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Abstract: Deoxyribonucleic acid (DNA) methylation is an epigenetic alteration crucial for regulating
stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made
possible by whole genome bisulfite sequencing. An essential task following the generation of
bisulfite sequencing data is to detect differentially methylated cytosines (DMCs) among treatments.
Most statistical methods for DMC detection do not consider the dependency of methylation patterns
across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak
methylation effects among different phenotype categories make it difficult for these statistical methods
to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model
(WFMM) was introduced to detect DMCs. To further examine the performance of WFMM in detecting
weak differential methylation events, we used both simulated and empirical data and compare
WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data
that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana
show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to
methylKit, especially when the methylation differences among phenotype groups are small. Moreover,
the performance of WFMM is robust with respect to small sample sizes, making it particularly
attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis
thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ) twins who
have different pain sensitivities—both datasets have weak methylation effects of <1%—show that
WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit.
Differentially methylated regions (DMRs) are genomic regions with different DNA methylation
status across biological samples. DMRs and DMCs are essentially the same concepts, with the only
difference being how methylation information across the genome is summarized. If methylation
levels are determined by grouping neighboring cytosine sites, then they are DMRs; if methylation
levels are calculated based on single cytosines, they are DMCs.

Keywords: differentially methylated regions; wavelet-based functional mixed model; weak
methylation effect

Genes 2018, 9, 75; doi:10.3390/genes9020075 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-9515-9502
https://orcid.org/0000-0003-2949-5003
http://dx.doi.org/10.3390/genes9020075
http://www.mdpi.com/journal/genes


Genes 2018, 9, 75 2 of 17

1. Introduction

Deoxyribonucleic acid (DNA) methylation is an important epigenetic mechanism in controlling
gene expression, silencing of genes on the inactive X chromosome, imprinted genes, and
parasitic DNAs [1]. Accurate characterization of DNA methylation is essential for understanding
genotype–phenotype association, gene–environment interaction, diseases, and stress responses [2].
Genome-wide bisulfite-treated DNA sequencing has enabled the measurement of DNA methylation at
the single nucleotide resolution. After DNA is treated with sodium bisulfite, unmethylated cytosines
(Cs) are converted to uracils, which appear as thymines (Ts) in the output data, whereas methylated
Cs remain unchanged. At a single cytosine site, methylation levels are estimated by taking the ratio
of C/(T + C), where C and T are the counts of cytosines and thymines, respectively, from all aligned
reads at the site, assuming that the conversion rate of unmethylated Cs to Ts is 100%. The count of Ts
represents the number of unmethylated Cs, and the count of Cs represents the number of methylated
Cs. The most common task is to detect differentially methylated cytosine (DMC) sites across different
treatment samples (e.g., dosage vs. non-dosage samples and cases vs. controls). Although numerous
statistical methods, such as Fisher’s exact test and logistic regression, have been used for the detection
of DMCs [3], several challenges remain.

First, most methods make the assumption that individual cytosine methylation levels are
independent across the genome. This assumption is questionable, as it has been shown that methylation
levels of nearby cytosine sites are highly correlated ([4]; Figure 1) and depend on the sequence
specificity, i.e., CG, CHG, and CHH (where C=cytosine, G=guanine, H=A (adenine), C or T) in
Arabidopsis thaliana [5,6], or the nature of the methylated sequence, i.e., transposable elements,
repeats exons, introns, promoters, etc. [7]. Assuming independence across cytosine sites can lead to
underestimation of p-values and inflated type-I error, resulting in an increased false discovery rate
of DMCs [8]. Second, due to the current high cost of whole genome bisulfite sequencing, studies are
often done across a small number of biological samples for each phenotype/treatment, which limits
statistical power for detecting weak methylation differences.
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To address these issues, Lee and Morris [9] applied the wavelet-based functional mixed model
(WFMM) developed in Morris and Carroll [10] to detect DMCs. They examined three human
datasets and identified some novel differentially methylated regions that were not detected previously.
To further examine the power of WFMM, especially in detecting sites with weak methylation effects,
we applied WFMM to existing Arabidopsis thaliana data under varying herbicide glyphosate dosages [11]
and data from monozygotic (MZ) twins with different pain sensitivities [12]. Both of these datasets
were shown to have a small differential methylation effect, i.e., average methylation levels between any
two phenotype groups <1%. Here we compare the performance of WFMM with that of the commonly
used program methylKit [13] on both empirical and simulated data, and conducted functional analysis
for the DMCs identified.

2. Methods

2.1. Wavelet-Based Functional Mixed Models

Assuming that all methylation measurements come from N individuals across all T genomic
locations, a functional mixed effects model can be represented by:

yi(t) =
J+1

∑
j=1

XijBj(t) +
M

∑
m=1

ZimUm(t) + Ei(t), t ∈ T (1)

where yi(t) represents the logit-transformation of methylation levels at a genomic location
t ∈ {tl; l = 1, . . . , T} for the i-th individual, i = 1, . . . ,N. Xij = 1 if individual i belongs to treatment
j and 0 otherwise, for 1 ≤ j ≤ J. The function Bj(t) represents the fixed effect corresponding to treatment
and other covariates of interest). Zim a random covariate that takes into account variations in yi(t) that
are caused by potential multilevel structures in the measurements (e.g., when multiple subjects from
the same family were measured, then each family will introduce its own random effect and Zim = 1
if individual i is from family m and Um(t) is the random effect of family m). Ei(t) is a residual error
function. Using vectorized formulation, we may write the model (1) as:

Y(t) = XB(t) + ZU(t) + E(t), t ∈ T (2)

where Y(t) = [Y1(t), . . . ,YN(t)]T, B(t) = [B1(t), . . . ,BJ(t)]T, U(t) = [U1(t), . . . ,UM(t)]T and
E(t) = [E1(t), . . . ,EN(t)]T. Here, Y is a N × T matrix across all T genomic locations for all N
individuals. X is an N × J design matrix that indicates which treatment group the N individuals
belong to or other covariates of interest (e.g., a phenotype), the B (J × T) matrix contains the fixed
effects of the covariates. The t-th column of B, denoted by bt is a J-dimensional vector describing the
effects the J covariates on Y at genomic location t.

For example, if we let the i-th row of X be a 1/0 vector to indicate which of the herbicide
glyphosate dosage groups the i-th plant was treated, i = 1, . . . ,N, then bt corresponds to the effect of
dose levels on Y at genomic location t. In Equation (2), Z is a design matrix for random effects that takes
into account variations in Y that are caused by potential multilevel structures in the measurements; U
contains the corresponding random effects; E is an N × T matrix of residual errors. We assume that E
is multivariate normal with mean 0 and variance-covariance matrix S. For example, in our A. thaliana
experiment, there are four plants for each of the 0%, 5%, and 10% glyphosate-treated groups. Therefore,
the X design matrix is a 12 × 3 and B is a 3 × T matrix, where T is the number of cytosine locations.
Since the A. thaliana data does not involve multilevel structures, the random effect term in Equation (2)
is omitted. The resulting functional model can be rewritten as

Y(t) = XB(t) + E(t), t ∈ T (3)
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where

X =



1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1



and B = [b1 b2 b3 . . . bT ].

Each bt is a column vector consisting of p = 3 elements/groups giving the mean methylation profiles
for each group at a given genomic location t.

To incorporate nearby methylation correlations across all genomic locations T into the model, we
first use a basis function transform to transform Equation (3) from the original data space into the basis
space, and then fit the basis space model to estimate parameters. Finally, we transform results back to
the original data space for inference. In particular, we apply the discrete wavelet transform (DWT) to
each row of Y to obtain a N × T* matrix of wavelet coefficients D. The corresponding wavelet space
model can be obtained by post-multiplying both sides of Equation (3) by Φ′ the wavelet transformation
operator:

YΦ′ = XBΦ′ + EΦ′ (4)

D = XB* + E* (5)

where Φ′ is a T × T* wavelet transformation operator, D = YΦ′, B* = BΦ′, and E* = EΦ′. Equation
(5) is a wavelet space model with D, B*, and E* representing the wavelet coefficients of Y, B, and
E, respectively. We adopt a Bayesian approach to fit Equation (5) following Morris and Carroll [10].
The posterior samples of the parameters in Equation (5) are obtained by employing a Markov chain
Monte Carlo (MCMC) algorithm. Inverse DWT is finally applied to the posterior samples of B* to
obtain posteriors for B in the data domain, which were subsequently used to identify DMCs following
a Bayesian false discovery rate approach.

2.2. Bayesian False Discovery Rate

Based on the posterior samples of B, we can identify significant regions either on B or on the
contrast effects that contains the differences between covariate effects in B. For example, in the
A. thaliana data example, since we are interested in identifying DMCs with different dosage effects, we

will calculate the contrast effects by pre-multiplying B with a contrast effect operator

 −1 1 0
0 −1 1
−1 0 1

,

which transforms the effect of each dosage level to the contrast effects of Level 2 vs. Level 1, Level 3
vs. Level 2, and Level 3 vs. Level 1, respectively. We will apply this operator to all posterior samples
of B to obtain the posterior samples of the contrast effects. Denote Cα(t), t ∈ {tl; l = 1, . . . , T} the α th
contrast effect, identifying significant DMCs on Cα(t) amounts to identifying locations on Ca(t) that
are large in magnitude. We achieve this by performing a Bayesian multiple testing that controls the
overall false discovery rate following Morris et al. [10], Zhu et al. [14], and Lee and Morris [9].

Specifically, in the Bayesian FDR approach, we detect locations in t ∈ {tl; l = 1, . . . , T} that has
Cα(t) values greater than some threshold δ (in absolute value) based on G posterior samples of Cα(t)
for all contrast effects. We first calculate the pointwise posterior probability of at least δ difference
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at tl by calculating p̂a(tl) = Pr{ |Ca(tl)| > δ|Y} ≈
∑G

g=1 I
{∣∣∣Ca(tl)

(g)
∣∣∣>δ

}
G , where Cα(t)(g) denotes the g-th

sample of Cα(t) at tl. Then, we find a cut-point φα for p̂a(tl) so that the expected global Bayesian FDR
is less than or equal to a pre-specified level α. We claim all of the tl on which p̂a(tl) >φα as genomic
locations with Cα(tl) greater than δ.

3. Data and Simulation

3.1. Arabisopsis thaliana Treated with Herbicide Glyphosate

We previously investigated methylation profiles of twelve A. thaliana plants exposed to the
herbicide glyphosate at different dosage concentrations [11]. In these experiments, blocks of four
A. thaliana plants were randomly assigned to glyphosate treatment at three different dosages, 0%
(control), 5%, and 10% of the label recommended field application rate. We intended to impose stress
while still allowing the plants to survive and reproduce. Following glyphosate treatment, these plants
were transferred to a growth chamber with a 12 h light cycle and a light intensity of 90 µmol m−2 s−1

and allowed to grow for approximately 2 weeks for the 0% and 5% glyphosate-treated plants and
8 weeks for the 10% glyphosate-treated plants until fully developed siliques were formed. Following
0, 5 and 10% glyphosate exposure on four-week-old rosettes of the twelve A. thaliana individuals,
genomic DNA were isolated from cauline leaves of the newly matured siliques using Biosprint-15 plant
DNA extraction kit (Qiagen, Hilden, Germany). The tissue samples from these 12 plants were sent
to the Genomics Research Laboratory at the Biocomplexity Institute of Virginia Tech for sequencing.
One hundred nanograms of DNA samples were bisulfite converted using EZ DNA methylation-Gold
Kit (#D5005, Zymo Research, Irvine, CA, USA). Illumina DNA libraries were prepared from the above
purified bisulfite converted DNA samples using EpiGnome Methyl-Seq kit (Epicentre, Illumina Inc.,
Madison, WI, USA). In the end, each of six samples were barcoded, quantified by qPCR, and pooled to
sequence on Illumina Hiseq Rapid Run flowcell (Illumina, San Diego, CA, USA). The bisulfite short
reads dataset can be download from NCBI Sequence Read Archive (SRA) BioProject ID: PRJNA322493.
In total, there were 872,608,912 bisulfite paired-end short reads with a length of 100 bp for each end.
The coverage depth ranged from 48.6 to 76.3× across all samples. First, the sequenced reads’ quality
was checked using FastQC [15] to eliminate adapter sequences and barcodes using Trimmomatic [16]
and FastX Tookit [17]. Low-quality reads (quality score Q < 30) were excluded. After all quality checks,
bisulfite short sequences were aligned to the A. thaliana from Arabidopsis Information Resource version
10 (TAIR 10) reference genome using Bismark aligner (v 0.14.5) with default parameters (n = 1 and
l = 50) [18]. Cytosine methylation level information was extracted from aligned reads using Bismark
methylation extractor. A total of 3,348,756 cytosines passed the preprocessing steps and thus serve as
the basis on which we detect significant methylated cytosines differentiating glyphosate dosage groups.

3.2. Methylation Level Simulation

We aimed to generate methylation profiles that closely mimic the real data collected from our
experiment [7] (Figure S1). Generating a simulated dataset allowed us to evaluate the impact of
different parameters on the performance of WFMM. For comparison purposes, we generated two sets
of methylated cytosines, one set with correlation among nearby cytosine sites, and the other without
methylation correlation. For the uncorrelated dataset, we first randomly selected 10,000 out of the
total 100,000 cytosine sites as DMCs (~10% of all cytosine sites are differentially methylated). For each
of the three dosage groups, i.e., no treatment (0%) or two different sub-lethal doses (5% and 10%) of
glyphosate, we set the average methylation level according to the estimate from the real A. thaliana
dataset above. The three pairwise mean methylation differences at each cytosine site: for 0% vs. 5%,
5% vs. 10%, and 0% vs. 10%, were set similarly based on the real A. thaliana dataset. If one of the
mean methylation differences was greater than 0.04, the corresponding cytosine site was considered
differentially methylated. In this way, the differentially methylated sites (true positive methylation
differentiation) in simulated data were generated. On the other hand, if none of the mean methylation
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differences between any of the two groups were greater than 0.04, the corresponding cytosine site was
considered non-differential (true negative methylation differentiation).

To generate correlated simulated datasets, we first divided the real A. thaliana dataset into blocks
of 100,000 cytosine sites and randomly chose blocks to generate methylation profiles for simulated
data. These random blocks were to ascertain that the correlation structure in the real A. thaliana dataset
was maintained in the simulated datasets with correlated methylation sites. For each random block, if
one of the mean methylation differences was greater than 0.04, cytosines were considered differentially
methylated, so the methylation levels at these cytosine sites were used to generate methylation profiles
for differentially methylated sites. Otherwise, sites were considered non-differential and used to
simulate true negative methylation profiles (Figure S2). Individual methylation levels for each of the
three dosage groups from both correlated and uncorrelated datasets were generated from truncated,
normally distributed data that ranged from 0 to 1, with mean and standard deviations calculated from
the real A. thaliana dataset.

We changed methylation difference profiles by altering the cutoff value for specifying a DMC
from 0.04 to 0.08, 0.1, 0.12, 0.15, 0.2, and 0.25. For example, with a cutoff value of 0.25, only cytosines
with at least one of the pairwise mean methylation differences greater than 0.25 were considered
differentially methylated. We also increased sample sizes for each dosage group from 4 to 10, to 20,
to 30, and then to 40 to examine how the WFMM method performs under different scenarios and
compared its performance to the commonly used program methylKit [13].

4. Results

4.1. Simulation Results

4.1.1. Effect of the Degree of Methylation Difference

The degree of differential methylation between different phenotypes is an obvious factor to consider
when examining the performance of tools for detecting differentially methylated cytosines. In our
analysis, we calculated the receiver operating characteristic (ROC) curves from the WFMM method and
methylKit [13] under different degrees of methylation difference. Figure 2 shows the performance of the
two methods with different methylation difference cutoffs. We used Youden’s rule to find the optimal
threshold for the delta parameter (δ) in WFMM and the q value parameter in methylKit. MethylKit uses
q value —p values adjusted for multiple-testing. According to Youden’s rule, the optimal threshold is
where the sum of sensitivity and specificity is maximized. Figure 2 shows that overall WFMM performs
better than methylKit with higher sensitivity and specificity in both correlated and uncorrelated scenarios.
When the differentially methylated cutoff is 0.04 or 0.08 and in both correlated and uncorrelated cytosines,
the optimal value for the δ parameter in WFMM is 0.01 and the optimal value for the q value parameter
in methylKit is 1.00. We note that there is an improved performance in WFMM, i.e., higher specificity and
slightly higher sensitivity when comparing the correlated data with the uncorrelated data, whereas the
methylKit performance is similar in both scenarios.
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Figure 2. Receiver operating characteristic (ROC) curve comparison between wavelet-based functional
mixed model (WFMM) (blue curve) and methylKit (red curve) when the differentially methylated
cutoff is 0.04 in correlated cytosines (a) and uncorrelated cytosines (b) and when the differentially
methylated cutoff is 0.08 in correlated cytosines (c) and uncorrelated cytosines (d). The gray line
represents points where sensitivity equals specificity.

Figure 3 shows that, as the differentially methylated cutoff increases from 0.1 to 0.25, the gaps in the
ROC curves between WFMM and methylKit become narrower. Specifically, there is little improvement
in WFMM, whereas the performance of methylKit improves with increasing differentially methylated
cutoff values. When the differentially methylated cutoff is 0.2 or 0.25, WFMM and methylKit perform
similarly. To illustrate, when the differentially methylated cutoff is 0.25, optimal threshold δ = 0.013
in WFMM, and optimal threshold q value = 0.76 in methylKit, WFMM, compared with methylKit,
has a higher sensitivity (0.953 vs. 0.806) but a lower specificity (0.696 vs. 0.828). Therefore, there is a
trade-off between sensitivity and specificity when choosing between the two methods; one method
might produce higher sensitivity but lower specificity or vice versa.
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4.1.2. Effect of Sample Size

Overall, when the sample size increases from 4 to 10, to 20, to 30, and then to 40, WFMM
performance remains stable (Figure 4). There is a moderate improvement in sensitivity and specificity
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when the sample size increases from 4 to 10. There is only slight improvement in sensitivity and
specificity when the sample size exceeds 10. In contrast, increasing sample size results in dramatic
improvement of the specificity of methylKit, while the sensitivity only improves slightly (Figure 4).
Therefore, sample size tends to have a larger effect on methylKit than WFMM. It can be inferred that
increased sample sizes give methylKit more power to detect small methylation differences across
different phenotype groups, whereas WFMM is robust with respect to sample sizes because this
method incorporates methylation levels of nearby cytosines to make inferences rather than solely
relying on sample size.Genes 2017, 8, x FOR PEER REVIEW  9 of 16 
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4.2. Real Data from Herbicide Glyphosate Treatment of Arabidopsis thaliana

We applied WFMM and methylKit on the dataset generated from our herbicide glyphosate
treatment experiment on A. thaliana [11]. WFMM was able to detect 557,664 DMCs (~17% of all
cytosines in the A. thaliana genome) corresponding to 15,823 TAIR genes recognized from Database for
Annotation, Visualization and Integrated Discovery (DAVID) [19]. In contrast, methylKit detected only
48,041 DMCs (~1.43% of all cytosines in the A. thaliana genome) corresponding to 12,166 TAIR genes
with default settings (q value= 0.01 and difference = 25). When settings were adjusted (q value = 1.00
and difference = 4), methylKit detected 1,338,219 DMCs (~40% of all cytosines in the A. thaliana genome)
corresponding to 30,947 TAIR genes. Table 1 shows the breakdown of the number of significant DMCs
and TAIR genes for each chromosome in the A. thaliana genome. Chromosomes 1 and 5 have the
highest number of genes responding to herbicide glyphosate stress. Analysis of the overlapping DMCs
between WFMM and methylKit shows that there are 33.6% and 21.7% common DMCs detected by
both WFMM and methylKit in simulated and real datasets, respectively (Figure 5).
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Table 1. The number of significant differentially methylated cytosine (DMCs), and genes recognized by
Database for Annotation, Visualization and Integrated Discovery (DAVID) by applying wavelet-based
functional mixed model (WFMM) with δ = 0.01 and methylKit with default settings (difference = 25;
q value= 0.01) and methylKit with adjusted settings (difference = 4; q value= 1.00) on a real
A. thaliana dataset.

Chromosome

WFMM δ =
0.01;

Number of
DMCs

methylKit Default;
q value = 0.01;

Difference = 25,
Number of DMCs

methylKit
q value = 1.00;
Difference = 4,

Number of DMCs

WFMM δ = 0.01;
Number of

Significant Genes

methylKit Default;
q value = 0.01;

Difference = 25;
Number of

Significant Genes

methylKit
q value = 1.00;
Difference = 4;

Number of
Significant Genes

Chr1 133,512 12,048 294,153 4041 3098 7760
Chr2 87,488 7627 244,683 2417 1887 5129
Chr3 113,229 9863 274,382 3180 2459 6254
Chr4 91,327 7708 227,539 2563 1943 4815
Chr5 123,027 10,776 290,090 3622 2779 6989

ChrC * 9081 19 7306 0 0 0
ChrM * 0 0 66 0 0 0

Total 557,664 48,041 1,338,219 15,823 12,166 30,947

* ChrC stands for chloroplast; ChrM designates mitochondria.
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Functional annotation of the significant genes detected by WFMM and methylKit show similar
results between both methods (Figure 6). The most significant gene ontology (GO) terms in WFMM are
also found in the top 50 significant methylKit GO terms. Das et al. [20] conducted a similar experiment
by applying glyphosate to A. thaliana plants and identified 484 genes that might be responsive to
glyphosate stress. Comparatively, methylKit with default settings identified 12,166 genes, 181 of
which overlap with Das et al. [16], and with adjusted settings (difference = 4; q value= 1.00), identified
30,947 genes (mostly A. thaliana genes), 466 of which overlap with those identified in Das et al. [16].
In contrast, WFMM with δ = 0.01 identified 12,166 genes, 238 of which overlap with those previously
identified [16] (Table 2). Thus, untuned, WFMM is slightly better than methylKit, as it identifies genes
slightly more related to glyphosate responses. For a fair comparison, of the 3000 most significant genes,
methylKit with default settings has 39 genes, while methylKit with relaxed settings (difference = 4;
q value = 1.00) has 41 overlapped genes. WFMM with default setting δ = 0.01 has 51 overlapped genes
(Table 2). Though there are minor differences in gene clusters between methylKit and WFMM with
δ = 0.01, the GO analysis results from the two methods are very similar (Figures 6 and 7).
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4.3. Real Data from Monozygotic Twin Data with Different Pain Sensitivity Scores

We used the methylation profiles of 25 MZ twin pairs (50 MZ twins) who were discordant for
heat pain sensitivity, for model comparison. Datasets were downloaded from Bell et al. [12] with
sample IDs from GSM1278649 to GSM1278698. This 25 twin pair dataset was from the discovery
phase of Bell et al.’s experiment [12] and is only the first part of their dataset. Heat pain tolerance
between twins was determined experimentally using quantitative sensory testing. Whole-blood
DNA were assayed using DNA immunoprecipitation, followed by deep sequencing methylated
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DNA immunoprecipitation (MeDIP-seq). Assay validation, bisulfite conversion, and pyrosequencing
were performed by EpigenDx. On average, there were 50 million paired-end reads with a length of
50 bp for each end per individual. These reads were aligned to reference genome hg18 using MAQ
(v0.7.1) [21] with default settings. Post-quality control was performed to ensure high quality alignment
for methylation quantification [12]. The methylation levels in these datasets were summarized by
combining cytosine regions rather than single cytosine sites. In total, there are 5,735,431 DMRs in these
datasets. We assigned MZ twins in each of the 25 MZ pairs to two groups according to MZ twins’ pain
sensitivity temperatures (high or low). For example, for a MZ twin pair from Family ID 1, MZ Twin 1
and MZ Twin 2 have pain sensitivity temperatures of 44.7 ◦C and 47.8 ◦C, respectively. Therefore, we
assigned MZ Twin 1 to the low pain sensitivity temperature group and MZ Twin 2 to the high pain
sensitivity temperature group.

The WFMM and methylKit were applied to the 50 MZ twins’ methylation profiles with high vs.
low pain sensitivity temperatures as phenotypic groups. There were no significant DMRs detected by
WFMM with δ = 0.01, methylKit with default settings, or methylKit adjusted settings (difference = 0.04;
q value= 1.00). This may be because the mean methylation differences between high vs. low pain
temperature groups are very small (~4.1% of all mean methylation differences across DMRs <10−5)
(Figure S3). Therefore, we adjusted parameter settings in both WFMM with δ = 3.44 × 10−5 and
methylKit (difference = 4.34 × 10−5; q value= 1.00). These parameter settings from both methods
were determined by an empirical function applied on the real twin data and is further described in
Section 5. For the 769 significant DMRs detected by WFMM with δ = 3.44 × 10−5, there were 236 genes
recognized by the gene function enrichment program DAVID (Table 3). These genes were clustered into
five groups by DAVID (Figure 8; top panel). For the 2023 significant DMRs from methylKit (difference
= 4.34 × 10−5; q value= 1.00), there were 892 genes recognized by DAVID (Table 3) that were clustered
into 32 clusters (Figure 8; bottom panel).

Table 3. Number of significant DMCs, and genes recognized by DAVID by applying WFMM with
δ = 3.44 × 10−5 and difference = 4.34 × 10−5; q value= 1.00 on 25 monozygotic (MZ) twin pairs with
different pain sensitivity temperature.

Methods
Number of

Significant Genes
Number of Shared Genes
in All Significant Genes

Number of Shared Genes in Top
3000 Most Significant Genes

WFMM δ = 0.01 15,823 238 51

methylKit default;
q value = 0.01; difference = 25 12,166 181 39

methylKit adjusted;
q value = 1.00; difference = 4 30,947 466 44

The most important gene groups were ranked by the enrichment scores (EASE scores). The EASE
scores are calculated from the geometric mean of all enrichment p values for each annotation term
of all gene members in a gene group [22]. Two gene clusters that have the highest EASE scores from
significant differentially methylated genes detected by WFMM contain myelin transcription factor
1-like (MYT1L, enrichment score = 1.19) and transient receptor potential cation channel subfamily
C member 1 (TRPC7, enrichment score = 0.90). MYT1L functions in the developing mammalian
central nervous system. TRPC7 was identified by Bell et al. [12] responsive to heat pain sensitivity.
In comparison, methylKit was not able to capture relevant gene clusters pertaining to pain sensitivity in
its first top 17 clusters. In the 18th cluster, two genes (out of the 112 genes in this cluster) ST6GALNAC1
and TRPC7 were found involved in heat pain sensitivity by Bell et al. [12]. It is remarkable that
WFMM was able to capture the significant gene groups related to pain sensitivity using only the 25 MZ
twin pairs’ methylation profiles whose methylation differences are very small, whereas Bell et al. [12]
had to use the methylation profiles of 25 MZ twin pairs together with 50 unrelated individuals in a
meta-analysis to capture the genes responsible for heat pain sensitivity.
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5. Discussion

Though there are many statistical methods for detecting differentially methylated cytosines, small
sample sizes and small differences in methylation data across phenotype groups remain a challenge
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for these methods [9]. Our analyses demonstrated that the wavelet-based functional mixed model has
several advantages over the current standard methylKit.

First, simulation results show that the WFMM method is robust with respect to small sample sizes
(Figure 3). Second, the method is particularly effective for cases where methylation differences across
phenotype groups are relatively small. For example, as demonstrated in our MZ twin pair analysis
(Figure 8), WFMM can capture significant regions that are relevant to the phenotype of interest. Third,
WFMM is able to correct for methylation correlation in the data and therein has improved power
in detecting DMCs/DMRs, as illustrated in the A. thaliana and MZ twin data analyses. Finally, our
analyses revealed that using the default settings of the DMR analysis tools may not be suitable for
some types of biological data, as shown in the Arabidopsis and twin datasets. We recommend some
empirical rules to adjust the default settings so that the method can be better adapted to different
methylation profiles of real datasets. For methylKit, we suggest setting the “diff” parameter to be at the
100(1 − E)th quantile of the absolute pairwise methylation level differences between two phenotype
groups across the whole genome, where E is an expected percentage of methylation differences across
all cytosines for a particular dataset based on prior knowledge. For example, in our Arabidopsis data,
we expect ~10% (E = 10%) of cytosines to be DMCs. Therefore, we set diff = 0.04 (corresponding to the
90th quantile of the absolute pairwise methylation level differences between phenotype categories).
In the twin dataset, we expect E = 0.3%; therefore, we adjust diff in methylKit to 4.34 × 10−5 (i.e.,
the 99.7th quantile of the absolute pairwise methylation level differences across whole human genome).
In methylKit, the q value parameter should also be adjusted accordingly. If diff is very small (<0.1),
set q value = 1.00 to collect all significant DMRs. Similarly, WFMM can be empirically tailored to
different methylation profiles by controlling the δ parameter, setting δ to be the difference between the
100(1 − E)th quantile of the absolute pairwise methylation differences between two phenotype groups
across the whole genome and the standard deviation of the methylation differences. For example, in our
A. thaliana dataset, the 90th quantile of the absolute pairwise methylation level differences between
dosage categories is 0.04 and the standard deviation of pairwise methylation level differences between
phenotype categories is 0.03; therefore, δ = 0.04 − 0.03 = 0.01. In the twin dataset, the corresponding
99.7th quantile and standard deviation are 4.34 × 10−5 and 9.2 × 10−6, respectively; therefore, we use
δ = 4.34 × 10−5 − 9.2 × 10−6 = 3.44 × 10−5. In this way, a better DMC detection result can be achieved
based on different methylation datasets.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/9/2/75/s1.
Section 1: Calculation of correlations of methylation levels between any cytosine site with its neighboring
cytosine; Figure S1: Pairwise mean methylation Difference Profile of 12 A. Thaliana plants after glyphosate
treatment; Figure S2: Methylation level simulation at cytosine sites. Uncorrelated methylated cytosine simulated
data (left panel) and correlated methylated cytosine simulated data (right panel); Figure S3: Mean methylation
profiles between higher and lower pain temperature group in 25 MZ twin pairs; Table S1: Number of significant
DMCs, genes recognized by Ensemble by applying WFMM with δ = 4 × 10−5 and q value = 1.01, difference = 0.07,
on 25 monozygotic twin pairs with different pain sensitivity temperatures for each chromosome.
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