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Abstract: Among the various statistical methods for identifying gene–gene interactions in qualitative
genome-wide association studies (GWAS), gene-based methods have recently grown in popularity
because they confer advantages in both statistical power and biological interpretability. However,
most of these methods make strong assumptions about the form of the relationship between traits
and single-nucleotide polymorphisms, which result in limited statistical power. In this paper,
we propose a gene-based method based on the distance correlation coefficient called gene-based
gene-gene interaction via distance correlation coefficient (GBDcor). The distance correlation (dCor) is
a measurement of the dependency between two random vectors with arbitrary, and not necessarily
equal, dimensions. We used the difference in dCor in case and control datasets as an indicator of
gene–gene interaction, which was based on the assumption that the joint distribution of two genes
in case subjects and in control subjects should not be significantly different if the two genes do not
interact. We designed a permutation-based statistical test to evaluate the difference between dCor
in cases and controls for a pair of genes, and we provided the p-value for the statistic to represent
the significance of the interaction between the two genes. In experiments with both simulated and
real-world data, our method outperformed previous approaches in detecting interactions accurately.

Keywords: genome-wide association studies; qualitative trait; gene–gene interaction; distance
correlation coefficient

1. Introduction

Genome-wide association studies (GWAS) are a well-established and effective method of identifying
genetic loci associated with common diseases or traits, and they have identified over 65,000 unique
single-nucleotide polymorphisms (SNPs) that are associated with various traits or diseases [1–5]. Earlier
GWAS analysis strategies were based largely on single-locus models, which tested the association
between individual markers and a given phenotype independently. Although this type of approach
has identified many regions of disease susceptibility successfully, most of the SNPs that have been
identified have small effect sizes that failed to account fully for the heritability of complex traits. Genetic
interaction has been hypothesized to play an important role in the genetic basis of complex diseases and
traits, [6,7], and it has been one of the possible solutions to the problem of “missing heritability” [8–10].
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Even if genetic interaction explains only a tiny fraction of “missing heritability”, it can still provide some
biological insight into the pathway by aiding the construction of novel gene pathway topologies.

The first investigations on genetic interactions were at the SNP level, in which various
statistical methods, which included logistic regression [11–13], odds-ratio [14], linkage disequilibrium
(LD), [15–17], and entropy-based statistics [18,19], were employed to detect SNP–SNP interactions
(i.e., epistasis). Other techniques that have been used to study SNP–SNP interactions include
multifactor dimensionality reduction (MDR) [20], Tuned RelieF (TuRF) [21], Bayesian epistasis
association mapping (BEAM) [6], Tree-based epistasis association mapping (TEAM) [22], Boolean
operation-based screening and testing (BOOST) [23], and permutation-based Random Forest (pRF) [24].
These marker-based methods have encountered some common challenges, such as the complexity that
arises from the large number of pairwise or higher-order tests because all pairs or groups of SNPs
have to be considered and because of the extensive multiple testing correction, which weakens their
statistical power. In this paper, we aim to improve the power of the detection of gene–gene interactions
by moving beyond the SNP level and, instead, consider all potential pairs of SNPs from each of a pair
of genes in a single, gene-based, interaction detection.

In the study of the main (marginal) associations in GWAS, gene-based approaches have been
successful, and therefore, it might be worth extending it to the analysis of interaction between genes.
There are several potential advantages of this approach. First, it can reduce the number of pairwise
tests substantially, because there are usually many fewer genes than SNPs. For example, detection
of pairwise, gene-based interactions for 20,000 genes requires ∼2× 108 tests, but for three million
SNPs, the marker-based interaction tests require more than ∼5× 1012. Second, gene-based approaches
might have greater statistical power, because a gene contains more information than a single SNP
and because there might be multiple ways for genes to interact with each other that are aggregated;
this is also true when doing a gene-based study for main effects [25,26]. Third, it might be easier
to incorporate prior biological knowledge with this approach (e.g., information on protein–protein
interactions (PPI) or known membership of genes in pathways). Finally, the results of gene-based
analysis may have more meaningful biological implications and be more interpretable.

In the work of Peng et al. [27], canonical correlation between two genes was performed on both
the case and the control groups. A U-statistic called canonical correlation-based U statistic (CCU)
was used to measure the difference in the correlation between these two genes, which was used to
indicate the presence of interaction. A limitation of this method was that in the correlation analysis,
only linear relations were considered. To overcome this limitation, Yuan et al. [28] and Larson et al. [29]
extended CCU to kernelized CCU (KCCU), where the canonical correlation analysis was kernelized
to account for possible non-linearity. Li et al. [30] introduced another method called the gene-based
information gain method (GBIGM), which was entropy-based and non-parametric. More recently,
Emily [31] developed a new method called gene-based gene-gene interaction test(AGGrEGATOr),
which combined the p-values in marker-level interaction tests to measure the interaction between two
genes. Earlier, this strategy was used successfully by Ma et al. [32] for the detection of interaction for
quantitative phenotypes.

In this paper, we propose a novel method to identify gene-level, gene–gene interactions
among case control studies of complex phenotypes based on the distance correlation coefficient
called gene-based gene-gene interaction via distance correlation coefficient (GBDcor). Distance
correlation [33–35] quantifies all types of dependent relationships between two random vectors with
arbitrary, but not necessarily equal, dimensions, which is better than Pearson’s correlation, which only
focuses on the linear relationship. Distance correlation has already been used in bioinformatics to detect
co-expression genes [36] and imaging genetics associations [37]. We use the difference in dependence
relationships between case samples and control samples as an indicator of gene–gene interaction,
which is based on the assumption that the joint distribution of two genes in case subjects and in control
subjects should not be significantly different if the two genes do not interact (i.e., independent) under
the case-control status. Experiments on semi-empirical data showed that the distance correlation with
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permutation strategy yielded better power to detect underlying gene-based gene–gene interactions in
a large range of settings, and the application to real datasets verified that GBDcor identified gene–gene
interactions accurately.

2. Materials and Methods

In this section, we detail the statistical procedure for GBDcor. We then present the various settings
for semi-empirical simulation studies for the type-I error rate and for the power to detect gene–gene
interaction. Finally, we describe a real rheumatoid arthritis dataset from the wellcome trust case control
consortium (WTCCC) database to evaluate our method in a real situation.

2.1. GBDcor

2.1.1. Preliminaries and Notation

Suppose that we have random samples:

(G1,i, G2,i) ∈ Rp+q, i = 1, 2, ..., n

where:
G1,i = (g1,i,1, g1,i,2, ..., g1,i,p), G2,i = (g2,i,1, g2,i,2, ..., g2,i,q), i = 1, 2, ..., n

where G1 and G2 represent genes with p and q SNPs, respectively. gk,i,j ∈ {0, 1, 2} is the number
of copies of the minor allele for SNP j in gene k of sample i. We focus on the case-control data
that yi ∈ {0, 1} is a categorical label, where 1 represents case subjects and 0 represents control
subjects. Here, G1 and G2 are assumed to take values in {0, 1, 2}p and {0, 1, 2}q, respectively, where
(G1,i, G2,i) ∈ {0, 1, 2}p+q, i = 1, 2, ..., n, is a random sample from the joint distribution of (G1, G2).

In this work, to investigate whether there is a statistical interaction between two genes in a
qualitative phenotype, we combine the distance correlation with the permutation strategy to test
whether two genes interact. Our approach is based on the intuition that, if there is no interaction
between two genes, then, if they are independent of the case set, then they should be independent of
the control set; if they are dependent on the case set, they should be dependent on the control set also,
and the “strength” of such dependence should be the same on the case and control set. The degree
of dependence between two random variables can be measured by Pearson’s correlation coefficients.
However, it can only measure linear dependency and not nonlinear dependency, and it is not very
convenient for random variables that take a value inRn; hence, we propose measuring them by the
distance correlation coefficient instead.

2.1.2. Distance Correlation

Let X and Y be two random variables in Rn with finite first moments, then their distance
covariance, denoted by dCov(X, Y), and distance correlation coefficients, denoted by R2(X, Y),
are defined in ([33]). They satisfy the following properties:

• R(X, Y) is defined for X and Y in arbitrary dimensions.

• R2(X, Y) = dCov2(X,Y)√
dCov2(X,X)dCov2(Y ,Y)

• R(X, Y) = 0 if and only if X and Y are independent.
• 0 ≤ R(X, Y) ≤ 1

The proofs can be found in [33]. In particular, Property 4 above tells us that the distance correlation
can be used to measure the degree of dependency between two random variables.

If there are n samples (Xi, Yi), i = 1, ..., n, according to [33], the distance covariance and distance
correlation can be estimated by the sample distance covariance and sample distance correlation, which
we will describe below.
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Let Ai,j, Bi,j be the centered distance matrix of the samples Xi, Yi. In other words,

Ai,j = |Xi − Xj| −
1
n ∑

k
|Xk − Xj| −

1
n ∑

l
|Xi − Xl |+

1
n2 ∑

k,l
|Xk − Xl | (1)

Bi,j = |Yi −Yj| −
1
n ∑

k
|Yk −Yj| −

1
n ∑

l
|Yi −Yl |+

1
n2 ∑

k,l
|Yk −Yl | (2)

Then, the sample distance covariance is defined as:

dCov2
n(X, Y) =

1
n2 ∑

i,j
Ai,jBi,j (3)

and the sample distance correlation coefficient is:

R2
n(X, Y) =

dCov2
n(X, Y)√

dCov2
n(X, X)dCov2

n(Y , Y)
(4)

2.1.3. dCor with Permutation Strategy

Assume there are n1 cases and n2 controls in a case-control study for a pair of genes G1 with p
SNPs and G2 with q SNPs. Let dCorn = R2

n(G1, G2) be the sample distance correlation between
Gene 1 and Gene 2 for a subsample of size n. First, we calculate the dCorC

n1
= R2

n1
(GC

1 , GC
2 ),

dCorD
n2

= R2
n2
(GD

1 , GD
2 ). Second, we design a statistic 4dCor =

|dCorC
n1
−dCorD

n2
|

dCorD
n2

to measure the

difference in distance correlations between cases and controls. This represents how different the
two joint distributions (GC

1 , GC
2 ) and (GD

1 , GD
2 ) are. The larger the4dCor, the higher the probability

that Gene 1 and Gene 2 interact.
Because we have no information about the distribution of our designed statistic, it is difficult

to use a conventional parametric test to do the statistical inference. Therefore, we apply the
permutation strategy to estimate the significance of gene–gene interaction. During the permutation
test, we rearrange label y to generate a new random case and control label, calculate4dCor, construct
the empirical distribution, and estimate the p-value. We do the permutation m times and get
4dCor1,4dCor2, ...,4dCorm. The statistic for the original dataset is4dCor0

Here, the null hypothesis and the alternative hypothesis are defined as follows:

H0 : 4dCori has the same distribution

H1 : 4dCor0 has a distribution different from the other 4 dCori (5)

After the permutation, the random samples follow the null hypothesis H0. According to m
statistics from random permutation samples, we can derive the sampling distribution (i.e., empirical
distribution) for the statistic4dCor following the null hypothesis H0.

We count the number of statistics4dCori that are equal to or greater than4dCor0.

num =
m

∑
i=1

I(4dCori ≥ 4dCor0)

I(4dCori ≥ 4dCor0) =

{
1,4dCori ≥ 4dCor0

0,4dCori < 4dCor0 (6)

Then, we estimate the p-value by:

p =
num

m
(7)
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The framework for GBDcor is described in Algorithm 1.

Algorithm 1: GBDcor
Data: Genotype G1, G2, phenotype y, permutation times m
Result: significance p-value for interaction between G1, G2

Calculate dCorC
n1

and dCorD
n2

for both (GC
1 , GC

2 ) and (GD
1 , GD

2 ) by Equation (4);
Calculate the difference4dCor between dCorC

n1
and dCorD

n2
;

for i = 1 to m do
Permute the y label, and generate new dataset;
Repeat Steps 1 and 2;

end
Estimate p-value of4dCor

2.2. Simulation Study

To evaluate the power to detect gene–gene interaction and the ability to control the type-I error
rate of GBDcor, we compared GBDcor with three existing techniques: kernel canonical correlation
analysis (KCCA) [28,29], the gene-based information gain method (GBIGM) [30], and gene-based
gene-gene interaction test (AGGrEGATOr) [31].

2.2.1. Simulation Based on Haplotype Population

Here, we used gs2.0 to generate the simulation data. gs2.0 [38] takes haplotypes as input,
then generates dense SNP genotype data for case-control samples that share similar local linkage
disequilibrium (LD) patterns as those in human populations. By varying the odds ratio (OR),
population prevalence, and sample size, it can generate different disease models. To mimic the
real LD structure in a human population, we selected the U.S. Utah residents with ancestry from
Northern and Western Europe from the CEPH collection (CEU population) of Hapmap3 (https:
//www.sanger.ac.uk/resources/downloads/human/hapmap3.html) as template haplotype data. The
CEU dataset contains 90 haplotypes. In this study, we chose two gene loci randomly, GNPDA2 on
chromosome 4 and FAIM2 on chromosome 12. We imputed chromosome 4 and chromosome 12 using
the genipe module, which is a genome-wide imputation pipeline that uses Plink, shapeit, and impute2,
with the 1000 Genome Project phase3 data as reference data. After imputation, we got 6 SNPs in
GNPDA2 and 7 SNPs in FAIM2 (Table 1 Figure 1).

Table 1. Detailed information about GNPDA2 and FAIM2 used in a study of gene–gene interaction.
Shown are the rsID (rs number used by researchers and databases to refer to specific SNPs)and physics
position of each SNP on each gene.

Index
SNP Name: Position

GNPDA2 (chr4) FAIM2 (chr12)

1 rs16857402:44706453 rs17201502:50285562
2 rs2709:44706913 rs905619:50286055
3 rs10020551:44707815 rs637871:50287592
4 rs4484337:44711547 rs1027711:50288032
5 rs12643262:44714455 rs956864:50290023
6 rs7670601:44715341 rs640081:50290554
7 rs707695:50297670

https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
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Figure 1. Linkage disequilibrium (LD) patterns of GNPDA2 and FAIM2 used in simulation studies.
Figures are LD plots produced using Haploview. GNPDA2 has 6 SNPs, and FAIM2 has 7 SNPs. The
number in each square is the LD strength that was measured by r2, where 0 ≤ r2 ≤ 1, 0 means no LD,
and 1 means complete LD.

2.2.2. Disease Model

A disease model is a model that expresses the relationship between genes and the disease.
Here, we considered two-locus disease models. We take a jointly recessive-recessive model as an
example. Suppose population prevalence is p and the genotype odds ratio is (1 + θ) for each locus
(Table 2).

Table 2. Odds table of the recessive-recessive model.

SNP1
SNP2

BB Bb bb

AA γ γ γ
Aa γ γ γ
aa γ γ γ(1 + θ)

Let Pr(D|gi) denote the probability of a sample being affected given the genotype gi (i.e., the
penetrance of gi), and let Pr(D̄|gi) denote the probability of a sample not being affected given genotype
gi. Therefore, the odds of a disease can be written as follows:

ODDgi =
Pr(D|gi)

Pr(D̄|gi)
=

Pr(D|gi)

1− Pr(D|gi)
(8)

The penetrance of genotype gi can be calculated:

Pr(gi) =
ODDgi

1 + ODDgi

(9)

Table 3 is the corresponding penetrance table for Table 2.
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Table 3. Penetrance table of the recessive-recessive model.

SNP1
SNP2

BB Bb bb

AA γ
1+γ

γ
1+γ

γ
1+γ

Aa γ
1+γ

γ
1+γ

γ
1+γ

aa γ
1+γ

γ
1+γ

γ(1+θ)
1+γ(1+θ)

Once the population prevalence p and the genotype odds ratio (1 + θ) are fixed in this model,
we can calculate the baseline value γ, which represents the odds of disease when the two loci do not
carry any disease alleles, by using the following formula and the terms in Table 3.

p = Pr(D) = ∑ Pr(D|gi)× Pr(gi) (10)

We used eight build-in disease models in gs2.0, which included an additive-additive model,
recessive-recessive model, threshold model, XOR model, dominant-dominant model, multiplicative
model, recessive-dominant model, and a special interaction model. By varying population prevalence,
odds ratio, and sample size, we generated different datasets to perform a comparative analysis of
AGGrEGATOr, KCCU, and GBIGM.

Type-I error: Type-I error is the probability of rejecting the null hypothesis when the null
hypothesis is true. In this paper, we set the significance level at α = 0.05. We performed the simulation
100 times with each sample size n ∈ {1k, 2k, 3k, 4k, 5k}, by setting the odds ratio at 1.

Power: The power of a statistical test is the probability that it rejects the null hypothesis correctly
when the alternative hypothesis is true. In this paper, we ran the simulations 100 times for each
parameter combination. The power for each parameter combination is the frequency of rejection of the
null hypothesis in the dataset when the alternative hypothesis is true under the significance level of
α = 0.05. To evaluate the effect of the odds ratio, we varied the odds ratio OR ∈ {1.5, 2, 2.5, 3, 3.5, 4}
with population prevalence at p = 0.01 and a sample size of k = 4000 (2000 cases and 2000 controls).
To evaluate the effect of sample size, we choose n ∈ {1k, 2k, 3k, 4k, 5k} with an odds ratio of OR = 2
and population prevalence of p = 0.01.

For GBDcor, AGGrEGATOr, KCCU, and GBIGM, if the number of datasets with a p-value less
than α was m1, the power was calculated by:

power =
m1

100
(11)

For GBDcor, AGGrEGATOr, and GBIGM, we used a nonparametric method with no parameter
specified. For KCCU, we set the ratio for a trimmed jackknife at 0.05 (ω = 0.05).

2.3. Application with Rheumatoid Arthritis Data

To assess the capacity of GBDcor to deal with real gene–gene interaction of a case-control dataset,
we investigated the susceptibility of a set of pair of genes in rheumatoid arthritis (RA), which is a
chronic, autoimmune joint disease where persistent inflammation affects bone remodeling and results
in progressive bone destruction. We used the WTCCC (2007) dataset, which was genotyped in a British
population using the Affymetrix GeneChip 500k.

To verify our method, we constructed our dataset in the following ways:

(1) We wanted to verify some gene–gene interaction in the RA pathway hsa05323 in the KEGG
pathway dataset. Genotyping coordinates are given in NCBI Build36/UCSC hg18 (National
Center for Biotechnology Information, Bethesda, MD, USA). There is a total of 90 genes in this
pathway. Because MHCII and V-ATPase are two protein combinations with many interactions
within themselves, we only chose a representative gene from each of them and excluded other
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genes. After that, 48 genes were left. Each unique gene pair was evaluated, which resulted in a
total of (48

2 ) = 1128 pairs for those genes.
(2) We obtained gene information from the NCBI Build36 annotation file. For each gene, 10 kb of

buffer region were added both upstream and downstream of the defined gene location. All SNPs
between the regions were considered.

(3) Based on the quality control provided by GWAS, we removed samples where the reported sex
did not match the heterozygosity rates observed on chromosome X. We also excluded an SNP if
its minor allele frequency (MAF) was <0.05, if its missing rate was >10% of the samples, or if its
frequencies in the control were not in Hardy–Weinberg equilibrium (p < 0.0001). After filtering,
there were 385 SNPs left in 4966 samples, which consisted of 1973 cases and 2993 controls.

3. Results

3.1. Simulation Study

3.1.1. Type-I Error

After we set the significance level at α = 0.05, changing the sample size gradually resulted in
type-I errors for all the methods that were close to the significance level for most sample size settings
(Table 4), except for GBIGM at n = 1k. The type-I error was controlled by these methods with different
sample sizes with no effects.

Table 4. Type-I error of the four methods in different sample sizes. AGGrEGATOr, a gene-based gene
gene interaction; GBDcor, gene-based gene-gene interaction via distance correlation coefficient GBIGM,
gene-based information gain method; KCCU, kernelized CCU.

Method
Sample Size

1k 2k 3k 4k 5k

AGGrEGATOr 0.05 0.06 0.07 0.04 0.02
GBDcor 0.05 0.03 0.04 0.04 0.06
GBIGM 0.13 0.06 0.07 0.07 0.07
KCCU 0.02 0.02 0.01 0.05 0.07

3.1.2. Power

The effect of the odds ratio: We assessed the performance in detecting gene–gene interaction
under eight disease models. The curves were constructed while varying the odds ratio (OR ∈
{1.5, 2, 2.5, 3, 3.5, 4}) with population prevalence set at 0.01 and sample size set at 4k (Figure 2). Notice
that a larger power indicated better performance. For this experiment, we chose one pair of SNPs
belonging to different genes randomly to be causal to generate the simulated dataset. We considered
the two genes that contain the SNPs to be interacting. The performance of all methods improved when
OR became larger, and the power tended to be one for some methods at OR = 4. Among them, GBDcor
was the best, except for the additive-additive model (AA model). GBIGM showed the best performance
under this model; however, it has been declared that GBIGM had a fatal inflation problem under
this disease model. We also noticed that for the recessive-recessive model (RR model), when the OR
value changed gradually from 1.5–4, the power was consistently ≤ 20%. AGGrEGATOr reached 40%,
and GBDcor was approximately 60%. According to the penetrance table for the recessive-recessive
model (Table 3), when we set population prevalence p = 0.01, the baseline γ was a very small number.
Therefore, among nine genotypes, eight of them tended to be zero. The only genotype (aabb) that was
causal consisted of two minor alleles. Usually, the minor allele frequency of SNP was 0.2–0.4, which
caused the genotype (aabb) to emerge only barely in the simulation dataset. Therefore, it was difficult
to see any difference between cases and controls. That is, these methods showed poor performance
under this model.



Genes 2018, 9, 608 9 of 14

The effect of sample size: Next, we explored the impact of sample size. We set sample size
n ∈ {1k, 2k, 3k, 4k, 5k} with OR = 2 and p = 0.01 (Figure 3). With increasing sample size, the power
of all the methods increased monotonically under all disease models, except the RR model. Other
than GBIGM, GBDcor performed much better than KCCU or AGGrEGATOr under the AA model.
The power of GBDcor reached 60%, but the other two methods were ≤ 30%. For all methods, larger
sample size led to better performance.

Figure 2. Empirical, simulation-based statistical power of GBIGM, KCCU, AGGrEGATOr, and GBDcor
under eight disease models, after varying the OR ∈ {1.5, 2, 2.5, 3, 3.5, 4}.
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Figure 3. Empirical, simulation-based statistical power of GBIGM, KCCU, AGGrEGATOr, and GBDcor
under eight disease models, after varying the n ∈ {1k, 2k, 3k, 4k, 5k}.

GBDcor performed better than alternative methods for almost the entire range of settings that
we used. The benefits of using distance correlation to learn the dependence relationship of two genes
in cases and controls were pronounced in the gene–gene interaction detection scenario. For example,
we were able to design a statistic to represent the degree of difference of the two distance correlation
coefficients and to apply a permutation to find the empirical distribution of our designed statistic.
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3.2. Application Using Rheumatoid Arthritis Data

Rheumatoid arthritis (RA) is an autoimmune synovitis characterized by the formation of panus
and destruction of cartilage and bone in synovial joints. TNF-α, IL-6, IL-17, MMPs, and RANK are
some of the main players in the development of RA [39]. For the RA study of the hsa05323 pathway,
we obtained 1128 pairs of genes to evaluate. For our method, we did permutation m = 1000 times.
Using a significance level of α = 0.01, KCCU and GBIGM obtained 159 and 134 significant gene–gene
interaction (GGIs), respectively. Thirty and 65 had a p-value equal to zero, respectively. AGGrEGATOr
had 17 significant GGIs, and GBDcor had 18 significant GGIs.

Because GBIGM and KCCU had too many pairs, we were unable to analyze all of them.
We selected the top 10 in GBDcor and in AGGrEGATOr for analysis. Then, we listed the p-value for
each of the 20 pairs of genes for each of the methods (Table 5). We found seven of 10 results for GBDcor
in the literature that supported our results, and we found two of 10 for AGGrEGATOr that did so.
The column ‘Ref’ in Table 5 gives the references for the literature evidence that show direct interaction
between two genes. We also observed that there were more intersections among GBDcor, KCCU, and
GBIGM than among AGGrEGATOr, KCCU, and GBIGM.

Table 5. The p-values of the gene pairs detected to interact from different methods. The p-values with
bold font mean they are significant

Gene1 Gene2 Ref
p-Value

GBDcor AGGrEGATOr KCCU GBIGM

AP-1 M-CSF ref [40] 0 0.0679 0.001 0
CXCL12 FLT-1 0 0.59 0.152 0
GM-CSF VEGF ref [41] 0.001 0.284 0.005 0.545

CTSK VEGF 0.002 0.873 0.028 0.47
CTLA4 TLR2 0.002 0.152 0.057 0.008
CXCL1 RANK ref [42–44] 0.002 0.024 0.147 0.697

IL15 MMP-3 ref [45] 0.002 0.066 0.167 0.088
GM-CSF AP-1 ref [46,47] 0.002 0.394 0.001 0.027

CD86 APRIL ref [48] 0.003 0.637 0.03 0.655
TGFβ VEGF ref [40] 0.005 1 0.029 0.632
CD80 APRIL ref [48] 0.865 0.0006 0.941 0.334
CTSK BLyS 0.298 0.0008 0.356 0.056
AP-1 IL-6 0.24 0.0018 0.098 0.287
CD80 CTSL 0.094 0.0019 0.519 0.252

CXCL6 FLT-1 0.441 0.0023 0.004 0.52
CTLA4 AP-1 0.075 0.0023 0.042 0.102

FLT1 LFA-1 0.645 0.0031 0.063 0.028
CCL3 TRAP 0.746 0.0032 0.682 0
IL-18 TGFβ 0.841 0.0036 0.149 0.22
IL-1 SDF-1 ref [49] 0.618 0.004 0.116 0.636

4. Conclusions

Case-control datasets are common and important in research in medicine and evolutionary
biology. In this paper, we developed a gene-based, gene–gene interaction detection algorithm called
GBDcor that was based on distance correlation coefficients and a permutation strategy for GWAS on
case-control datasets. The method benefits from the ability of distance correlation coefficients, which
can detect nonlinear models, and the robustness of our hypothesis testing scheme, which is based on
permutation and is non-parametric.

As a consequence, GBDcor was able to detect interpretable gene–gene interaction more accurately
and effectively compared to other methods. We demonstrated such effectiveness through a
semi-empirical simulation study and retrospective analysis of rheumatoid arthritis. Under a large
range of settings, GBDcor outperformed previous methods in the power of detecting gene–gene
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interaction. The method was also stable to sample size based on a test of false positive rates. The
distance correlation had no limitation on the dimension of two random vectors. Therefore, it is possible
to generalize the method for pairwise, marker-based detection of gene pairs that were identified as
interactive. Investigating the mechanism of gene-level interaction at the marker-level might be a
direction for further research. In summary, GBDcor is a useful addition to the current toolbox of
statistical models for unraveling gene–gene interaction in case-control studies.
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