Supplementary Material for Biofilm Formation by the Acidophile Bacterium *Acidithiobacillus thiooxidans* Involves c-di-GMP Pathway and Pel exopolysaccharide

Mauricio Diaz, Matias Castro, Sylvia Copaja and Nicolas Guiliani

Strains		Description 1			
Acidithiobacillus thiooxidans					
	ATCC 19377	Type strain, Wild Type			
ATCC 19377-∆pelD		This work: ATCC 19377, <i>pelD::kan,</i> Kan ^R			
<u>Escherichia coli</u>					
	JM109	Amplification of pGEM-T Easy constructions			
	LMG194	Reservoir of pBAD24			
	HB101	Strain for conjugation			
<u>Salmonella enterica serovar Typhimurium</u>					
	UMR1	WT			
	AdrA1f	UMR1 $\Delta a dr A$, Kan ^R			
	MAE282	UMR1 $\Delta yciR$, Cm ^R			
Plasmids					
	pGEM-T Easy	IPTG-inducible amplification vector, Amp ^R			
pBAI	pBAD24	Arabinose-inducible expression vector, Amp ^R			
pOT pSKM2		Suicide plasmid, Amp ^R			
		Source of <i>kan</i> gene, Kan ^R			
pOT- <i>pelD</i>	pOT- <i>pelD</i>	pOT with cloned <i>pelD</i> gene, Amp ^R			
	pOT-pelD::kan ^R	Suicide plasmid for <i>At. thiooxidans</i> , Amp ^R ,			
		Kan ^R			
pR388		Helper plasmid, Tmp ^R			

Table S1. Strains and plasmids used in this work.

¹ Amp^R, Kan^R, Cm^R and Tmp^R mean Ampicillin, Kanamycin, Chloramphenicol and Trimetropin resistance, respectively.

Table S2. Primers used in this work

Name	Sequence 5'-3' 1
pelA1_F	CCGATTGCCGCAGTTATTTATT
pelA1_R	GCTGTCTTGATGGCTTTGATG
pelD_F	CACAAGTTGGCATCCTGGTTCGTT
pelD_R	CATGCTGCCTGCGAAAGGTAACAA
16S-F3	ATGGCCTTTATGTCCAGGGCTACA
16S-R3	AATCCGAACTACGACGCGCTTTCT
Ath_map_f	GGACCGGATTTGTCACGATTA
Ath_map_r	GACGTGGTTGAGGGAAATACA
BcsAF	TTGTGACCACATACCAACCAGGGA
BcsAR	TGGGCCTCTTGGCATATCCAGATT
AtthioxUDP F	GAACTTGTCAATGCGCCATC
AtthioxUDP R	GGCCAGCAATAAATCCTGAATAC
Τ7	AATACGACTCACTATAG
SP6	ATTTAGGTGACACTATAG
pelD5'-F	ACC <u>GAGCTC</u> AGGAATCTTGATTCCCATTTTG
pelD5'-R	ACC <u>AAGCTT</u> AAATATTTCCAGGCTCCGTATCTC
pelD3'-F	ACC <u>CCCGGG</u> TGATTTTCATACTGGTCCTTATG
pelD3'-R	ACC <u>TCTAGA</u> GCATTCAAGTTTATCAGTAATTC
KanR_div_5'	GCTTTCTACGTGTTCCGCTTC
KanR_div_3'	TCTATGAAAGGTTGGGCTTC
pOTsec_F	CAGCTATGATGCAGGCAAAC
pOTsec_R	CAGTGAGCGCAACGCAATTA
ATT_F	GGGTGCTAATANCGCCTGCG
907R	CCGTCAATTCMTTTGAGTTT
probe_ <i>At_pelD_</i> F	CCACCCGCTTTCGACAATTA
probe_ <i>At_pelD_</i> R	CAGGATGCCAACTTGTGGTA
probe_Kan_R_F	GCTTACATGGCGATAGCTAGAC
probe_Kan_R_R	GAACTCGTCAAGAAGGCGATAG
AthiA1_00157/FN	ACC <u>GCTAGC</u> TAAGGAGGCGAGATCATGGGTGCCTGGC
AthiA1_00157/RH	ACC <u>AAGCTT</u> CAATGATGATGATGATGATGATGGTTTCTGGGCTGTAAACGCATAGCC
AthiA1_07018/FN	ACC <u>GCTAGC</u> TAAGGAGGGGAAAGCATGTCCAGTCCATTC
AthiA1_07018/RP	ACC <u>CTGCAG</u> TCAATGATGATGATGATGATGATGACTGTCGCTTTCAGGATGAATG
24-7 F/NheI	ACC <u>GCTAGC</u> TAAGGAGGCCCATCCATGGGCGTTTCTCTA
24-7 R/HindIII	ACC <u>AAGCTT</u> CAATGATGATGATGATGATGATGAGGCTTGTAGGGGGCGTATCC
AthiA1_08189/FN	ACC <u>GCTAGC</u> TAAGGAGGCATCATAATGCTTATTGAAGCTTTTTTGCCG
AthiA1_08189/RS	ACC <u>GCATGC</u> TCAATGATGATGATGATGATGATGATGTGCAGCACTCCCAGTAGCT
AthiA1_08219/FN	ACC <u>GCTAGC</u> TAAGGAGGGTGAGTCATGACAGCACAATCAC
AthiA1_08219/RH	ACC <u>AAGCTT</u> CAATGATGATGATGATGATGATGAGGCAGCAGGCGC
AthiA1_08224/FN	ACC <u>GCTAGC</u> TAAGGAGGCATAAAAATGGAACAACTTCTCCAAA
AthiA1_08224/RH	ACCAAGCTTCAATGATGATGATGATGATGATGAGTGGATGAGTTTGCCTGA
AthiA1_10484/FN	ACC <u>GCTAGC</u> TAAGGAGGTGCAGCGATGAATAGCTCCCTT

Table S2. (Continued)

AthiA1_10484/RSa	ACC <u>GTCGAC</u> CAATGATGATGATGATGATGATGATGATGCTGAGTACCATGGCTACAACT
37-53 F/NheI	ACC <u>GCTAGC</u> AGGAGGAATTCACCATGTACAATAAAGATGAT
37-53 R/SphI	ACC <u>GCATGC</u> TCAATGATGATGATGATGAGAAATCAATTGAATTTG
AthiA1_15675/FN	ACC <u>GCTAGC</u> TAAGGAGGGTCAACTATGCGACAGATGGCA
AthiA1_15675/RH	ACC <u>AAGCTT</u> CAATGATGATGATGATGATGATGATGATCTTTTTTCAGCCGCCAG
135-10 F/NheI	ACC <u>GCTAGC</u> AGGAGGAATTCACCATGTCCCGTGATGCTCCTG
135-10 R/SphI	ACC <u>GCATGC</u> TCAATGATGATGATGATGACTTTCATCTGCATCGCTC
40-113 F/NheI	ACC <u>GCTAGC</u> TAAGGAGGTGAGTAGATGGATAATCAATCCCCC
40-113 R/KpnI	ACC <u>GGTACC</u> TCAATGATGATGATGATGATGATGATGTGATATCTGACGCTTTTTGCTTTT
AthiA1_00152 F	CGTCCATTTATGACCCCAAC
AthiA1_00152 R	CGATCTTCTGCAGTCAACCA
AthiA1_00157 F	GCTTATCATCGCCAGGAATG
AthiA1_00157 R	CGAGCTAGATGACTTTGTCG
AthiA1_01972 F	GAAAGGGTACATCCTTGGAC
AthiA1_01972 R	GGTAGGATTATCGAGGATCGGC
AthiA1_01982 F	GAAAGGACAGCTCCATTACC
AthiA1_01982 R	GTAGATACATCGTCCGGTTCTG
AthiA1_03313 F	CAGCTGAAGCGAAAACATGA
AthiA1_03313 R	GAGGCATTCTTCGGCACTAC
AthiA1_04113 F	GAAAGACCTGCCTATTGACG
AthiA1_04113 R	CTTCAGTCTCTACACCCTCTAC
AthiA1_05539 F	CATTTGCGTAGACAGCCAGA
AthiA1_05539 R	ATGATCGCGAATTCATCTCC
AthiA1_06856 F	GTGACGGTTTCGGCAACTAT
AthiA1_06856 R	ACCAGCGGTTGATACCAAAG
AthiA1_07018 F	CCCGTCAATTACAGGGTATG
AthiA1_07018 R	GACCCGGAATAGACATCAAC
AthiA1_07707 F	ACCCTCAGGATCCCTGCTAT
AthiA1_07707 R	CATATAGGCAAAGGCGGAAA
AthiA1_08179 F	TTCGGCACGCAAAATGTTGGAC
AthiA1_08179 R	CTTCCAGCATATCGGCTTTGGGGTT
AthiA1_08184 F	CGATTACAGTCAGGGCTTCTAC
AthiA1_08184 R	CTTCTTCTATGTCACTGACGGG
AthiA1_08189 F	CGTAGTATCACTGAATGGGC
AthiA1_08189 R	CACTCAGCGAGTATATGGTG
AthiA1_08219 F	TTAATCGTCGCCGTATGGAG
AthiA1_08219 R	TAGTAGGGCGCAGCTTT
AthiA1_08224 F	ACGTCTCAATCAGCCAC
AthiA1_08224 R	GCCGGTCTTGAGCTTGAAATAA
AthiA1_09870 F	ACGCAGCAATCTCTTGGT
AthiA1_09870 R	AAGCAAGCTTTCACGCAAAT
AthiA1 09875 F	ACATCCTGCCAGCTTATTGG

Table S2. (Continued)

AthiA1_09875 R	ATGGGATGATCCTCTGTTGC
AthiA1_10484 F	CGAGTGGATTCATGTGAGTG
AthiA1_10484 R	GCCTCATCCAGAGTCAGACTATAC
AthiA1_12969 F	GGGTGTCGTGCTGTATCCTT
AthiA1_12969 R	ACGCTGATCTGCGAAGTTTT
AthiA1_12974 F	GACCGGGAGCTGATTATTGA
AthiA1_12974 R	ACATTCGTCGGGTACCTCTG
AthiA1_13196 F	ACCGAAACCGGATGTCATGT
AthiA1_13196 R	GCCAGAATGTCCTGACCAAT
AthiA1_13201 F	CTGGTCAAAATCGAGGTCGT
AthiA1_13201 R	TTCTCTTCCATCACGCACAG
AthiA1_14219 F	TGGCTGAGTTCATTGCTGAC
AthiA1_14219 R	TCGTCCAAATCCAGCATACA
AthiA1_14626 F	ATGCAGGATTTCCAGATTGC
AthiA1_14626 R	TGAGTATGTCCCGCACAAAA
AthiA1_15675 F	CTGACTCGTCCTACTGAGATT
AthiA1_15675 R	CAACATCTCACCACCAGAAC
AthiA1(13-20)F	TGGCCCGCTTGTATGATTT
AthiA1(13-20)R	TTTCGTAGCCTCCACAGTTATC
AthiA1(24-9)F	TACGATTTCAGTGCGAGTGG
AthiA1(24-9)R	GGTACCGCAGTTGGGTATTT
AthiA1(46-78b)F	TGCAGACGGGTGAAGTAATC
AthiA1(46-78b)R	AGCCTCTGGGAAACACTAAAT
AthiA1(83-30)F	TCCCGATGAGGTGGAAATTTAT
AthiA1(83-30)R	TTGGGACAGCGACTCATAATC
AthiA1(84-35)F	TATCCAGCGACCCGAAATG
AthiA1(84-35)R	TACAGCCCTTGCTCCATAAC
AthiA1(86-8)F	CTATCAAGGGTGGCGGATTAC
AthiA1(86-8)R	CCCAGATAACCTTACCCATCAC
AthiA1(115-12)F	TGGCTCGGGAAGACTATAAGA
AthiA1(115-12)R	ATCATACGCGGCACATCAA
Athia1(141-36)F	GAGATGCTGTTGGTGGAATTTG
Athia1(141-36)R	TAAGCATGGCTGGAATGGAG
AthiA1(FleQ1)F	ATGCGTCCTATGGATGGTTATAC
AthiA1(FleQ1)R	AGGGCTTCACCACATAATCTAC
AthiA1(FleQ2)F	CCGAAATGAGTCCGCAAATG
AthiA1(FleQ2)R	GAATCCGCTCCTCCAGATTAC
At_MshEN-F	TGCCCAGGAAGAGTTTGATTTA
At_MshEN-R	CACCCGGAAATCCTTCTCATAG
YajQ_F	AAGTAGATAACGCCCTGCATAC
YajQ_R	CTTTACCAGTCGGGCTGAAA

¹Restriction sites are underlined.

Table S3. Type IV pilin-like protein and pili apparatus subunits encoding genes in *At. thioooxidans*^T. Putative c-di-GMP effectors with PilZ domain are noted with grey background.

Locus ¹	BLAST hit
ATHIO_RS16400	type IV pilus assembly PilZ protein [At. ferrooxidans ATCC 53993]
ATHIO_RS0105675	type IV pilus assembly PilZ protein [At. caldus ATCC 51756]
ATHIO_RS0109125	type IV pilus assembly PilZ [At. ferrivorans SS3]
ATHIO_RS0110790	type IV pilus assembly PilZ [At. caldus ATCC 51756]
ATHIO_RS0114620	type IV pilus assembly PilZ protein [At. ferrooxidans ATCC 53993]
ATHIO_RS17100	prepilin IVa-type cleavage/methylation domain-containing protein [<i>At. thiooxidans</i> ATCC 19377]
ATHIO_RS0106075	prepilin-type cleavage/methylation domain-containing protein PilW [<i>At. thiooxidans</i> ATCC 19377]
ATHIO_RS0106080	prepilin-type cleavage/methylation domain-containing protein PilV [<i>At. thiooxidans</i> ATCC 19377]
ATHIO_RS0106085	prepilin-type cleavage/methylation domain-containing protein FimT [<i>At. thiooxidans</i> ATCC 19377]
ATHIO_RS0113585	prepilin IVa-type cleavage/methylation domain-containing protein [<i>At. thiooxidans</i> ATCC 19377]
ATHIO_RS0113590	prepilin IVa-type cleavage/methylation domain-containing protein [<i>At. thiooxidans</i> ATCC 19377]

¹ Gene code from NCBI.

	Flagella	Cellulose synthase	Pel exopolysaccharide
At. ferrooxidans	-	-	-
At. ferrivorans	+	+	-
At. caldus	+	+	+
At. thiooxidans	+	+	+

Table S4. Putative molecular players for biofilm architecture identified in two iron/sulfur- (orange) and two sufur- (yellow) oxidizing species of *Acidithiobacillus*^a.

^a, Based on this work and references [17, 25; 45]

Figure S1. RT-PCR analysis of c-di-GMP metabolism and effectors encoding genes identified in *At. thiooxidans*^T. PCR assays were done with gDNA (D) and cDNA synthesized from total RNA in presence (+) or abscence of Reverse Transcriptase (-). Gene code was obtained from NCBI. Black boxes indicate ORFs tested for DGC activity.

Figure S2. Domain organization of *At. thiooxidans*^T ATCC 19377 proteins involved in c-di-GMP metabolism. Schematic representations of single GGDEF- (**A**), single EAL- (**B**), single HD-GYP (**C**) and GGDEF/EAL- (**D**) domain containing proteins from *At. thiooxidans*^T. Color codes for the different domains are noted (**E**). Key aminoacids for catalytic activity are noted and non-conserved aminoacids are marked in grey. Domains are not drawn to scale. TM: transmembrane segment; CZB: chemoreceptor zinc-binding.

Figure S3. Comparative analysis of *pel* operon structures. Identity and similarity at protein level are noted. *Acidithiobacillus* sequences were obtained from NCBI genome database. Sequencing and/or annotation errors cannot be excluded for PelA and PelB proteins.

Figure S4. PCR analysis of *At. thiooxidans*^T wild type and the four double recombinant $\Delta pelD$ mutant strains to check double-recombination. DNAs genomic were analyzed with primers for *DNA 16S, kan^R* and *pelD* genes for 30 cycles. PCR products were run in 1 % agarose gel in TAE buffer 1X. L: DNA ladder. As expected wild type strain is positive for *DNA 16S* and *pelD* genes while double recombinant are negative for *pelD* gene and positive for *DNA 16S* and *kanR gene*.

Figure S5. Southern Blot analysis of *At. thiooxidans*^T wild type and the four double recombinant $\Delta pelD$ mutant strains. 10 \otimes g of genomic DNA no digested (odd numbers) or digested by *BamHI* (A) or *SphI* (B) (even numbers) were separated by running a DNA electrophoresis in a 1.5 % agarose gel and stained with GelRed® (left panels). Then DNA fragments were transferred onto nitrocellulose membranes for hybridization experiments with two specific digoxigenin-labelled DNA probes *kan*^R (A) and *pelD* (B). Positive results for *kan*^R and *pelD* probes correspond to 6-kb and 900-bp restriction fragments, respectively (red circles). L: DNA ladder; 1-2: ATCC 19377 DNA; 3-4: $\Delta pelD_c c38$; 7-8: $\Delta pelD_c c34$; 9-10: $\Delta pelD_c c99$; 11-12: positive control, pOT plasmids harboring *kan*^R (A) or *pelD* (B) genes.