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Abstract: Hepatocellular carcinoma (HCC) is a devastating disease worldwide. Though many efforts
have been made to elucidate the process of HCC, its molecular mechanisms of development remain
elusive due to its complexity. To explore the stepwise carcinogenic process from pre-neoplastic lesions
to the end stage of HCC, we employed weighted gene co-expression network analysis (WGCNA)
which has been proved to be an effective method in many diseases to detect co-expressed modules
and hub genes using eight pathological stages including normal, cirrhosis without HCC, cirrhosis,
low-grade dysplastic, high-grade dysplastic, very early and early, advanced HCC and very advanced
HCC. Among the eight consecutive pathological stages, five representative modules are selected to
perform canonical pathway enrichment and upstream regulator analysis by using ingenuity pathway
analysis (IPA) software. We found that cell cycle related biological processes were activated at
four neoplastic stages, and the degree of activation of the cell cycle corresponded to the deterioration
degree of HCC. The orange and yellow modules enriched in energy metabolism, especially oxidative
metabolism, and the expression value of the genes decreased only at four neoplastic stages. The brown
module, enriched in protein ubiquitination and ephrin receptor signaling pathways, correlated mainly
with the very early stage of HCC. The darkred module, enriched in hepatic fibrosis/hepatic stellate
cell activation, correlated with the cirrhotic stage only. The high degree hub genes were identified
based on the protein-protein interaction (PPI) network and were verified by Kaplan-Meier survival
analysis. The novel five high degree hub genes signature that was identified in our study may
shed light on future prognostic and therapeutic approaches. Our study brings a new perspective
to the understanding of the key pathways and genes in the dynamic changes of HCC progression.
These findings shed light on further investigations.

Keywords: hepatocellular carcinoma; WGCNA; time serial expression analysis; cell cycle; oxidative
metabolism; Kaplan-Meier Survival analysis

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and the second
leading cause of global cancer-related death accounting for around 11% of all cancer deaths [1]. Chronic
viral hepatitis, metabolic disease, autoimmune hepatitis are major risk factors for HCC development.
Hepatitis C viruses (HCV) can cause acute and chronic infections which can lead to liver cirrhosis and
hepatocellular carcinoma. Cirrhosis is the most important risk factor for developing HCC, and the
majority of viral-associated HCC cases develop from liver cirrhosis, so the clarity of hepatitis viral
infections in HCC development is necessary for the treatment of HCC [2]. It is estimated that there
are 140 million infections with hepatitis C worldwide and the most-affected regions are Central
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and East Asia and North Africa. HCV-associated carcinogenesis can lead to increased hepatocyte
proliferation and steatosis, oxidative stress, mitochondrial damage and induction of reactive oxygen
species (ROS) [3]. Patients who have progressed to liver cirrhosis and poor liver function commonly
develop HCC [4].

At present, the potentially curative options for HCC patients are radiofrequency ablation, liver
transplantation and tumor resection. However, many factors affect the suitability, including tumor
stage, deficiency of donors, graft rejection and opportunistic infections due to immunosuppression,
etc. [5]. The liver cancer stage is one of the most important factors in choosing treatment options
and predicting a patient’s outlook. For early stage HCC without cirrhosis, liver resection or liver
transplantation is available, but recurrence is frequently occurred. At the end stage of HCC, patients
often have less than three months survival. It is necessary to understand the mechanism of progression
from cirrhosis to HCC.

Weighted gene co-expression network analysis (WGCNA) has been proved to be an effective
method to detect co-expressed modules and hub genes, microRNAs and lncRNAs (long non-coding
RNAs) in many aspects [6–15]. WGCNA can group genes into a model or network based on pairwise
correlations between genes due to their similar expression profile, and these models can correlate
to different stages of HCC. First, the absolute value of the correlation of paired genes was used to
define the gene co-expression network. Next, an adjacency matrix is used to define the strength with
wich genes are connected to each other. A soft thresholding parameter was employed to construct
a weighted network. WGCNA uses the topological overlap measure (TOM) as a proximity measure
to cluster genes into network modules that combine the adjacency of two genes and the connection
strengths with which these two genes interact with other neighbor genes. The genes inside a module
can be summarized with the module eigengene, which is defined as the first principal component
of the expression profiles. To find the modules related to clinical traits of interest, the correlation
is calculated between module eigengenes and all clinical traits. The correlation between genes and
module eigengenes was used to identify intramodular hub genes [16].

In order to explore the dynamic changes during the development of HCC, we analyzed 75 tissue
samples representing the stepwise carcinogenic process from pre-neoplastic lesions to HCC including
normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, very early
HCC, early HCC, advanced HCC and very advanced HCC stages by using WGCNA (Table S1). To the
best of our knowledge, this is the first report describing the dynamics of gene expression changes
during the development of HCC, though there are some studies about each stage of HCC based on the
dataset [17,18].

In this study, we constructed a gene co-expression network based on WGCNA and identified 25
modules during the progression of HCC. The modules were correlated with the progression of HCC.
We also performed canonical pathway analysis by Ingenuity pathway analysis (IPA) on five modules
closely related to different HCC stages. The turquoise module enriched in the cell cycle which was
activated only at four neoplastic stages, and the degree of the activity of the cell cycle corresponded
to the deterioration degree of HCC. The orange and yellow modules enriched in energy metabolism,
especially oxidative metabolism, and decreased only at four neoplastic stages. The brown module
enriched in protein ubiquitination and ephrin receptor-signaling pathways which decrease at very early
stages of HCC only. The darkred module enriched in hepatic fibrosis/hepatic stellate cell activation,
which isactivated at the cirrhotic stage only. Then, we performed upstream regulator analysis and
detected some regulators such as PPARA (Peroxisome Proliferator Activated Receptor Alpha ) and
PLG (Plasminogen). We also identified the high degree genes in every module using the cytohubba
plugin based on cytoscape [19].
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2. Materials and Methods

2.1. Data Processing

The gene expression dataset GSE6764 provided by Wurmbach, E. et al. [17] (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE6764) was downloaded from the Gene Expression Omnibus
(GEO) database [20]. In total, 75 tissue samples were divided into eight consecutive pathological stages
from pre-neoplastic lesions to HCC including normal, cirrhosis without HCC, cirrhosis, low-grade
dysplastic, high-grade dysplastic, very early HCC, early HCC, advanced HCC and very advanced
HCC. All tissue samples are hybridized on the human U133 plus 2.0 array (Affymetrix, Santa Clara,
CA, USA). The Robust Multi-array Average (RMA) algorithm was performed to process the raw files.
In order to filter the features exhibiting little variation across the above samples, the nsFilter algorithm
was used to filter the data for the subsequent WGCNA [16,21].

2.2. Construction of Weighted Gene Co-Expression Networks and Identification of Modules Associated with
Different Stages of Hepatocellular Carcinoma

From thousands of genes, the interesting gene modules can be identified by WGCNA, and then,
the intramodular connectivity and gene significance based on the correlation of a gene expression
profile with a sample trait were used to identify key genes in HCC for further validation. WGCNA is
a freely accessible R package for the construction of weighted gene co-expression networks [22].
The above filtered data were used to construct the network. Three different ways can be selected to
construct the network and identify modules according to different needs. In our study, the one-step
function was used for network construction and detection of consensus modules.

2.3. Interaction Analysis of Co-Expression Modules

To further evaluate the co-expression similarity of all the modules, the eigengenes adjacency
based on their correlation was calculated. The interaction relationship among different co-expression
modules was performed by the flashClust function [23]. A heat map was used for visualization of the
correlations of each module.

2.4. Functional Enrichment Analysis of Genes in Every Module

Hub gene is a loosely defined term which is an abbreviation of “highly connected gene”. The genes
inside co-expression modules have high connectivity and the genes within the same module may play
similar roles. We filtered the hub genes in each module according to the intra-modular connectivity
and correlation with module eigengenes. To identify the biological function of the significant modules
and the relationship between the modules and different stages, we extracted the top ranked genes
with the strongest connections within each module to perform canonical pathways analysis in selected
modules using of IPA.

2.5. The Ingenuity Pathway Analysis Upstream Regulator Analysis

The co-expressed genes participating in the same biological process or disease may be regulated
by the same or similar regulators especially transcription factors (TF). In order to explain the biological
activities of each module, we identified the upstream transcriptional regulators in each module with
a p value of overlap <0.01.

2.6. Protein-Protein Interaction Network Construction and Analysis for Selected Modules

The top ranked genes in every module are thought to be hub genes. In order to identify the high
degree genes which play a critical role in the protein-protein network (PPI), the Cytohubba plugin based
on Cytoscape was used to perform the network analysis [19], and the high degree genes were identified.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6764
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6764
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2.7. Kaplan-Meier Survival Analysis

Publicly available data and tools were employed to perform the survival analysis using the The
Cancer Genome Atlas (TCGA)-liver cancer data which contained 361 samples with the high degree
hub genes as input.

For the duplicated genes, all probe sets/records will be averaged per sample using
quantile-normalized data. The maximum risk groups were selected for the survival analysis. All the
details are described in the tutorial provided on the SurvExpress website [24].

3. Results

3.1. Data Processing

A total of 75 tissue sample raw files (.CEL format) were downloaded from the NCBI (National
Center for Biotechnology Information). The raw files were converted to expression data using the RMA
algorithm based on R language including background correction, normalization and summarization.
There were a total of 16,383 probes for further WGCNA analysis after nsFilter processing.

3.2. Construction of Weighted Gene Co-Expression Network Identification of Modules Associated with Different
Stages of HCC

The network was constructed from the filtered probes and twenty-five modules were identified.
We have chosen the soft threshold power 8 to define the adjacency matrix based on the criterion of
approximate scale-free topology (Figure 1), with minimum module size 30, the module detection
sensitivity deepSplit 2, and cut height for merging of modules 0.2 which means that the modules whose
eigengenes are correlated above 0.8 will be merged (Figure 2A).

Genes 2017, 8, x FOR PEER REVIEW  4 of 15 

 

2.7. Kaplan-Meier Survival Analysis  

Publicly available data and tools were employed to perform the survival analysis using the The 
Cancer Genome Atlas (TCGA)-liver cancer data which contained 361 samples with the high degree 
hub genes as input.  

For the duplicated genes, all probe sets/records will be averaged per sample using quantile-
normalized data. The maximum risk groups were selected for the survival analysis. All the details 
are described in the tutorial provided on the SurvExpress website [24]. 

3. Results 

3.1. Data Processing 

A total of 75 tissue sample raw files (.CEL format) were downloaded from the NCBI (National 
Center for Biotechnology Information). The raw files were converted to expression data using the RMA 
algorithm based on R language including background correction, normalization and summarization. 
There were a total of 16,383 probes for further WGCNA analysis after nsFilter processing. 

3.2. Construction of Weighted Gene Co-Expression Network Identification of Modules Associated with 
Different Stages of HCC  

The network was constructed from the filtered probes and twenty-five modules were identified. 
We have chosen the soft threshold power 8 to define the adjacency matrix based on the criterion of 
approximate scale-free topology (Figure 1), with minimum module size 30, the module detection 
sensitivity deepSplit 2, and cut height for merging of modules 0.2 which means that the modules 
whose eigengenes are correlated above 0.8 will be merged (Figure 2A). 

 
Figure 1. Network topology for different soft-thresholding powers. Numbers in the plots indicate the 
corresponding soft thresholding powers. The approximate scale-free topology can be attained at the 
soft-thresholding power of 8. 

Figure 1. Network topology for different soft-thresholding powers. Numbers in the plots indicate the
corresponding soft thresholding powers. The approximate scale-free topology can be attained at the
soft-thresholding power of 8.



Genes 2018, 9, 0 5 of 16

Genes 2017, 8, x FOR PEER REVIEW  5 of 15 

 

 
Figure 2. Gene modules identified by Weighted gene co-expression network analysis (WGCNA). (A) 
Gene dendrogram obtained by clustering the dissimilarity based on consensus Topological Overlap 
with the corresponding module colors indicated by the color row. Each colored row represents a 
color-coded module which contains a group of highly connected genes. A total of 25 modules were 
identified. (B) Dendrogram of consensus module eigengenes obtained by WGCNA on the consensus 
correlation. The red line is the merging threshold, and groups of eigengenes below the threshold 
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3.3. Correlation between each Module 
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interactions among these 25 co-expressed modules, the connectivity of eigengenes was analyzed. As 
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Figure 2. Gene modules identified by Weighted gene co-expression network analysis (WGCNA).
(A) Gene dendrogram obtained by clustering the dissimilarity based on consensus Topological Overlap
with the corresponding module colors indicated by the color row. Each colored row represents
a color-coded module which contains a group of highly connected genes. A total of 25 modules were
identified. (B) Dendrogram of consensus module eigengenes obtained by WGCNA on the consensus
correlation. The red line is the merging threshold, and groups of eigengenes below the threshold
represent modules whose expressions profiles should be merged due to their similarity. (C) Heatmap
plot of the adjacencies of modules. Red represents high adjacency (positive correlation) and blue
represents low adjacency (negative correlation).
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3.3. Correlation between each Module

We can find that some of the modules had similar expression profiles. In order to figure out
the interactions among these 25 co-expressed modules, the connectivity of eigengenes was analyzed.
As shown in Figure 2B,C, we performed a cluster analysis. In general, 25 clusters were grouped into
two clusters, and each cluster contains three branches. Combined with Figure 3, there was a significant
difference among the 25 modules. However, no pair of modules below the threshold (0.2) was merged.
There are multiple modules related to one or more tumor stages. For instance, the turquoise, light green,
green yellow, blue, salmon, pink and purple modules were related to four tumor stages, especially the
turquoise module, which is strongly related to the development of HCC; the red and brown modules
were negatively related to the very early stage; the tan modules were specifically related to the very
early stage; the magenta, darkred, cyan, black and green modules were related to the pre-tumor stage;
the midnight blue, orange, yellow and light cyan modules were negatively related to four HCC stages.
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Figure 3. Relationships of consensus module eignegenes and different stages of hepatocellular
carcinoma (HCC). Each row in the table corresponds to a consensus module, and each column to a stage.
The module name is shown on the left side of each cell. Numbers in the table report the correlations
of the corresponding module eigengenes and stage, with the p values printed below the correlations
in parentheses. The table is color coded by correlation according to the color legend. Intensity and
direction of correlations are indicated on the right side of the heatmap (red, positively correlated; green,
negatively correlated).

3.4. Functional Enrichment Analysis

Five modules intimately related to different HCC stages were selected for the canonical pathway
analysis by IPA, and the hub genes in the five modules are listed in the supplementary table. As shown
in Figure 4, the enriched pathways including cell cycle, mitosis, DNA damage-induced 14-3-3σ
signaling, G2/M DNA damage checkpoint regulating and GADD45 signaling, mainly in the turquoise
module, indicated that the cell cycle-related pathways changed initially at very early HCC and changed



Genes 2018, 9, 0 7 of 16

more significantly as the disease worsened, which is in agreement with previous studies [25–27].
The biological activity enriched in the brown module reduced suddenly at the very early stage of HCC,
which included the protein ubiquitination pathway, etc. The pathways in the darkred module were
activated in the cirrhotic tissue samples and decreased in four stages of HCC which mainly include
hepatic fibrosis/hepatic stellate cell activation. The orange and yellow modules were all inactivated at
four stages of HCC, as shown in Figure 4; the enrichment pathways participated mainly in metabolism.
The energy metabolism changed significantly. The process related to oxidative metabolism decreased
in HCC progression which indicated the alternation of the supply method of energy.
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3.5. The Ingenuity Pathway Analysis Upstream Regulator Analysis

Upstream regulator analysis was performed for the genes from selected modules using IPA.
As shown in Table 1, several kinds of upstream regulators were predicted including transcription
regulators, transporters, microRNA, growth factors and enzymes, etc. The ligand-dependent nuclear
receptor PPARA was identified in turquoise and yellow modules at the same time with different target
molecules. PLG and GPD1 are both hub genes in the orange and yellow module respectively.
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Table 1. Upstream regulators of selected modules predicted by IPA.

Module Upstream
Regulator Type p Value of

Overlap Target Molecules in Dataset

MYC transcription regulator 3.94 × 10−10 CCNB1, CCNB2, CDC20, CDK1, MCM6

MED1 transcription regulator 1.06 × 10−9
BIRC5, CCNB1, CDC20, CDK1, CDK4,
CENPA

FOXM1 transcription regulator 0.000308 CCNB2, CDC20
ATP7B transporter 0.000373 CDC20, PTTG1, TRIP13
CNR1 g-protein coupled receptor 0.00157 CCNB2, CDK1

PPARA
ligand-dependent
nuclear receptor 0.00521 CCNB1, CDK1, CDK4, H2AFZ, TOP2A

turquoise

TOB1 transcription regulator 0.00538 HJURP, SPDL1

NFE2L2 transcription regulator 0.00662
ARF1, HSP90AB1, PSMA1, PSMC3,
STIP1, TMED2

LMF1 other 0.00911 CANX
brown

mir-451 microRNA 0.00911 YWHAZ
LEP growth factor 0.00714 ACADM, EPHX2, LIPA, UGP2orange
PLG peptidase 0.00787 CLIC4, STAB2

PPARA
ligand-dependent
nuclear receptor 7.66 × 10−8

ACAA1, ALDH2, ALDOB, C8A, CAT,
CYP2B6, CYP2C8, CYP4A11, GPD1,
GSTZ1, HPX, SCP2

GPD1 enzyme 0.00000244
C8A, CYP2B6, CYP2C8, CYP39A1,
CYP4A22, F11

SLC25A13 transporter 0.00000244
C8A, CYP2B6, CYP2C8, CYP39A1,
CYP4A22, F11

FECH enzyme 0.0000416 CYP2B6, CYP2C8, CYP4A11, SLC10A1

RORC
ligand-dependent
nuclear receptor 0.0000458

CYP2A6 (includes others), CYP2B6,
CYP2C8, CYP39A1, CYP4A11, RDH16

RORA
ligand-dependent
nuclear receptor 0.0000485

CYP2A6 (includes others), CYP2B6,
CYP2C8, CYP39A1, CYP4A11, RDH16

LEP growth factor 0.0000887
ALDOB, CYP2C8, CYP4A11, PEMT,
SCP2, SLC27A5

EHHADH enzyme 0.000106 ACAA1, CYP4A11, SCP2
HSD17B4 enzyme 0.000106 ACAA1, CYP4A11, SCP2
ACOX1 enzyme 0.000492 ACAA1, CAT, CYP4A11

POR enzyme 0.000531
CYP2A6 (includes others), CYP2B6,
CYP2C8, CYP39A1, CYP4A11

TCF7L2 transcription regulator 0.00056 ACAA1, CYP2C8, GYS2

AHR
ligand-dependent
nuclear receptor 0.000667

ALDH2, CYP2B6, CYP2C8, RDH16,
SLC22A7

NR1H4
ligand-dependent
nuclear receptor 0.000878 CYP2B6, LCAT, NR1I2, SLC10A1

HNF4A transcription regulator 0.0011 CAT, HPX, NR1I2, SCP2, SLC10A1
ZBTB20 transcription regulator 0.00172 CYP2B6, CYP2C8, GHR

NR1I3
ligand-dependent
nuclear receptor 0.00186

CYP2A6 (includes others), CYP2B6,
CYP2C8, CYP39A1

STAT1 transcription regulator 0.00344 CYP2C8, CYP4A11
STAT6 transcription regulator 0.004 CIDEB, CYP4A11
ABCC4 transporter 0.00687 CYP2B6
IL25 cytokine 0.00687 CIDEB

yellow

TERC other 0.00894 CYP2C8, CYP4A11

3.6. PPI Network Construction and Analysis of Selected Modules

The co-expression networks of top ranked genes for four selected modules, including the
turquoise, brown, orange and yellow module were constructed as shown in Figure 5. The high
degree genes calculated by the cytohubba plugin are shown in a “v” shape. GINS1, NEK2, BUB1B,
KIF11 and TOP2A were identified in the turquoise module, which was enriched in cell cycle-related
processes. MUT, AZGP1, HBB, HBA1, HBA2, HBD, SUCLA2, ACADM and UQCRC2 were identified
in the yellow and orange modules, which were enriched in oxidative metabolism. KBP1A, ARPC4,
HSP90AB1 and ENO1 were high degree genes involved in the early stage of HCC.
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The network was constructed using Cytoscape 3.4 software. The genes with a v-shape represent the
high-degree genes from cytohubba.

3.7. Kaplan-Meier Survival Analysis

Kaplan-Meier Survival analysis was performed to determine the relationship between the
expression of high degree hub genes and the survival time of HCC patients.

Three cell-cycle related genes (GINS, BUB1B and TOP2A), one oxidative metabolism-related gene
(ACADM) and one early stage-related gene (ARPC4) were significantly correlated with high risk, poor
prognosis and shorter overall survival, respectively, as shown in Figure 6. The result showed that the
identified genes were able to distinguish the high risk from low risk patients effectively.
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Figure 6. Kaplan-Meier curves of gene groups (GINS1, TOP2A, BUB1B, ARPC4, ACADM) in The
Cancer Genome Atlas (TCGA) liver cancer dataset based on SurvExpress (n = 381). “+” marks on the
upper figure represents censoring samples. Horizontal axis represents time (day) to event. Outcome
event, time scale, concordance index (CI) and p value of the log-rank test are shown. Red and green
curves represent High- and Low-risk groups, respectively. The number below the horizontal axis
represents the number of individuals not presenting the event of the corresponding risk groups over
time. (A) The xpression of five genes is correlated with high risk, poor prognosis and shorter overall
survival time. (B) box plot of the five genes across risk groups with the p value.

4. Discussion

As a global health problem, HCV can cause infections which lead to liver cirrhosis and
HCC. The multivariate analysis of risk factors for HCC has been extensively documented [2,3,28].
The main objectives of the study were to gain molecular insights into the progression of HCC and
to identify and predict the candidate gene groups associated with the stepwise carcinogenic process
from pre-neoplastic lesions to HCC by constructing a gene co-expression network using WGCNA.
The significantly changed modules that correlated with different stages of HCC were identified,
and the genes in the same module were extracted to perform pathway enrichment analysis. Then,
the upstream regulators and hub genes were identified by using integrated bioinformatics methods
including cytoscape and IPA.
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Modules changed significantly at four neoplastic stages included the turquoise, orange and
yellow modules. The cell cycle-associated turquoise module changed significantly in all stages of
carcinogenesis, and the change was exacerbated as the disease worsened. All above results suggest
that gene expression associated with cell cycle changed at the very early stage of HCC. It is well
known that the cell cycle, the process of cell progression and division lies at the heart of cancer.
Cells use a complex set of kinases to control the complex steps in the cell cycle. Once the regulatory
process malfunctions, uncontrolled cell proliferation occurs. Checkpoints are important quality control
measures, which ensure proper cell cycle events. Therefore, regulation of the cell cycle could be used to
cure cancer especially the cell cycle checkpoint [29–33]. It can be seen that from Figure 3, the activation
of the genes associated with the cell cycle occurred at the very early stage of HCC.

All this indicated that the abnormal cell cycle-associated pathways in the transcriptome play
a critical role in the initiation and development of HCC. The orange and yellow modules, enriched
in energy metabolism, especially oxidative metabolism, decreased only in four neoplastic stages.
In addition, the biological process decreased significantly in the very advanced stage. All this suggested
the switch of an altered energy source, which is consistent with recent studies [34–40]. Otto Warburg
thought that the core metabolic signature of cancer cells is a high glycolytic flux, and the prime cause
of cancer is the replacement of respiration of oxygen by glycolysis due to defective mitochondrial
respiration [40]. As the energy and redox currencies of the cell, ATP and NADH are key factors
for tumor survival, growth, and expansion, which makes them the core for therapeutic exploitation.
Our findings are consistent with this opinion. We found a decrease in the tricarboxylic acid (TCA)
cycle, fatty acid ß-oxidation and oxidative phosphorylation in all stages of HCC, which indicated
a decrease in oxygen consumption. What is the primary origin of cancer; genetic mutations or energetic
imbalances? We are not sure.

According to the PPI network analysis from the selected models, some high-degree hub genes
were identified which played critical roles in the network. For the turquoise module, GINS1, TOP2A,
KIF11, BUB1B and NEK2 were identified asthe high degree genes. For yellow and orange modules,
MUT, AZGP1, HBA1, HBB, HBD, HBA2, ACADM, UQCRC2 and SUCLA2 were high degree genes.

GINS1 (also known as PSF1) is a subunit of the GINS (Go, lchi, Nii, San) complex which
drives the unwinding of DNA in front of the replication fork [41]. Many studies have shown that
GINS1 is up-regulated in several cancer types including lung, colon, prostate, colorectal and breast
cancers [41–47]. It is reported that GINS1 is expressed widely in early embryogenesis in mice, stem and
progenitor cells, etc. [42,48,49]. All the above showed a close relationship between GINS1 and the cell
cycle. From previous results, high GINS1 expression correlated with a more aggressive phenotype as
well as worse prognosis in HCC patients [50]. Through the analysis of HCC tissue, TOP2A expressions
were correlated with advanced histological grading, microvascular invasion and an early age onset
of the malignancy [51,52] which indicated the prognostic value of TOP2A in HCC. As for KIF11 and
BUB1B, there are relatively few reports on their function in HCC, but all of them are related to the cell
cycle [53–61]. Amazingly, HBA1, HBB, HBD and HBA2 all appeared in the yellow and orange modules,
which are related to energy metabolism. It is well known that the tumor cells have a high glycolytic rate
compared to normal cells even if oxygen is sufficient [62]. It is assumed that impaired mitochondrial
respiration may play a vital role in the process [63].There are some reports on the relationship between
hemoglobin and HCC, but the mechanism is not well understood [64,65]. Are there some correlations
between the deregulation of hemoglobin and altered energy metabolism? This is worth further study.
Increasing evidence has shown that the decrease of zinc-alpha2-glycoprotein (AZGP1) is associated
with poor prognosis and more aggressive tumors in HCC [66,67]. And according to a recent study,
AZGP1 plays a role in regulating the PTEN/Akt and CD44 pathways [61]. As important enzymes in
the electron transport chain (ETC), the roles of UQCRC2 and SUCLA2 are not known yet.

The brown module was enriched in protein ubiquitination and ephrin receptor signaling pathways
which decrease at the very early stage of HCC only. Eph receptors belong to receptor tyrosine kinase
families and participate in many cancers. A previous study has shown that EphrinA2 suppressed
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apoptosis, rather than accelerated proliferation and facilitated cancer cell survival [68]. In the present
study, ephrin signaling deregulated at the very early stage, and upregulated increasingly with the
progression of HCC. According to the network analysis of the brown module, ARPC4, HSP90AB1,
ENO1 were identified as high degree hub genes. As a subunit of the actin-related protein 2/3 complex
(ARP2/3), ARPC4 may contribute to the development of HCC [69]. It can be inferred that some
biological processes occurred at all stages of HCC and some at a certain stage, which shows the
complexity of the development of HCC. The darkred module, enriched in hepatic fibrosis/hepatic
stellate cell activation, that was correlated with the cirrhotic stage only, will be further studied in
the future.

The survival analysis showed that the five novel high-degree hub gene signatures identified
in our selected modules which changed significantly may shed light on future prognostic and
therapeutic approaches.

In conclusion, we have presented a novel approach using WGCNA to explore the dynamic
changes during the stepwise carcinogenic process from pre-neoplastic lesions to HCC including eight
stages. According to the network constructed by WGCNA, 25 modules were identified, and five
modules were selected to be analyzed in detail. We found that the turquoise module, enriched in
the cell cycle-related process, was activated at all stages of HCC, and the yellow and orange module,
enriched in aerobic metabolism, was inactivated in four stages of HCC. Some hub genes with a high
degree were identified. All of the above may shed light on the understanding of pathways and genes
underlying HCV-associated disease and the application of prognostic and predictive markers for HCC,
which needed further analysis.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1.
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