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Abstract: Resistance to pyrethroids (the ingredients in bed net insecticides) in the major malaria vector
Anopheles funestus is threatening recent gains in the fight against malaria. Here, we established the
role of an over-expressed P450, A. funestus CYP6AA1 in insecticides resistance. Transcription profiling
of CYP6AA1 across Africa using microarray and quantitative reverse transcription polymerase
chain reaction (qRT-PCR) revealed that it is significantly more over-expressed in southern African
populations compared to West (Benin) and East African (Uganda). Heterologous expression in
Escherichia coli coupled with metabolism assays demonstrated that CYP6AA1 metabolises type I
(permethrin) and type II (deltamethrin) pyrethroids, as well as bendiocarb (a carbamate). Transgenic
Drosophila melanogaster flies over-expressing CYP6AA1 were significantly more resistant to pyrethroid
insecticides, permethrin and deltamethrin compared with control flies not expressing the gene,
validating the role of this gene in pyrethroid resistance. In silico modelling and docking simulations
predicted the intermolecular receptor-ligand interactions which allow this P450 to metabolise the
pyrethroids and bendiocarb. Validation of CYP6AA1 as a pyrethroid resistance gene makes it possible
to monitor the spread of resistance in the field where this P450 is over-expressed. Its potential
cross-resistance role makes it necessary to monitor the gene closely to inform control programs on
molecular basis of multiple resistance in the field.
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1. Introduction

The last 15 years have been a turning point in the fight against malaria in sub-Saharan Africa
with the malaria intervention tools (vector control and artemisinin-based combination therapies)
helping to avert an estimated 663 million cases of malaria [1]. Of these, the scale up in coverage
with pyrethroid-impregnated long-lasting insecticidal treated nets (LLINs) [2] and indoor residual
spraying (IRS) [3] were the largest contributors (~68% of the cases averted) [1]. Despite this progress,
malaria is still endemic across the world with heaviest burden (90%) in WHO African region, where
the disease takes the life of a child every two minutes [4]. The reliance on insecticides to control
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the mosquito vectors has imposed a selection pressure on mosquito vectors, with an escalation in
insecticides resistance in the major malaria vectors threatening the success of the current control
programs [5]. Widespread resistance and multiple resistance to the major insecticides used in LLINs
and IRS by the species from the Anopheles gambiae Complex and the Anopheles funestus Group are
increasingly common [5–7].

Across Africa, there is a marked heterogeneity in patterns of resistance in different populations of
Anopheles, even over relatively small distances [8], with available evidences pointing to different
molecular mechanisms driving the resistance, even within the same species of Anopheles from
different localities/regions. For example, in A. funestus, the L119F-GSTe2 mutation is widespread
in West Africa where 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane DDT resistance is common but
absent in southern African populations [9]; and carbamate resistance observed in southern African
populations has been attributed to over-expressed P450 CYP6Z1 and a novel N485I mutation
in the A. funestus acetylcholinesterase-1 gene; a mutation absent in the East and West African
populations [10]. This highlights the importance of establishing the spatio-temporal drivers (genes)
of resistance in different location/regions to aid in implementing evidence-based control tools and
resistance management.

In the absence of kdr-type mutations in the voltage-gated sodium channel of A. funestus, pyrethroid
resistance in this species is mainly metabolic [11]. A handful of P450s, especially from the CYP6
sub-family confers resistance in A. gambiae s.l. and A. funestus to the four major insecticides used
for public health interventions [10,12–14]. In the major malaria vector A. funestus, the duplicated
P450s CYP6P9a and -b from the major quantitative trait locus (QTL), rp1 [15] are the principal genes
responsible for pyrethroid resistance, across Africa [16,17]. However, the rp1 QTL which explains
87% of the genetic variance in pyrethroid susceptibility harbours other P450s whose roles have not
been validated. These include CYP6AA1, CYP6P5, CYP6P4a and CYP6P2, consistently shown to
be upregulated in multiple resistant populations of A. funestus [10,13,18]. These genes need to be
functionally characterised before confirming their involvement in pyrethroid resistance. This is notably
the case for CYP6AA1 which exhibited higher over-expression in multiple resistant populations of
A. funestus from southern Africa compared to CYP6P4a, CYP6P5 and CYP6P2 [13].

Prior to this study, the actual role of A. funestus CYP6AA1 in pyrethroid resistance and possible
cross-resistance to non-pyrethroid insecticides remain unknown. The ortholog of A. funestus CYP6AA1
is A. gambiae CYP6AA1 (which shares 87% identity), and has been shown to be over-transcribed
in multiple resistant populations of A. gambiae, such as in Burkina Faso [19] and Cameroon [20],
but has not been functionally validated as an insecticide metaboliser. However, an ortholog from the
Asian malaria vector A. minimus (CYP6AA3) was shown to be able to metabolise type I and type II
pyrethroids [21], and another ortholog CYP6AA9 was shown to confer resistance to deltamethrin in
Culex pipiens pallens [22].

To fill these important gaps in knowledge, we performed a functional characterisation of
A. funestus CYP6AA1. Using a combination of heterologous expression and in vitro characterisation,
we established that A. funestus CYP6AA1 metabolises both type I and type II pyrethroids, conferring
resistance to the chemicals used for impregnation of bed net insecticides. We validated the ability
of CYP6AA1 to confer pyrethroid resistance in vivo by transgenesis using Drosophila melanogaster,
with transgenic flies overexpressing the P450 showing significant resistance to pyrethroids compared
with control flies. The ability of the CYP6AA1 to metabolise pyrethroids was further supported by
homology modelling and molecular docking simulations which showed that the pyrethroids bind
productively in the active site of CYP6AA1 model. In addition, the P450 metabolises the carbamate
insecticide bendiocarb, in vitro, though with low activity.
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2. Materials and Methods

2.1. Mosquito Samples

Blood fed, female A. funestus resting indoors were collected from three southern African countries:
Malawi, Mozambique, and Zambia as described before [23]. Two to five-day old, unfed F1 female
progenies of the mosquitoes were utilised to test insecticides. This is because age and bloodmeal are
known to influence the expression of insecticide resistance genes [24,25]. Multiple resistance profiles of
these mosquitoes have been described in a previous publication [13]. The southern African populations
were highly resistant to type I and type II pyrethroids, as well as bendiocarb, and moderately resistant
to (DDT). In addition, A. funestus from Uganda (reported in [26]), from Benin (reported in [9]) and from
Ghana (reported in [27]) were also used for comparative expression analysis, and to establish patterns
of genetic variability in the DNA sequences. The fully susceptible FANG (Funestus Angola) [28] was
used as a reference strain for comparative molecular analyses.

2.2. Transcriptional Profiling of CYP6AA1 in Pyrethroid-Resistant Populations

The transcriptional profile of CYP6AA1 was analysed in a set of microarray data previously
published for three southern Africa countries (Malawi, Mozambique and Zambia), and the West
African country, Benin using either the 4x44k ((A-MEXP-2245) [16] or the 8x60k (A-MEXP-2374) [13]
chips. RNA was extracted separately from three batches, each of 10 female mosquitoes (2- to 5-day-old
F1 A. funestus) from the following groups: (i) resistant (R); (ii) control (C) (mosquitoes not exposed
to the insecticide); and (iii) susceptible (S) (mosquitoes from the insecticides susceptible laboratory
strain, FANG) and utilised for the microarray analyses. The expression profile of CYP6AA1 was
analysed by comparing field samples that had survived exposure to 0.75% permethrin for 1 h (R)
against the fully susceptible laboratory strain, FANG (S). Analysis of data was carried out using
GeneSpring GX 12.0 software. To establish differentially expressed genes a cut-off of 2-fold change
(FC) and a statistical significance of p < 0.01 with Benjamini-Hochberg correction for multiple testing,
and q < 0.01 with Storey bootstrapping was applied. To confirm the expression patterns obtained
by microarray, quantitative RT-PCR (primers in Table S1) was performed for the CYP6AA1 gene in
Mozambique, Malawi, Zambia, and Benin, as well as Uganda samples, as previously described [13].
The relative expression level and fold change (FC) in permethrin-resistant (R) and control mosquitoes
(C) relative to susceptible ones (S) were calculated according to the 2−∆∆CT method incorporating
the PCR efficiency [29] after normalization with the housekeeping genes ribosomal protein S7 (RSP7;
AGAP010592) and actin5C (AGAP000651).

2.3. Amplification and Cloning of Full-Length cDNA of A. funestus CYP6AA1

RNA was extracted using the PicoPure RNA isolation Kit (Arcturus, Applied Biosystems,
Foster City, CA, USA) from three batches of 10 multiple resistant mosquitoes from Malawi and Zambia,
as well as three batches each of 10 mosquitoes from Uganda and Ghana [13,26,27]. Three batches of
the 10 fully susceptible FANG were also extracted. cDNA was synthesised from extracted RNA using
SuperScript III (Invitrogen, Waltham, CA, USA) with oligo-dT20 and RNAse H (New England Biolabs,
Ipswich, MA, USA). Full-length coding sequences of CYP6AA1 were amplified separately from each
complementary DNA (cDNA) using HotStart II Taq Polymerase (Thermo Fisher Scientific, Waltham,
MA, USA) and the primers CYP6AA1_full F and -R, listed in Table S1. In a total, a volume of 14 µL
PCR mix made up of 5X Phusion HF Buffer (1.5 mM MgCl2 in final reaction), 85.7 µM deoxynucleotide
(dNTP) mixes, 0.34 µM each of forward and reverse primers, 0.015 U of Phusion High-Fidelity DNA
Polymerase (Fermentas, Waltham, MA, USA) and 10.71 µL of dH20, and 1 µL cDNA was added.
Amplification was carried out with the following conditions: 1 cycle at 95 ◦C for 5 min; 35 cycles
of 94 ◦C for 20 s (denaturation), 57 ◦C for 30 s (annealing), extension at 72 ◦C for 90 s; and finally,
one cycle at 72 ◦C for 5 min (final elongation). PCR products were cleaned with a QIAquick® PCR
Purification Kit (QIAGEN, Hilden, Germany) and ligated into the pJET1.2/blunt cloning vector using
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the CloneJET PCR Cloning Kit (Fermentas). These were then cloned into the E. coli DH5α, plasmids
miniprepped with the QIAprep® Spin Miniprep Kit (QIAGEN), and sequenced on both strands.

2.4. Cloning and Heterologous Expression of Recombinant A. funestus CYP6AA1

CYP6AA1 cDNA from the most predominant allele from Malawi (with no variation from
five different clones sequenced) was prepared for expression following the strategy of Pritchard
and colleagues [30], by fusing cDNA fragments from a bacterial ompA+2 leader sequence with its
downstream ala-pro linker to the NH2-terminus of CYP6AA1 coding sequence, in frame with its
initiation codon. This was achieved by a PCR reaction using the ompA primers given in Table S1. Details
of these PCRs have been previously described [13]. The PCR product was cleaned, digested with NdeI
and XbaI restriction enzymes, and ligated into the NdeI- and XbaI-linearised expression vector pCWori+,
to create the expression construct pB13::ompA+2-CYP6AA1. This construct was co-transformed together
with a plasmid bearing An. gambiae P450 reductase (pACYC-AgCPR) into E. coli JM109. Membrane
expression and preparation follows the procedure of Pritchard [31]. Recombinant CYP6AA1 expressed
optimally at 21 ◦C and 150 rpm, 40 h following induction with 0.5 mM δ-aminolevulinic acid (δ-ALA)
and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) to the final concentrations. Membrane
content of the P450 was determined spectrally and cytochrome P450 reductase activity determined
using cytochrome c reduction assay as established, respectively [32,33].

2.5. In vitro Metabolism Assays with Insecticides

Metabolism assays were conducted with permethrin (representative type I) and deltamethrin
(type II) pyrethroids, DDT (an organochlorine), the carbamates-bendiocarb and propoxur, as
well as malathion (an organophosphate). Protocols for incubations and high-performance liquid
chromatography (HPLC) analyses for the above insecticides followed procedures previously
published [14,34]. Briefly, using 0.2 M Tris HCL, membrane containing the recombinant CYP6AA1
and AgCPR, reconstituted with cytochrome b5 was incubated with 20 µM insecticide for 1 h, at 30 ◦C
and 1200 rpm shaking. After quenching of reaction for 5 min with 0.1 mL ice-cold methanol tubes
were centrifuged at 16,000 rpm and 4 ◦C for 15 min. 100 mL of supernatant was loaded into HPLC
vials and injected into isocratic mobile phase (90:10 v/v methanol:water) with a flow rate of 1 mL/min
and wavelength of 226 nm, to quantify pyrethroids by peak separation using a 250 mm C18 column
(Agilent, AcclaimTM 120, Dionex, Sunnyvale, CA, USA). Details of the HPLC conditions for the
non-pyrethroid insecticides have been given in previous publications [34,35]. All reactions were
carried out in triplicate with experimental samples containing the nicotinamide adenine dinucleotide
(NADP+) in the NADPH-regenerating buffer and negative control (not containing NADP+). Enzyme
activity was calculated as percentage depletion (the difference in the amount of insecticide(s) remaining
in the +NADPH tubes [containing the NADP+] compared with the negative control, –NADPH) and a
t-test used for statistical analysis.

Steady state kinetic parameters were determined with permethrin and deltamethrin by measuring
the rate of reaction for 20 min while varying the substrate concentrations (3–24 µM) in presence
of 22.5 pmol recombinant CYP6AA1. Reactions were performed in triplicates both for +NADPH
and –NADPH for each concentration. Km and Vmax were established from the plot of substrate
concentrations against the initial velocities and fitting of the data to the Michaelis-Menten module
using the least squares non-linear regression in the GraphPad Prism 6.03 Software (GraphPad Inc.,
La Jolla, CA, USA).

2.6. Transgenic Expression of A. funestus CYP6AA1 in Drosophila melanogaster Flies and Insecticides
Contact Bioassay

To establish whether over-expression of CYP6AA1 alone can confer resistance to the pyrethroid
insecticides, transgenic D. melanogaster flies expressing this gene were generated using the GAL4/UAS
system. The preparation of the transgenic flies followed the protocols described previously [13,16].
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Briefly, full-length CYP6AA1 was amplified from cDNA using the Phusion High-Fidelity DNA
Polymerase (Thermo Fisher Scientific, Waltham, MA, USA) and cloned into the pJET1.2/blunt cloning
vector (Thermo Fisher Scientific, Waltham, MA, USA). The primers used are listed in Table S1.
One predominant clone from Malawi was selected and cloned into the pUASattB vector using
primers containing BglII and XbaI restriction sites. Using the PhiC31 system, clones were injected
into the germ-line of a D. melanogaster strain carrying the attP40 docking site on chromosome 2
[“y1w67c23; P{CaryP}attP40, “1;2”] by Genetic Services (Sudbury, MA, USA) to generate the transgenic
line UAS-CYP6AA1. Ubiquitous expression of the transgene in adult F1 progeny (experimental
group) was obtained after crossing virgin females from the driver strain Act5C-GAL4 [“y [1] w
[*]; P(Act5C-GAL4-w) E1/CyO”,“1;2”] (Bloomington Stock Centre, Bloomington, IN, USA) with
UAS-CYP6AA1 males. Similarly, adult F1 control progeny (control group) with the same genetic
background as the experimental group but without CYP6AA1 insert were obtained by crossing virgin
females from the driver strain Act5C-GAL4 and UAS recipient line males (which do not carry the
pUASattB-CYP6AA1 insertion).

For insecticide bioassay, three to five-day old experimental and control female F1 flies were used
for the contact insecticide assay with 2% permethrin and 0.15% deltamethrin impregnated filter papers
prepared in acetone and Dow Corning 556 Silicone Fluid (BHD/Merck, Hesse, Germany). These
papers were rolled and introduced into 45 cc plastic vials to cover the entire wall. The vials were
plugged with cotton soaked in 5% sucrose. 20–25 flies were placed in each vial, and the mortality plus
knockdown was scored after 1 h, 2 h, 3 h, 6 h, 12 h, 24 h and 36 h of exposure to the insecticide. For
each insecticide, assays were performed in five replicates and Student’s t-test used to compare the
mortality plus knockdown between the experimental groups and the control.

2.7. Polymorphism Analysis of CYP6AA1 Across Africa

To establish the pattern of genetic variability of CYP6AA1, the full-length cDNA from insecticides
resistant individuals across three regions of Africa was amplified, as well as from the FANG [28].
Amplification and cloning approach utilised are provided in Section 2.3. Following sequencing of
the gene on both strands, polymorphisms were detected through manual examination of sequence
traces using BioEdit version 7.2.3.0 [36] and sequence differences in multiple alignments using CLC
Sequence Viewer 6.9 (http://www.clcbio.com/). Different haplotypes were compared by constructing
a phylogenetic maximum likelihood tree using MEGA 6.06 [37]. Genetic parameters of polymorphism
including number of haplotypes (h) and its diversity (Hd), number of polymorphic sites (S) and
nucleotide diversity (π) were computed using DnaSP 5.10.01 [38]. In addition, a haplotype network
was built using the TCS program (http://darwin.uvigo.es/software/tcs.html).

2.8. Amino Acid Sequence Characterisation of A. funestus CYP6AA1

To identify the features of CYP6AA1 which could impact its activity, its coding sequence was
compared to other closely related P450s. Putative substrate recognition sites 1-6 of A. funestus
CYP6AA1, A. gambiae CYP6AA1 (AGAP002862-PA) and A. minimus CYP6AA3 (GenBank: AAN05727.1)
were compared by mapping their amino acid sequences to that of Pseudomonas putida CYP101A
(P450cam) [39,40]. Structurally conserved regions of the P450s were also predicted using an online
tool, CYPED [41].

2.9. Homology Modelling and Docking Simulations

To investigate the ability of CYP6AA1 to interact with the substrate insecticides, a 3D model of this
P450 was created using standalone tool EasyModeller [42] and CYP3A4 (PDB: 1TQN) [43] as a template
with overall 35% identity. Virtual datasets of ligand insecticides: 1R-cis permethrin (ZINC01850374),
deltamethrin (ZINC01997854), DDT (ZINC01530011) and bendiocarb (ZINC02015426) were retrieved
from the library in ZINC12 database (https://zinc.docking.org/) [44]. Docking simulations were
carried out using Blind Docking Server (http://bio-hpc.ucam.edu/webBD/index.php/entry) with

http://www.clcbio.com/
http://darwin.uvigo.es/software/tcs.html
https://zinc.docking.org/
http://bio-hpc.ucam.edu/webBD/index.php/entry
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algorithm based on AutoDock Vina. For each ligand, 30 binding poses were generated and sorted
according to binding energy and conformation in the model’s active site. Figures were prepared
using the PyMOL 1.7 [45]. Non-bonded interactions were predicted using protein-ligand interaction
profiler [46].

To compare predicted activities between A. funestus CYP6AA1 and its ortholog from A. gambiae,
amino acid sequence of A. gambiae CYP6AA1 (AGAP002862-PA) was also modelled and molecular
docking simulations with the above insecticides carried out as explained above. In addition,
intermolecular interactions between the insecticide ligands and A. gambiae CYP6AA1 models was also
predicted using protein-ligand interaction profiler [46].

2.10. Accession Numbers

The DNA sequences of CYP6AA1 reported in this paper have been deposited in the GenBank
database (GenBank KY615238-KY615259).

3. Results

3.1. Transcription Profile of CYP6AA1 in Pyrethroid-Resistant A. funestus Across Africa

Analysis of microarray data revealed that the A. funestus CYP6AA1 (AFUN015786-RA), was
consistently, significantly over-expressed (p < 0.05) in the pyrethroid-resistant populations from
southern African countries (Malawi, Mozambique and Zambia) compared to the susceptible FANG.
The highest fold-change (FC) was observed in Mozambique with FC of 13.2 (Figure 1A) more than twice
the level observed in Malawi (FC of 5.3) and Zambia (FC of 5.3), consistent with the higher pyrethroids
resistance levels recorded in Mozambique [47]. CYP6AA1 was also significantly over-expressed in the
mosquitoes from Benin (West Africa), compared with FANG, but at a much lower level (FC 2.6).
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Figure 1. Transcription profile of CYP6AA1 across Africa. (A) Microarray -fold change of CYP6AA1 in
four African countries using the 8x60k chip in comparison to the FANG (Funestus Angola) susceptible
strain, from [13]; (B) quantitative reverse transcription polymerase chain reaction (qRT-PCR) expression
of CYP6AA1 in five countries comparing the permethrin-resistant mosquitoes to the FANG susceptible
(R-S) and the control unexposed to insecticides, to FANG (C-S). * Significantly different at p < 0.05.
ns = not statistically significant.

qRT-PCR of CYP6AA1 in these four countries confirmed the microarray expression patterns, with
a higher over-expression of CYP6AA1 in southern Africa (with again the highest level observed in
Mozambique) (Figure 1B). Low and non- significant level of expression was observed in Benin for both
the permethrin-resistant and the control mosquitoes. The population of Uganda (Tororo) from East
Africa was also analysed, but it showed down-expression of CYP6AA1 compared to the FANG.
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3.2. Expression Pattern of Recombinant CYP6AA1

Optimal expression of recombinant CYP6AA1 was obtained 45 h post-induction, with a P450
content of 0.2 nmol/mg protein ± 0.02 (n = 3). This is much lower than the concentrations
previously reported for other recombinant P450s, for example A. funestus CYP6P9a and CYP6P9b [13].
The recombinant protein produced cytochrome P450 reductase activity of 31.46 nmol cytochrome c
reduced/min/mg ± 5.46 (n =3), an activity lower than established for CYP6P9a and CYP6P9b [13].

3.3. Validation of the Role of A. funestus CYP6AA1 in Metabolism of Insecticides Using In Vitro
Metabolism Assays

HPLC analyses established that CYP6AA1 metabolises permethrin and deltamethrin respectively,
with high depletion of 83.5% ± 4.6 (p < 0.005) and 92.77% ± 2.26 (p < 0.001), after an hour of incubation
(Figure 2A). No activity was observed towards non-pyrethroid insecticides except for bendiocarb,
which exhibited a depletion of 23.42% ± 4.02 (although not statistically significant [p = 0.08]), with
polar metabolites eluting at the beginning of the chromatogram of incubation with NADPH+. These
kind of putative metabolites have been described from in vitro assays of recombinant A. funestus
CYP6Z1 with bendiocarb [10].
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Figure 2. Metabolism of pyrethroids by recombinant A. funestus CYP6AA1. (A) Percentage depletion
of various insecticides (20 µM) with recombinant CYP6AA1; results are average of three replicates
compared with negative control (-NADPH); *** Significantly different from -NADPH) at p < 0.005.
(B) Michaelis-Menten plot of permethrin and deltamethrin metabolism by recombinant CYP6AA1
protein. Values are mean ± S.E.M. of three experimental replicates compared with negative control,
without NADPH (-NADPH).

In contrast, very low activity was observed with propoxur (8.51% ± 2.11, p = 0.2) with no polar
metabolites eluting at the beginning of chromatogram. Also, less than 5% of DDT (even following
addition of solubilising agent sodium cholate) and malathion were depleted by the recombinant
CYP6AA1, indicating lack of enzymatic activity toward the organochlorine and organophosphate
insecticides. This is in line with the DDT and malathion susceptibility observed in southern Africa,
Mozambique, for example [47,48].

Metabolism of pyrethroids follows the canonical Michaelis-Menten pattern with high maximal
catalytic rate (Kcat) of 11.99 min−1 ± 2.17 and 15.65 min−1 ± 2.642, respectively for permethrin and
deltamethrin (Figure 2B). The affinity (Km) for permethrin and deltamethrin were also comparable,
33.62 µM ± 9.180 and 30.01 µM ± 7.915, respectively. Though these Km values are within the ranges
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described for binding and metabolism by insect cDNA-expressed P450s [49], the values are higher than
those obtained from A. funestus CYP6P6P9a and CYP6P9b [13], and lower than Km values obtained
from recombinant A. minimus CYP6AA3 and CYP6P7 with pyrethroids [21]. Thus, the recombinant
CYP6AA1 exhibited catalytic efficiency of 0.36 min−1 µM−1 ± 0.12 and 0.51 min−1 µM−1 ± 0.16
respectively, for permethrin and deltamethrin.

3.4. Validation of the Role of CYP6AA1 in Conferring Pyrethroid Resistance in Drosophila Flies Using In Vivo
Transgenic Expression

To establish the role of CYP6AA1 in pyrethroid resistance in A. funestus populations, the
P450 was expressed in transgenic Drosophila flies which were used in bioassays with pyrethroid
insecticides permethrin and deltamethrin. Contact bioassays carried out using 2% permethrin and
0.15% deltamethrin established that transgenic flies over-expressing CYP6AA1 were resistant to
pyrethroids with significantly reduced mortalities for both permethrin and deltamethrin compared to
control flies.

Significantly reduced mortality rates were observed with permethrin for experimental flies
(transgenic Act5C-CYP6AA1 females) at all the eight different exposure times compared with the
control groups (mean mortality of 38.1% in transgenic Act5C-CYP6AA1 vs. 61.6 in control; p < 0.001)
(Figure 3A).
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Figure 3. Bioassay results with transgenic flies. (A) Progenies of crosses between Actin5C-GAL4
and UAS-CYP6AA1 (transgenic flies over-expressing An. funestus CYP6AA1) with permethrin vs.
control flies; (B) Progenies of crosses between Actin5C-GAL4 and UAS-CYP6AA1 (transgenic flies
over-expressing A. funestus CYP6AA1) with deltamethrin vs. control flies. Data is shown as mean ±
S.E.M. significantly different: * p < 0.05, ** p < 0.01.

A similar pattern was observed using deltamethrin (Figure 3B) with a significantly reduced
mortality in the transgenic Act5C-CYP6AA1 females compared with the control group (mean mortality
of 49% in transgenic Act5C-CYP6AA1 vs. 65.3 in control; p < 0.05) at 12 h and 36 h of exposure.
These results confirmed that over-expression of CYP6AA1 alone is sufficient to confer resistance to
permethrin and deltamethrin.

3.5. Africa-Wide Pattern of Genetic Variability of CYP6AA1

Analysis of the polymorphism patterns of full-length cDNA sequences of CYP6AA1 (1518 bp)
from different regions of Africa revealed relative homogeneity within each geographic region, with
haplotypes from each country forming a cluster in the maximum likelihood phylogenetic tree
(Figure 4A). However, Malawi and Zambia haplotypes cluster together in the same branch, indicative
of their geographic closeness.
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Figure 4. Pattern of genetic variability and polymorphism of CYP6AA1 DNA sequences across Africa.
(A) Maximum likelihood phylogenetic tree of CYP6AA1 DNA sequences; (B) Haplotype networks
(TCS) for the CYP6AA1 sequences in A. funestus. STH = haplotype shared between Malawi and
Zambia; GH = Ghana; UG = Uganda; ZB = Zambia; FG = FANG. Haplotypes are presented in
circular shape scaled to reflect their respective frequencies. * = ancestral haplotype. Lines connecting
haplotypes represent a single mutation event (respective polymorphic positions are given on each
branch). (C) Neighbor-joining tree of the genetic distances showing that southern (Malawi and Zambia),
West (Ghana) and East (Uganda and FANG) populations are genetically differentiated.

CYP6AA1 is polymorphic with 10 haplotypes across Africa and 131 polymorphic sites of which
62 were synonymous, and 65 led to amino acids substitutions (Table 1, Supplementary Figure S1).
The bulk of the polymorphism were contributed from larger variations in the FANG and Uganda
sequences (S = 60 and 24 respectively) compared with the southern African sequences, Malawi with
no polymorphism and Zambia (S = 1). The highest homogeneity was observed in southern African
countries (especially Malawi with no polymorphism at all and Zambia with only a single polymorphic
site) and Ghana (West Africa) with no polymorphism at all, compared with Uganda, with high
polymorphism and FANG which exhibited the highest polymorphism. This is also supported by the
presence of a predominant haplotype in the southern African populations (Figure 4A and haplotype
STH in Figure 4B). Thus, there is reduced variation in the resistant populations from southern Africa
and west Africa, and even in Uganda populations compared with the FANG.

Table 1. Summary statistics for polymorphism of CYP6AA1 haplotypes across Africa.

Samples/Country N S h Hd Syn Nonsyn π (k) D (Tajima) D* (Fu and Li)

Malawi 5 0 1 0.00 0 0 0.00 - -
Zambia 4 1 2 0.50 0 1 0.0003 (0.500) −0.6100 ns −0.4800 ns

Uganda 4 24 3 0.833 18 6 0.0079 (12.00) −0.8578 ns −0.8578 ns

Ghana 4 0 1 0.00 0 0 0.00 - -
FANG 5 60 4 0.900 23 31 0.0215 (32.66) 0.85783 ns 0.9800 ns

All 22 131 10 0.840 62 65 0.026 (40.13) 0.28000 ns 1.0100 ns

N = number of sequences (n); S, number of polymorphic sites; h, haplotype; Hd, haplotype diversity;
Syn, Synonymous mutations; Nonsyn, Non-synonymous mutations; π, nucleotide diversity (k = mean number of
nucleotide differences); Tajima’s D and Fu and Li’s D statistics; ns, not significant.

Haplotype diversity is high (Hd = 0.84), from 10 haplotypes out of 22 sequences from four different
countries). The very low Hd in the sequences, especially from Malawi and Ghana (Hd = 0.00, π = 0.00
for both) suggests a directional selection (selective pressure) acting on CYP6AA1 in populations from
these two regions. A neutrality test of all sequences revealed Li and Fu’s D* as positive but not
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statistically significant. When all sequences were analysed according to country of origin, statistics was
only positive with FANG sequences, suggesting rare polymorphism and lack of background selection.

Analysis of the genetic structure of the CYP6AA1 sequences further supported the differences
in genetic diversity observed between southern (Malawi and Zambia), West (Ghana) and East Africa
(Uganda and FANG) populations. High genetic differentiation estimates were observed between
Ghana (0.82 < KST < 1), East African (0.53 < KST < 0.68) and the other two populations, whereas the
two southern African populations exhibited a null level of genetic differentiation (KST = 0.0) (Table S2)
and cluster together on the Neighbour-joining tree of genetic distances (Figure 4C).

3.6. Amino Acid Sequence Characterisation of A. funestus CYP6AA1

Comparison of A. funestus CYP6AA1 to other closely related sequences reveals that it is 89%
identical to its ortholog A. minimus CYP6AA3 (GenBank: AAN05727.1), 87% identical to A. gambiae
CYP6AA1 (AGAP002862) and 57% identical to Culex pipiens pallens CYP6AA9 (GenBank: AKA45037.1)
(Figure 5). Apart from Culex CYP6AA9 (515 amino acids) all the other three P450s are composed of 505
amino acids.
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Figure 5. Comparison of A. funestus CYP6AA1 amino acid sequences to A. minimus CYP6AA3 and
A. gambiae CYP6AA1. The solid red lines represent helices A-L, while dashed blue lines correspond
with the substrate recognition sites 1–6. Solid purple lines identify the structurally conserved motifs of
the CYP450s. Variable residues are highlighted in pink. Residues 310–315 corresponds to the oxygen
binding pocket.

Sequence-to-sequence mapping reveals that the WxxxR motif, the signatory oxygen-binding
pocket (AGFETS)/proton transfer groove, the ExxR motif which stabilises the heme structural core, the
cysteine pocket/heme-binding region (PFxxGxxxCxG), which forms the fifth axial ligand to the heme
iron [50,51] were all identical and conserved in the three different Anopheles sequences (Figure 5). Major
sequence variations which could impact the activity of A. funestus CYP6AA1 compared with A. minimus
CYP6AA3 and An. gambiae CYP6AA1 were observed in the meander, the substrate recognition site 3
(SRS-3), and SRS-6.
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3.7. In silico Prediction of Insecticides Binding Parameters and Conformation

To understand the underlying mechanism which makes A. funestus CYP6AA1 able to metabolise
pyrethroid insecticides, a docking simulation was carried out using the homology models of A. funestus
CYP6AA1 and A. gambiae CYP6AA1 with insecticides from three of the four classes used in public
health control of malaria vectors. The binding parameters for each insecticide are provided in
Table S3. For A. funestus CYP6AA1 model, deltamethrin exhibited the highest affinity (lowest binding
energy) with high contribution from hydrophobic interactions and intermolecular hydrogen bonding.
The insecticide docked into the active site of CYP6AA1 with the 4′ spot of phenoxy ring oriented
above the heme at a distance of 3.6Å from heme iron, suggesting ring hydroxylation (Figure 6B).
4′-hydroxy metabolite has been described as the major route of metabolism of pyrethroids, for example
by recombinant CYP6M2 from A. gambiae [14] and in other organisms [52].
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Figure 6. Predicted binding mode of (A) permethrin (bright orange stick), (B) deltamethrin (green stick),
(C) bendiocarb (cyan stick), and (D) 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) (yellow stick)
in A. funestus CYP6AA1. CYP6AA1 helices are presented in hot pink; heme atoms are in stick format
and grey. Distance between possible sites of metabolism on the insecticides and heme iron are annotated
in Angstrom.

In contrast, lesser but comparable affinity was observed with deltamethrin in the active site
of A. gambiae CYP6AA1 model consistent with the pose of deltamethrin in the active site of this
P450 (2 position of benzyl ring positioned 6.4Å from heme iron) (Figure S2B). Very high affinity was
also observed with permethrin in the two models of CYP6AA1 from both species, but permethrin
docked with the gem dimethyl moiety of cyclopropyl group above the heme in both A. funestus
and A. gambiae models, respectively (Figures 6A and S2A). The trans methyl group is located at
distance of 5.1Å and 5.7Å respectively for the two models, suggesting oxidative attack to produce
trans-methyl hydroxypermethrin.

For bendiocarb the second ranked docking solution was the top productive pose in A. funestus
CYP6AA1. The binding energy of −7.8 kcal/mol indicates moderate affinity to CYP6AA1, compared
with A. gambiae CYP6AA1 with lower affinity (higher binding energy) of −7.2 kcal/mol. This is
consistent with the moderate scores obtained from hydrophobic interactions, which is less than half
the values obtained from the pyrethroids. The carbamate insecticide docked productively with the
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carbamic ester group above the heme catalytic centre, at 3.7Å (Figure 6C), suggestive of ester hydrolysis
to generate benzodioxol-4-ol. The same pattern was observed in A. gambiae CYP6AA1, but with the
carbamate ester located considerably away, at 6.1Å from the heme iron (Figure S2C).

DDT binds unproductively in the active site of A. funestus CYP6AA1 model with the chloride
atoms of the trichloromethyl group projecting toward the heme catalytic centre (Figure 6D).
The chloride atoms are located 7.2Å from the heme iron, a distance far for meaningful interaction and
catalysis to occur. Thus, DDT exhibited the lowest affinity, on average being three times lower than
when obtained with the pyrethroids, and half that observed with bendiocarb. Hydrophobic interaction
contribution was also the lowest in the case of DDT. However, the trichloromethyl group is pointed
away from the heme catalytic centre DDT docked in A. gambiae CYP6AA1 far away (9.1Å) from heme
catalytic centre (Figure S2D), with no possibility of interactions and catalysis, even though it exhibited
strong affinity in this mode (−7.4 kcal/mol).

Patterns of intermolecular interactions between the ligands and CYP6AA1 models were also
established using a protein-ligand interaction profiler [46]. Individual amino acids predicted as
responsible for catalysis (involved in hydrophobic interaction, aromatic π-stacking and hydrogen
bonding) with permethrin, deltamethrin, and bendiocarb were compared from docking simulations
of models from A. funestus and A. gambiae, respectively. For both permethrin and deltamethrin,
Phe309 was predicted to enhance catalysis through π-stacking with the phenoxy ring in the case of
permethrin, and with both phenoxy- and benzyl rings in the case of deltamethrin, in A. funestus model
(Figure S3A,B). This residue belongs to the cluster of three phenylalanine residues (Phe307Phe308Phe309)
from the substrate recognition site-4 (SRS-4) within the αI helix (Figure 5). Such an array of aromatic
side chains is thought to stabilise the aromatic rings via resonance stabilisation as the alcohol/acid
group of the insecticides approach the heme catalytic centre. The same residue along with Tyr109

(SRS-1) were predicted to enhance catalysis via π-stacking with the aromatic rings of both permethrin
and deltamethrin in A. gambiae CYP6AA1 active site (Figure S4A,B). For both A. funestus CYP6AA1
and A. gambiae CYP6AA1 the same residue was also predicted to interact with the aromatic ring
of bendiocarb (Figure S3C and S4C, respectively). Another critical residue (Phe122 from SRS-1)
was predicted to be involved in hydrophobic interactions with aromatic rings of deltamethrin and
bendiocarb in the A. funestus CYP6AA1 models (Figure S3B,C), and with permethrin, deltamethrin
and bendiocarb in A. gambiae model (Figure S4A–C). For both models, the side chain of Lys215 from
SRS-2 was predicted to be involved in salt-bridge to benzyl ring of permethrin and deltamethrin in
A. gambiae CYP6AA1 and with the benzyl ring of permethrin in A. funestus model.

No hydrogen bonding between permethrin and A. funestus CYP6AA1 residues was predicted
(Table S3). In contrast, two intermolecular hydrogen bonds were predicted for deltamethrin
(Figure S3B), both donated by the guanidinium side chain of Arg53 to ester oxygen of the acid
moiety. This bond contributed an energy of −1.7 kcal/mol of energy. For bendiocarb, a hydrogen
bond was donated by the alcohol group of Thr314 in A. funestus CYP6AA1 (located within the SRS-4,
oxygen binding pocket) to the ester oxygen of the carbamate moiety (Figure S3C). This contributed
−1.4 kcal/mol of energy. In contrast, for this insecticide, two hydrogen bonds were predicted in the
model of CYP6AA1 from A. gambiae: (i) donated by alcohol side chain of Tyr109 to benzodioxol moiety;
(ii) donated by His120 to the amide nitrogen (-NH) of the methylcarbamate moiety.

Finally, a halogen bond was predicted between Arg106 of A. gambiae CYP6AA1 with deltamethrin
(Figure S4C, in red). This interaction possibly boosts up the affinity towards deltamethrin evident in
the lowest energy of binding obtained with this insecticide for A. gambiae CYP6AA1.

4. Discussion

The recent disappointment in the efficacy of malaria vaccine RTS_S/AS01 [9] and the fact that
scale-up in the distribution of bed nets accounted for 63% of the malaria incidences/cases averted
between 2001–2015 [1], suggests that vector control is currently the cornerstone for the control and
elimination of malaria. However, timely implementation of the suitable vector control tools relies on
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the knowledge of insecticide resistance mechanisms and the various genes driving the resistance in
the field.

A. funestus CYP6AA1 is an important resistance gene, as shown in its consistent upregulation
in various populations across Africa, particularly in southern Africa, as it is only moderately
over-expressed in West (Benin), and even down-regulated in East Africa (Uganda). Overall, the
expression pattern of CYP6AA1 resembles that of the duplicated P450 genes CYP6P9a and CYP6P9b
which have so far been found to be highly over-expressed in southern Africa and only moderately
over-expressed in West (Benin) and East Africa (Uganda and Kenya) [26,53]. CYP6AA1 is located on
the chromosome 2R, together with CYP6P9a and CYP6P9b, on the same cluster of cytochrome P450s
spanning the rp1 pyrethroid resistance quantitative trait locus (QTL) [15].

CYP6AA1 exhibited pyrethroid activities comparable to values observed from other P450s
implicated in pyrethroid resistance in A. funestus, notably CYP6P9a and CYP6M7 [13], and CYP6Z1 [10]
or other A. gambiae P450s such as CYP6M2 [14]. The conservation of this gene in A. funestus, A. minimus,
and A. gambiae particularly suggests that its detoxification function was retained even after speciation.
Indeed, the ortholog from A. minimus was shown to metabolise type I and type II pyrethroids in vitro,
with higher activity towards deltamethrin than permethrin [21]. The different binding modes of
the pyrethroids obtained from molecular docking into active site of A. funestus and A. gambiae
CYP6AA1 suggests possibility of multiple metabolites. Of course, the ortholog A. minimus CYP6AA3 is
known to possess a very large substrate access channel [54] which accommodates different substrates
conformations, resulting in multiple metabolites, e.g., from deltamethrin metabolism [55]. Like
A. funestus CYP6AA1, the ortholog from A. minimus displayed no activity towards malathion and
propoxur. The inability of CYP6AA1 to metabolise malathion further explains the field susceptibility to
these insecticides in A. funestus [47,56].

It is important to monitor the spread and evolution of this potential cross resistance gene, as it is
the second P450 found in A. funestus with potential metabolic activity towards bendiocarb, though with
very low activity compared with A. funestus CYP6Z1 [10]. A. funestus CYP6AA1 is not polymorphic
like the A. funestus CYP6M7 characterised by [13], and is possibly undergoing directional selection in
southern and west Africa. This is because it exhibited highest overexpression in the southern Africa,
consistent with a very high pyrethroids resistance in the region. It also exhibited the lowest genetic
diversity in southern Africa and west Africa, compared to east of Africa and the FANG. It is important
to continue monitoring this gene, as it is known that resistance genes could undergo directional
selection with beneficial mutations selected [16]. For example, allelic variation of the major resistance
genes CYP6P9a and -b has been shown to be the major driver of resistance to pyrethroid insecticides
across Africa in the same A. funestus species [17].

Though CYP6AA1 exhibited lower activity in vitro and confers lower resistance to permethrin
and deltamethrin in transgenic flies compared with the major pyrethroid resistance gene CYP6P9b [17]
it is an important enzyme, which possibly works in synergy with the other insecticide resistance genes
to orchestrate insecticide detoxification.

In silico predictions using modelling and docking simulations have become important
tools used to study insecticide resistance genes and their heterogeneities in the metabolism of
insecticides [14,34,57,58]. The binding and metabolism of permethrin by CYP6AA1 without hydrogen
bonding contributions was as observed with A. arabiensis CYP6P4 model [34], and suggests that
hydrogen bonding does not contribute to non-bonded interactions to effect catabolism of permethrin in
A. funestus CYP6AA1. Metabolism of permethrin is possibly driven through hydrophobic interactions,
as further supported by the presence of Trp219 of SRS-2 within its catalytic hotspot. This is the
opposite of the situation with deltamethrin, in which hydrogen bonding plays a significant role in
energetic contribution. Indeed, differences in the composition of amino acids lining catalytic hotspot
are known to dictate presence or absence of intermolecular hydrogen bonding interactions with
resulting differences in choice of substrates even among closely related proteins. For example, polar
cages composed of hydrophilic residues in the active site of specialist CYP6B1 from Papilio polyxenes
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contribute to the P450’s hydrogen bonding capabilities which contribute to its ability to metabolise
only two furanocoumarins [59]. In contrast, the generalist CYP6B8 from Helicoverpa zea is devoid of
polar cages (hydrogen bonding network) in its active site and was established to metabolise diverse
allelochemicals, and even a pyrethroid cypermethrin.

The inability of A. funestus CYP6AA1 to metabolise DDT is consistent with docking predictions,
with the organochloride insecticide binding unproductively. Indeed, the productive pose of DDT
has been established as C-1 of the trichloromethyl group docking above the heme in A. gambiae
CYP6Z1 [60].

5. Conclusions

Knowledge of insecticide resistance in malaria mosquitoes and the mechanisms driving it in the
field is essential for design of appropriate malaria control tool and for management of the resistance.
However, this requires a thorough understanding of the molecular basis of the resistance to inform
control programs and influence policy decisions. Here, we established that CYP6AA1 contributes to the
cocktail of P450s responsible for pyrethroids resistance in southern African populations of A. funestus.
But, unlike the major pyrethroid resistance genes CYP6P9a and –b, this P450 exhibited activity toward
indoor residual spray insecticide bendiocarb as well, making it a potential cross-resistance gene which
should be monitored closely in the field.
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insecticides docked into the active site of CYP6AA1 models.
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