changed to a partial petaloid; (e) An enlargement of a partial petaliod stamen; (f) Flower
with anthers withered before the pistil could be fertilized; (g–l) Flowers of the 35S:CpCZF2 plants;
(g) Flower with one lateral stamen lost; (h) Flower with both lateral stamens lost; (i) Flower with one
staminode and one lateral stamen lost; (j) Flower with one staminode; (k) Flower with two staminodes;
(l) Flower with three staminodes. Arrowhead indicates a partial petaloid stamen; arrows indicate the
staminodes. To enhance the observations, the sepals and petals in photo (d), the sepals, petals, and
carpels in photo (j) that were normal were all removed.

Table 1. Phenotypical characterization of flower morphology in 35S:CpCZF1 and 35S:CpCZF2
transgenic Arabidopsis.

Genotype No. of Transgenic Lines Phenotype

35S:CpCZF1
6 stamen number reduced and/or anthers withered before the

pistil could be fertilized (type 1: Figure 5b,c,f)

12 stamen number reduced and /or partial petaliod lateral
stamen (type 2: Figure 5b–e)

35S:CpCZF2
9 stamen number reduced (type 3: Figure 5g,h)

21 stamen number reduced and /or stamen(s) changed to
staminode (s) (type 4: Figure 5g–i)

Table 2. Statistical results of the abnormal stamens in wild type (WT) and overexpression plants.

Genotype Type
1–30 a/90 b

Lost 1 Stamen Lost 2 Stamens Petaliod Withered Anther Staminode(s) Ratio

WT 4 0 0 0 0 0.04

35S:CpCZF1
1 32 14 0 12 0 0.64

2 30 12 11 0 0 0.59

35S:CpCZF2
3 33 12 0 0 0 0.5

4 33 16 0 0 13 0.69
a Position of flowers on the inflorescence; b Total number of flowers counted.
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In the 30 35S:CpCZF2 transgenic lines, three kinds of alterations (Figure 5, Table 1): lost one lateral
stamen (Figure 5g), lost both lateral stamens (Figure 5h), and stamen(s) changed to Staminode(s)
(Figure 5i–l) which lost the capability of producing viable pollen, were observed on stamens in
transgenic Arabidopsis, g and h were observed in nine lines (type 3), and g-l were observed in 21 lines
(type 4). The statistical results in Table 2 showed that the number of abnormal flowers which lost one
lateral stamen was 33 out of 90 flowers in both genotypes; the number of flowers for which both lateral
stamen were lost was 12 in type 3 and 16 in type 4; the number of flowers which had staminode(s) was
13 out of 90. The ratio of flowers with abnormal stamens was 50% in type 3 and 69% in type 4.

The overexpression of CpCZF1 and CpCZF2 in Arabidopsis caused similar changes to the stamens.
They both caused the reduction of lateral stamen(s), but also retained some difference.

3.5. Expression of the Stamen Identity-Related Genes

To explore the possible causes of the changes in stamens of the overexpressed plants, the
expression of the stamen identity genes, namely the B-function genes AP3 and PI, the C-function gene
AG, and the E-function gene SEP1-4, were analyzed in the WT and four types of the overexpressed
plants. We also assayed the expression of the A-function genes, APETALA1 (AP1) and APETALA2
(AP2), and the flower organ boundary genes, RABBIT EAR (RBE) and UNUSUAL FLORAL ORGANS
(UFO). As shown in Figure 6a, in the 35S:CpCZF1 Arabidopsis inflorescence of lines OE-5 and OE-10,
the transcripts of PI were approximately five-fold those of WT in both lines; SEP1 and SEP3 were
approximately 3.5-fold; AG were approximately 1.5-fold; SEP2 were approximately 1.7-fold; AP1 were
approximately 1.6-fold those of WT; and AP2 were slightly upregulated. However, AP3, SEP4, and
UFO showed no difference between the transgenic and WT plants.

In the 35S:CpCZF2 Arabidopsis inflorescence of lines OE-6 and OE-21, the transcripts of AP1 were
approximately 1.6-fold those of WT; AP3, PI, AG, RBE, and SEP2 were all elevated by approximately
two-fold over those of WT, while SEP1 and SEP3 were approximately three-fold higher than those of
WT in the transgenic lines. Additionally, SEP4, AP2, and UFO showed no difference between the WT
and transgenic plants (Figure 6b).
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Figure 6. Effects of CpCZF1 and CpCZF2 overexpression on the transcript levels of regulatory genes 
related to stamen identity specification. Expression of stamen identity-related genes in the WT and 
the CpCZF1-OE (a) and CpCZF2-OE (b) flowers. The RNA was extracted from flowers at Stages 0–6 
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Figure 6. Effects of CpCZF1 and CpCZF2 overexpression on the transcript levels of regulatory genes
related to stamen identity specification. Expression of stamen identity-related genes in the WT and the
CpCZF1-OE (a) and CpCZF2-OE (b) flowers. The RNA was extracted from flowers at Stages 0–6 from
the inflorescences of WT and transgenic Arabidopsis. Data were expressed relative to AtActin, which
served as the internal control; the error bars represent the standard deviations per triplicate. The * and
** indicate a significant difference from WT at p < 0.05 and p < 0.01, respectively, as determined by the
Student t-test.
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3.6. Protein Interaction of CpCZF1 with CpCZF2

To investigate the potential relationship of CpCZF1 and CpCZF2 proteins, we tested the in vivo
interaction by employing the yeast-two-hybrid system, and the result showed that the yeast cells
harboring the testing pair and the positive control plasmid pair grew and turned blue on the DDO/X
and QDO/X/A medium, respectively, which indicated that the testing pair, like the positive control,
could activate the reporter genes resulting from the interaction of the two proteins. However, yeast
cells harboring the negative control plasmid pairs, AD-CpCZF2 and BD; AD and BD-CpCZF1; AD and
BD, could grow on DDO/X medium but did not turn blue, which implied that both plasmids of each
pair were co-transformed into yeast cells, but couldn’t activate the reporter gene; still, they couldn’t
grow on QDO/X/A medium which meant that the proteins in each negative control pair couldn’t
activate the reporter genes in the GAL4 system. These results indicate that CpCZF1 could interact with
CpCZF2 in yeast (Figure 7).
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An YFP BIFC system was employed to further confirm the interaction of CpCZF1 and CpCZF2 
proteins in planta. The results showed that the YFP fluorescence was observed in the nucleus of the 
epidermal cells transfected with CpCZF1-nEYFP and CpCZF2-cEYFP, whereas no such fluorescence 
was detected in the cells transfected with the negative construct pairs (Figure 8). The reconstituted 
YFP was only observed in those cells with CpCZF1-nEYFP and CpCZF2-cEYFP, which indicates that 
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Figure 7. Yeast of two hybrids employed to detect the interactions of CpCZF1 and CpCZF2. Yeast
cells co-transformed with BD-CpCZF1 and AD-CpCZF2 were spread onto selective media DDO/X and
QDO/X/A to test the protein interactions. Yeast cells co-transformed with pGBKT7-53 (BD-53) and
pGADT7-T as the positive controls. Yeast cells co-transformed with BD and AD, BD and AD-CpCZF2,
and BD-CpCZF1 and AD as the negative controls. Selective media DDO/X was used to test the
co-transformation efficiency; QDO/X/A media was used to test the positive interaction.

An YFP BIFC system was employed to further confirm the interaction of CpCZF1 and CpCZF2
proteins in planta. The results showed that the YFP fluorescence was observed in the nucleus of the
epidermal cells transfected with CpCZF1-nEYFP and CpCZF2-cEYFP, whereas no such fluorescence
was detected in the cells transfected with the negative construct pairs (Figure 8). The reconstituted
YFP was only observed in those cells with CpCZF1-nEYFP and CpCZF2-cEYFP, which indicates that
CpCZF1 could interact with CpCZF2 in tobacco cells.
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Figure 8. BIFC assays to confirm the interactions of CpCZF1 and CpCZF2. (a) the construct pair
CpCZF1-nEYFP and CpCZF2-cEYFP was used to detect the protein interaction in tobacco cells.
The construct pairs; (b–i) were used as negative controls; (b) CpCZF1-nEYFP and AtSZF1-cEYFP;
(d) nEYFP-CpCZF1 and AtSZF1-cEYFP; (f) CpCZF1-cEYFP and AtSZF1-nEYFP; (c) CpCZF1-nEYFP
and cEYFP-AtSZF1; (e) nEYFP-CpCZF1 and cEYFP-AtSZF1; (g) CpCZF1-cEYFP and nEYFP-AtSZF1;
(h) cEYFP-CpCZF1 and AtSZF1-nEYFP; (i) cEYFP-CpCZF1 and nEYFP-AtSZF1.

4. Discussion

C3H-type zinc finger proteins are characterized by a zinc finger motif consisting of the residues
of three cysteines and one histidine [18]. They exist in the wild in eukaryotic organisms, and a
genome-wide analysis of the C3H-type zinc finger genes in the plant revealed that there are 68, 67, 68,
91, 80, and 34 C3H-type zinc finger genes in Arabidopsis, Oryza sativa, Zea mays, Populus trichocarpa,
Solanum lycopersicum, and Medicago truncatula, respectively [20,44–47]. However, to date, very few of
these genes have been functionally characterized. In this study, two C3H-type zinc finger protein genes
which were differentially expressed in flower developmental stages [33] were isolated and functionally
characterized in transgenic Arabidopsis. Both CpCZF1 and CpCZF2 have one C-X7-C-X5-C-X3-H motif
and two C-X8-C-X5-C-X3-H motifs. These two kinds of motifs are the most common of the C3H-type
zinc finger motifs. In Arabidopsis, 44/42 out of 68 C3H type proteins contain C-X8-C-X5-C-X3-H
and C-X7-C-X5-C-X3-H motifs, while the number is 35/36 out of 67 in rice [44], and 32/29 out of
68 in corn, respectively [20]. In addition, CpCZF1 and CpCZF1 share a high sequence similarity
with their orthologues from Arabidopsis, Oryza sativa, Zea mays, and Populus trichocarpa, respectively.
Moreover, the phylogenetic analysis showed that CpCZF1 and CpCZF2 share a close relationship
with AtC3H14 and AtC3H15, which were found to have a function in flower development [28]. Thus,
CpCZF1 and CpCZF2 may share a similar biological function with their orthologues, possibly in
flower development.

The expression patterns of the C3H-type zinc finger protein genes show some consistency with
their functions. OsLIC was highly expressed in collar, adaxial cells and tillering primordia, and the
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suppression of endogenous OsLIC expression resulted in drastically increased leaf and tiller angles,
a shortened shoot height, and consequently reduced grain production in rice [21]. PEI1 was specifically
expressed throughout the embryo from the globular to late cotyledon stage, and further exploration
revealed that PEI1 plays an important role during Arabidopsis embryogenesis [48]. AtTZF4 and AtTZF5
were highly expressed in seeds and only at background levels in other tissues, and were found to be
involved in seed germination [25]. AtC3H14 and AtC3H15 were expressed all over the plants, but
were more highly expressed in the basal stems and anther, and have overlapping roles in second
wall thickening and anther development [28]. HUA1 RNA was detected throughout the plant, in
the root, stem, leaves, and inflorescences, and was more abundant in inflorescences than in other
tissues. Further studies also showed that HUA1 RNA was detected in the inflorescence meristem,
the inflorescence stem, and flowers of all stages; moreover, in the flower of each whorl, HUA1 RNA
was more concentrated in the petals, stamens, and carpels. Functional analysis uncovered that HUA1
regulates stamen and carpel identities in the AG pathway in Arabidopsis [14]. In this study, CpCZF1
and CpCZF2 were expressed throughout the plant, but were more highly expressed in the flowers than
in other tissues, and the expression pattern is similar to HUA1 in Arabidopsis. Furthermore, higher
transcripts levels of these two genes were found in the inner three whorls of the flower organs, which
also share some similarity with HUA1 [14]. In addition, CpCZF1 and CpCZF2 were also more highly
expressed in primordia differentiation stages than in the opening stages. All the results suggest that
these two genes may function in flower organ development.

Plant C3H-type zinc finger proteins are involved in multiple developmental processes,
including embryo development [48], secondary xylem formation [49], seed germination [25],
leaf senescence [22,23], and flower development [14,15,28,31]. In this study, CpCZF1 and CpCZF2,
both caused alterations on the stamens when overexpressed in the Arabidopsis plant, respectively,
which indicated that they may function in regulating flower development, especially stamen identity
specification in transgenic Arabidopsis. Furthermore, the overexpression of CpCZF1 and CpCZF2 in
Arabidopsis caused a reduction of the lateral stamen. Nonetheless, they also caused different alterations,
i.e., the transition of one lateral stamen to a partial petaloid; the stamens and carpels that developed
out of sync only occurred in the 35S:CpCZF1 plants, whereas staminodes were only observed in the
35S:CpCZF2 plants. These results indicate that CpCZF1 and CpCZF2 have the same function in stamen
identity, yet also retain noteworthy differences.

According to the floral quartet model, the identity of the floral organs is specified by quaternary
protein complexes composed of A-, B-, C-, D-, and E-function proteins [50,51]. It suggested that the
stamen is specified by the quartet of PI-AP3-SEP-AG. Moreover, the relative expression levels of the
A-function genes, which were repressors of AG, could also affect the stamen identity via affecting
the expression of AG. Therefore, the expression level of AG, SEP genes, AP3, PI, AP1, and AP2 were
analyzed in the inflorescence of WT and transgenic lines to investigate the possible causes of the
stamen development disruption in transgenic plants. In addition, considering the petaliod stamen
in the transgenic lines, the floral organ boundary genes, such as RBE and UFO, which play roles
in petal development [52–54], were also assayed. As shown in Figure 6a, the overexpression of
CpCZF1 in Arabidopsis caused the elevation of PI, AG, SEP1-3, AP1, AP2, and RBE—especially PI, SEP1,
SEP3, and RBE—which suggests that CpCZF1 may mainly act as a regulator of the PI, SEP, and RBE
genes. The overexpression of CpCZF2 in Arabidopsis up-regulated the expression level of all the genes
analyzed except SEP4, AP2, and UFO, but especially that of the E-function genes SEP1 and SEP3
(Figure 6b). The qRT-PCR results showed that the overexpression of CpCZF1 and CpCZF2 disturbed
the expression of the stamen identity-related genes. The abnormal stamens might not be directly
caused by the upregulation of one or two of the stamen identity-related genes. It’s probably that the
expression disturbance of a series of the related genes may affect the formation of the quaternary
protein complexes which thereafter results in the abnormal stamens in transgenic plants. The abnormal
flower organs and disturbed expression of stamen identity-related genes showed some similarities to
other genes. The overexpression of HoAGL6 in Arabidopsis caused abnormal flowerer organs including
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reduced stamen numbers, and gene expression analysis revealed that the expression of AG and SEP
was significantly elevated in transgenic plants [55]. The overexpression of CpAGL6 caused abnormal
stamens in Arabidopsis plants, and the expression of PI, AP3, AG, and SEP genes was upregulated [36].
Additionally, the Ectopic expression of PvMADS56 in Arabidopsis caused abnormal organs and the
loss of all stamens, and the expression of AP1, AP3, PI, and AG was downregulated [56]. However,
the up-regulation of these genes in OE-CpCZF1 and OE-CpCZF2 plants was very different from the
situation in hua-1 mutations in which the AG RNA was not affected [14]. These differences imply that
CpCZF1, CpCZF2, and HUA1 may affect the stamen identity specification by different ways.

The results of the yeast-two-hybrid assays and the BIFC experiment demonstrated that the
interaction of CpCZF1 and CpCZF2 could not only be observed in yeast, but also visualized in tobacco
cells. This interaction, to some extent, could give a possible explanation for the similar function of
these two genes. This is not rare for interaction proteins which have similar functions. wrky18, wrky40,
and wrky60 are three transcriptional factors that can interact with each other, and play an overlapping
role in plant responses to different types of microbial pathogens [57].

In conclusion, our results demonstrate that CpCZF1 and CpCZF2 are two C3H-type zinc finger
proteins which are located in the nucleus and which can interact with each other in vivo and in
plant cells. These two genes are highly expressed in the flower organs and in the petal and stamen
primordia differentiation stages of wintersweet. Additionally, both genes caused abnormal stamen in
transgenic Arabidopsis which likely function in regulating stamen identity-related genes. The functional
characterization of CpCZF1 and CpCZF2 could broaden our understanding of the roles that C3H-type
zinc finger genes play in plants, especially the reproductive roles played by their orthologs; these
findings also lend supplementary evidence for C3H-type zinc finger proteins in regulating flower
development, thereby expanding our understanding of flower development in wintersweet, and
possibly in other woody plants. To our knowledge, CpCZF1 and CpCZF2 were the first two C3H-type
zinc finger proteins to be identified and functionally characterized in wintersweet, even in other
species. Hence, more studies exploring the function of other orthologues need to be carried out.
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