SUPPLEMENTARY TABLES

Table 1. Case and control definition.

AMD Cases (n = 134)	Hospital-based controls (n = 134)		
65 years or older.	65 years or older.		
Any gender.	Any gender.		
With or without a family history of AMD.	No family history of AMD.		
AMD CARMS grades 4 or 5†.	No retinal changes suggestive of advanced		
No history of vitreoretinal procedures.	AMD by fundoscopy.		
No other concurrent retinal diseases.	Drusen less than 65 µm in diameter by		
	fundoscopy. #		

The presence of a few small hard drusen less than 65 μm in diameter is common and is no longer considered to be a risk factor for the development of age related maculopathy^{[31]}

Characteristic	Cases	Controls	p†	
	(n = 134)*	(n = 134)*	-	
Age (years), mean ± SD	76.7 ± 7.6	71.9 ± 8.1	<0.0001	
Age (years), n (%)			<0.0001	
[50 - 60)	0 (0.0)	7 (5.3)		
[60 – 65)	7 (5.2)	16 (12.0)		
[65 – 70)	18 (13.4)	28 (21.1)		
[70 – 75)	28 (20.9)	32 (24.1)		
[75 – 80)	30 (22.4)	29 (21.8)		
≥80	51 (38.1)	21 (15.8)		
Sex, n (%)			0.098	
Male	42 (31.3)	55 (41.0)		
Female	92 (68.7)	79 (59.0)		
Type 2 diabetes, n (%)	32 (24.4)	39 (30.5)	0.276	
Hypertension, n (%)	73 (54.5)	61 (47.3)	0.244	
Smoking history, n (%)			0.741	
Never	106 (79.7)	96 (81.4)		
Former or current	27 (20.3)	22 (18.6)		

Table 2. Description of the sample by case/control status (n = 268).

Stratified characteristics by case/control status. Statistically significant differences are shown in bold and were computed with Student's t-Test (Continuous variables) or χ^2 test (categorical variable). We excluded one subject from this analysis because of age (<50 years old).

* Numbers may not sum to totals due to missing data, and column percentages may not sum to 100% due to rounding.

+ P-value for Student's t-test (continuous variable) or χ^2 test (categorical variable).

^ One subject was excluded because of being younger than 50 years old.

In bold significant characteristics at the 0.05 level.

Characteristic [^]	N* (% with AMD)	OR (95% CI)	p*	
rs970476				
G/G	41 (30.6)	1.00		
G/T	63 (47.0)	1.02 (0.59, 1.79)	NS	
Γ/Τ	30 (22.4)	1.06 (0.54, 2.07)	NS	
rs931798				
G/G	51 (38.1)	1.00		
G/A	70 (52.2)	1.74 (1.04, 2.90)	0.034	
A/A	13 (9.7)	1.22 (0.52, 2.83)	NS	
rs140617				
A/A	97 (72.4)	1.00		
G/A	31 (23.1)	0.80 (0.46, 1.40)	NS	
G/G	6 (4.5)	1.42 (0.40, 5.78)	NS	
rs140616				
T/T	34 (25.4)	1.00		
T/C	70 (52.2)	1.01 (0.56, 1.82)	NS	
C/C	30 (22.4)	0.86 (0.43, 1.70)	NS	
Age(years)	_	1.08 (1.05, 1.12)	<0.000	
Sex				
Female	92 (68.7)	1.00		
Male	42 (31.3)	0.66 (0.40, 1.08)	NS	
Type 2 diabetes				
No	99 (75.6)	1.00		
Yes	32 (24.4)	0.73 (0.42, 1.28)	NS	
Hypertension				
No	61 (45.5)	1.00		
Yes	73 (54.5)	1.33 (0.82, 2.17)	NS	
Smoking history				
Never	106 (79.7)	1.00		
Former or current	27 (20.3)	1.11 (0.60, 2.08)	NS	

Table 3. Unadjusted associations between study variables and age-related macular degeneration (n = 268).

Bivariate associations between baseline characteristics and AMD diagnosis (0–No, 1–Yes AMD). For genetic data, we assumed a genotypic mode of inheritance. Such models follow: $log(OR_{AMD}) \sim (AA_{00})$

 $SNP\begin{pmatrix}AA_{00}\\Aa_{01}\\aa_{10}\end{pmatrix}$ + \in where: AA is the most frequent allele in our population, taken as reference. We considered

statistically significant predictors of odds of disease those whose p-value < 0.05.

* Numbers may not sum to total due to missing data.

+ p-value for β significance

NS: not significant at the 0.05 level.

[^]We took the most common allele for each case and set it as reference. Effects displayed first as those of the intercept for each model.

~ One subject was excluded because of being younger than 50 years old.

In bold significant predictors at the 0.05 level.

Characteristic*	Geographic atrophy OR (95% CI)	p ⁺	Neovascular OR (95% CI)	P ⁺	
rs931798^					
G/G	1.00		1.00		
G/A	1.82 (1.03, 3.21)	0.038	1.41 (0.67, 2.98)	NS	
A/A	1.27 (0.50, 3.22)	NS	1.13 (0.33, 3.86)	NS	
Age(years)	1.08 (1.04, 1.12)	<0.0001	1.09 (1.04, 1.14)	< 0.0001	
Sex					
Female	1.00		1.00		
Male	0.70 (0.40, 1.21)	NS	0.54 (0.25, 1.18)	NS	
Type 2 diabetes					
No	1.00		1.00		
Yes	0.65 (0.35, 1.22)	NS	0.86(0.39, 1.92)	NS	
Hypertension					
No	1.00		1.00		
Yes	1.39 (0.81, 2.38)	NS	1.23 (0.61, 2.5	NS	
Smoking history					
Never	1.00		1.00		
Former or current	1.32 (0.67, 2.56)	NS	0.77 (0.29, 2.04)	NS	

Table 4. Unadjusted associations between study variables and age-related macular degeneration phenotype (n = 268).

Bivariate associations between baseline characteristics and AMD phenotype (either 1–GA, 0–else; or 1–NV, 0–else). For genetic data, we assumed a genotypic mode of inheritance. Such models follow: $log(OR_{AMD \ phenotype}) \sim SNP\begin{pmatrix}AA_{00}\\Aa_{01}\\aa_{10}\end{pmatrix} + \epsilon$ where: AA is the most frequent allele in our population, taken as reference. We considered statistically significant predictors of odds of disease those whose p-value < 0.05.

+ p-value for β significance

NS: not significant at the 0.05 level.

*Controls or non-diseased phenotype are set as reference for all multinomial logistic regression models.

^We took the most common allele and set it as reference.

In bold significant predictors at the 0.05 level.

#	SNP 1	SNP 2	SNP 3	SNP 4	Pooled HF	Control HF	Case HF	OR (95% CI)	p*
1	G	Α	Т	Т	0.022	0.039	0.006	0.14 (0.02, 0.93)	0.011
2	А	G	Т	Т	0.012	0.019	0.005	0.21 (0.02, 2.04)	0.216
3	G	А	С	Т	0.099	0.107	0.089	0.82 (0.44, 1.51)	0.428
4	А	А	Т	G	0.017	0.022	0.012	0.62 (0.16, 2.41)	0.530
5	G	А	Т	G	0.022	0.022	0.021	1.00 (0.27, 3.75)	0.754
6	G	А	С	G	0.378	0.384	0.375	1.00 (NA, NA)	0.896
7	G	G	Т	G	0.114	0.114	0.115	0.97 (0.52, 1.81)	0.956
8	G	G	Т	Т	0.025	0.023	0.027	1.84 (0.42, 7.98)	0.857
9	А	А	Т	Т	0.293	0.257	0.329	1.31 (0.84, 2.02)	0.084

Table 5. Unadjusted haplotypes of four SNPs with AMD (n = 268).

Haplotype configurations of SNPs in the SGCD gene. We show their frequency (HF) in the full sample (Pooled HF) and stratified by case/control status. Also, bivariate associations between a haplotype configuration (#) and AMD diagnosis using logistic regression modeling.

SNP1: rs931798, SNP2: rs140617, SNP3: rs140616, SNP4: rs970476.

Four single-nucleotide polymorphism (SNP) haplotype configuration.

+ p-value for haplotype $\chi 2$ test evaluated at the 0.05 level.

HF: Haplotype frequency among cases, controls, and full study sample (pooled).

NA: Not able to calculate by this method.

In bold significant haplotypes at the 0.05 level.