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Abstract: Deinococcus species display a high degree of resistance to radiation and desiccation due to
their ability to protect critical proteome from oxidatively generated damage; however, the underlying
mechanisms are not understood. Comparative analysis of DNA repair proteins reported here has
identified 22 conserved signature indels (CSIs) in the proteins UvrA1, UvrC, UvrD, UvsE, MutY,
MutM, Nth, RecA, RecD, RecG, RecQ, RecR, RuvC, RadA, PolA, DnaE, LigA, GyrA and GyrB, that are
uniquely shared by all/most Deinococcus homologs. Of these CSIs, a 30 amino acid surface-exposed
insert in the Deinococcus UvrA1, which distinguishes it from all other UvrA homologs, is of much
interest. The uvrA1 gene in Deinococcus also exhibits specific genetic linkage (predicted operonic
arrangement) to genes for three other proteins including a novel Deinococcus-specific transmembrane
protein (designated dCSP-1) and the proteins DsbA and DsbB, playing central roles in protein
disulfide bond formation by oxidation-reduction of CXXC (C represents cysteine, X any other
amino acid) motifs. The CXXC motifs provide important targets for oxidation damage and they
are present in many DNA repair proteins including five in UvrA, which are part of Zinc-finger
elements. A conserved insert specific for Deinococcus is also present in the DsbA protein. Additionally,
the uvsE gene in Deinococcus also shows specific linkage to the gene for a membrane-associated
protein. To account for these novel observations, a model is proposed where specific interaction of
the Deinococcus UvrA1 protein with membrane-bound dCSP-1 enables the UvrA1 to receive electrons
from DsbA-DsbB oxido-reductase machinery to ameliorate oxidation damage in the UvrA1 protein.

Keywords: Deinococcus species; radiation and desiccation resistance; conserved signature indels;
oxidatively generated damage; CXXC motifs in protein sequences; DsbA proteins; DsbB proteins;
UvrA1 proteins; UvsE proteins

1. Introduction

Members of the genus Deinococcus, which are part of the phylum Deinococcus-Thermus [1–6]
are characterized by their extraordinary tolerance to ionizing radiation (IR), ultraviolet radiation
(UV) and desiccating conditions [7–10]. Due to their high level of resistance to radiation and
desiccation, which are lethal or growth inhibitory to most other organisms, Deinococcus species have
been extensively studied for understanding the biochemical mechanisms responsible for their resistance
characteristics [7,9,11–18]. Earlier work shows that radiation (ionizing or UV) or desiccating conditions
produce comparable DNA damage in Deinococcus species as in sensitive organisms (e.g., Escherichia coli)
but in contrast to the sensitive organisms, damaged DNA in Deinococcus species gets efficiently
repaired leading to their observed resistance phenotype [9,11,12,14,19,20]. Similar to other prokaryotic
organisms, Deinococcus species possess classical DNA repair machinery consisting of the base excision
repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and double-strand break
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(DSB) repair pathways [11,12,16,21]. Most of the proteins in these pathways are conserved and
thus far very few novel aspects of these proteins or DNA repair pathways have been identified that
could account for the highly efficient mode of DNA repair in Deinococcus species [11,12,16,21]. The
genomes of Deinococcus species also contain a number of proteins which are specific for this group
of bacteria [21,22] and the genes for some of them (e.g., DdrA, DdrB, DdrD, PprA) are induced upon
radiation or desiccation exposure [23,24], suggesting that they play important roles in DNA damage
response [11,12,14,23]. However, our current understanding of the cellular functions of these proteins,
or other proteins involved in DNA repair processes, does not satisfactorily account for the efficient
repair of DNA observed in Deinococcus species [11,12,25–27].

The detrimental effects of radiation or desiccation on living organisms, including DNA damage
and strand breaks, are mainly produced by oxidatively generated damage caused by reactive oxygen
species (ROS) [9,12,14,19,20,28,29]. However, the damaging effects of ROS are not limited to DNA but
oxidation and inactivation of proteins are also important consequences [12,14,20,29–31]. An important
observation in this context is that while DNA from both radiation-sensitive and -resistant organisms
is equally susceptible to radiation or desiccation-induced damage, there is much less damage of the
proteome in resistant organisms such as Deinococcus in comparison to sensitive organisms [9,12,14,19,20].
This observation indicates that the ability of Deinococcus species to withstand the effects of high
doses of radiation and other ROS-inducing conditions is in large part due to their unique ability
to protect their proteome from oxidatively generated damage [9,12,14,20]. Although Deinococcus
species contain several proteins involved in antioxidant defense including thioredoxin, glutaredoxin,
thioredoxin reductase, glutathione, glutathione reductase, etc., their presence is not unique to these
bacteria [12]. However, recent studies show that Deinococcus species contain much higher intracellular
concentration of Mn+2 and Mn+2-phosphate complexes, which are potent scavengers of superoxide
radicals, suggesting that the high Mn+2/Fe+2 ratio in these organisms could provide protection
from oxidative stress [12,14,20,32–35]. While the role played by high Mn+2/Fe+2 concentrations
in protecting from oxidative stress is of importance, it does not explain the selective protection of
proteome (as compared to DNA) in Deinococcus species. Thus, it is possible that in addition to the role
played by Mn+2 complexes and other small molecules, proteins involved in DNA repair processes from
Deinococcus species may contain certain novel molecular attributes that protect them from oxidatively
generated damage. However, thus far no unique features in DNA repair proteins from Deinococcus
have been identified.

Our comparative genomic analyses on members of the phylum Deinococcus-Thermus have
identified large numbers of novel sequence features that are specific for the Deinococcus species [5,22,36].
These novel sequence characteristics include several conserved signature indels (CSIs) in important
proteins of Deinococcus species as well as more than 28 conserved signature proteins (CSPs), whose
homologs are only present in all/most Deinococcus species [5,22]. Earlier work on CSIs shows that
they are generally present on protein surfaces and mediate novel protein-protein or protein-DNA
interactions, which are important for the CSI-containing organisms [37–40]. Similarly, the CSPs
found only in a given group of organisms, are also predicted to play important cellular functions
in these organisms [41–43]. A number of such proteins (viz. DdrB, PprA), which are specifically
found in species from either the genus Deinococcus or the order Deinococcales have been extensively
studied and are known to play important role in the DNA repair process [26,27,44–46]. In view of the
important roles that CSIs and CSPs play in conferring novel cellular functions, the present study was
undertaken to identify CSIs which are specifically found in the DNA repair proteins from Deinococccus
species. Results of these studies have identified 22 CSIs in many important DNA repair proteins
from different pathways. Of the identified CSIs, one CSI of much interest consists of a 30 amino acid
insert uniquely found in all of the UvrA1 homologs from Deinococcus species. The UvrA1 protein,
which is part of the nucleotide excision repair (NER) pathway [12,47], plays a central role in the
DNA repair process due to its ability to initially recognize a broad range of DNA damages including
cyclobutane pyrimidine dimers and 6,4-photoproducts formed by UV light and multiple other types of
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damaged nucleotides/bases resulting from exposure to ionizing radiation [11,12,47–49]. Subsequently,
other proteins in the NER pathway viz. UvrB and UvrC excise the damaged region and the gap
created is filled by DNA polymerase I and ligated by DNA ligase [11,12,47–49]. Our studies show
that the gene for UvrA1 in Deinococcus species exhibits a novel genetic organization (i.e., operonic
arrangement) with the genes for a Deinococcus-specific CSP (dCSP-1, predicted to be a transmembrane
protein) and two other membrane-associated proteins (DsbA and DsbB), which are known to play
central roles in disulfide bond formation in proteins by oxidation-reduction of cysteine residues in
CXXC motifs [50–52]. Our analysis shows that many DNA repair proteins contain surface exposed
CXXC motifs, which are highly susceptible to oxidation damage [30,53,54] and of these UvrA protein
contains 5 CXXC motifs, which are part of three zinc-finger elements commonly utilized by proteins
for recognizing either specific regions in DNA or for mediating protein-protein interactions [47,54–56].
Additionally, our results also reveal that the UvsE protein, central to the UvsE-dependent pathway of
excision DNA repair [49], also contains a 1 amino acid CSI specific for Deinococcus homologs and the
gene for this protein exhibits a novel genetic linkage with the gene for a predicted transmembrane
protein. The significances of these findings as well as a number of other novel observations on DNA
repair proteins from Deinococcus species regarding their ability to protect their DNA repair machinery
from oxidatively generated damage are discussed.

2. Materials and Methods

2.1. Identification of CSIs in DNA Repair Proteins

Identification of conserved signature indels in DNA repair proteins was carried out as described in
our earlier work [5,57]. In brief, BLASTp [58] searches were conducted on different DNA repair proteins
from the genome of Deinococcus radiodurans R1 [59] to retrieve homologs from different members of the
Deinococcus-Thermus phylum and representative members from other groups of bacteria. Multiple
sequence alignments of different proteins were created using ClustalX [60]. The alignments were
visually inspected to identify any conserved insertion or deletion, which was specific for members of
the genus Deinococcus and which was flanked on both sides by at least 5–6 conserved amino acids in the
neighboring 30–40 amino acids. The specificities of these indels for Deinococcus species were evaluated
by performing additional BLASTp searches on short sequence segments containing the insertions
or deletions and their flanking conserved regions (60–100 amino acids long). SIG_CREATE and
SIG_STYLE (available on Gleans.net) were then used to create the formatted signature files showing
the presence of CSIs in the sequence alignments [57]. Although sequence information is shown for
only a limited number of species in these alignments, unless otherwise indicated, all of the CSIs shown
here are specific for the Deinococcus species and similar CSIs were not detected in any other organism
in the top 250 BLAST hits analyzed.

2.2. Protein-Protein Interactions (PPIs) and Genetic Neighborhood Analyses

The STRING database was initially used to determine any unique association observed for the
DNA repair proteins from Deinococcus species. The STRING database contains information regarding
protein-protein interactions (PPIs) based on experimental data and it also predicts interactions based on
co-occurrence of the proteins, gene fusion data, co-expression of the proteins and genetic neighborhood
analysis [61,62]. More detailed genetic-linkage analysis on the genes for selected proteins (e.g., UvrA1
and UvsE) was carried out by examining the position of a given gene and its neighboring genes from
the graphic views of the genomes. Intergenic distances and the direction of transcription for different
genes were also determined based on the genome sequences.

2.3. Homology Modeling of the Uvra1 Protein and Other Proteins from Deinococcus Species

Three-dimensional structure models of the UvrA1, UvrC and UvsE proteins from D. radiodurans
were developed from the full-length sequences of these proteins using the homology modeling
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technique [63]. The secondary structure analysis on the sequences of these proteins from D. radiodurans
was initially performed via PSIPRED v3.3 web server [64]. Suitable templates for homology modeling
were identified by using PSI-Blast search [58] against the Protein Data Bank (PDB) [65]. The templates
used for construction of homology models of the UvrA, UvrC and UvsE proteins of D. radiodurans
were based on the following structures; UvrA1, Geobacillus sp. Y412MC52 (PDB id: 3UWX) [66]; UvrC,
Thermotoga maritime (PDB id: 2NRT) [67]; and UvsE, Sulfolobus acidocaldarius (PDB id: 3TC3) [68].
Based on these template structures, 200 models were initially generated using Modeller v9.14 [63]
and ranked using discrete optimized protein energy (DOPE) potential scores [69]. The ModRefiner
program was then used for the refinement of selected models [70]. The secondary structure elements
in the regions containing CSIs were examined and compared with results of the PSIPRED analysis
to ensure their reliability. The assessment of the final structure models was conducted using five
independent servers: PROSA [71,72], RAMPAGE [73], ERRAT [74], Verify3D [75] and QMEAN [76].
All the modeled structures were visualized and analyzed using the molecular visualization program
PyMol (http://www.pymol.org).

3. Results

3.1. Conserved Signature Indels in DNA Repair Proteins Specific for the Deinococcus Species

To explore whether the proteins involved in DNA repair pathways in Deinococcus species
contain any unique sequence features differentiating them from homologs found in other prokaryotic
organisms, multiple sequence alignments of various DNA repair proteins from Deinococcus and other
representative groups of bacteria were created. These alignments were examined for the presence of
any conserved signature indels (CSIs) that are specifically found in the Deinococcus homologs [5,36–57].
These analyses have identified 22 novel CSIs in 20 different DNA repair related proteins which, except
for an isolated exception, are uniquely found in the Deinococcus homologs. A summary of the identified
Deinococcus-specific CSIs in different DNA repair proteins is provided in Table 1. Of these CSIs, two
CSIs in the DNA repair protein RadA, one of which is specific for the Deinococcus-Thermus phylum
and the other for the order Deinococcales, were described in our recent work [5]. As seen from
Table 1, the CSIs distinguishing the Deinococcus homologs from other bacteria are present in large
numbers of DNA repair proteins that are part of different pathways [11,12]. The proteins containing
the CSIs include UvrA1 and UvrC from the NER pathway [18,47]; UvsE protein from the UV damage
endonuclease-dependent excision repair (UVER) pathway [49–77]; MutY, MutM and Nth proteins
from the base-excision repair (BER) pathway [11,12]; RecA, RecD, RecG, RecQ, RecR, RuvC and RadA
proteins from the homologous recombination (HR) pathway [11,12] and the proteins PolA, DnaE, LigA,
UvrD, GyrA and GyrB which play central roles in multiple DNA repair pathways [11,12].

Table 1. Summary of the Deinococcus-specific Conserved Signature Indels (CSIs) in DNA Repair Proteins.

Protein Name Repair Pathway Protein ID a Indel Size Indel b Position Figure

UvrA1 NER DR1771 30 aa ins 421–514 Figure 1A
UvrC NER DR1354 16 aa ins 459–535 Figure 1B
UvrD MP DR1775 6 aa ins 516–576 Figure 2A
UvsE UVER DR1819 1 aa ins 48–125 Figure 2B
MutY BER DR2285 4 aa ins 24–82 Figure S1
MutM BER DR0493 2 aa del 168–225 Figure S2

Endonuclease III (Nth) BER DR0928 2 aa ins 144–228 Figure S3
RecA c HR DR2340 1 aa ins 216–280 Figure S4
RecR c HR DR0198 2 aa del 104–164 Figure S5

DNA helicase (RecQ) HR DR1289 2 aa del 453–510 Figure S6
Helicase RecD protein HR DR1902 2 aa del 376–427 Figure S7A
Helicase RecD protein HR DR1902 2 aa del 426–493 Figure S7B

RuvC protein HR DR0440 2 aa del 82–147 Figure S8
DNA helicase RecG protein HR DR1916 1 aa ins 14–73 Figure S9

http://www.pymol.org
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Table 1. Cont.

Protein Name Repair Pathway Protein ID a Indel Size Indel b Position Figure

DNA Repair protein RadA HR DR1105
1 aa del; c 175–195

[5]
2 aa del 225–257

DNA polymerase I (PolA) MP DR1707 2 aa ins 191–257 Figure S10
DNA polymerase III, α subunit (DnaE) MP DR0507 65 aa ins 315–491 Figure S11
DNA polymerase III, α subunit (DnaE) MP DR0507 2 aa ins 75–131 Figure S12

DNA ligase (LigA) MP DR2069 3 aa ins 101–169 Figure S13
Gyrase A (GyrA) MP DR1913 1 aa ins 265–341 Figure S14
Gyrase B (GyrB) MP DR0906 1 aa ins 27–99 Figure S15

a Protein ID corresponds to the Deinococcus radiodurans genome; b The indel position indicates the region of the
protein where the CSI is found. Ins and del indicate whether the CSI is an insertion or a deletion; c Indel is specific
for Deinococcus-Thermus phylum; Abbreviations: BER- Base excision repair; NER-Nucleotide excision repair; HR-
Homologous recombination; UVER-UV damage endonuclease (UvsE)-dependent excision repair; MR- Mismatch
repair; MP-Multiple pathways. The CSIs in RadA were identified in earlier work [5].

Of the identified CSIs, sequence information for two prominent conserved inserts found in the
proteins UvrA1 and UvrC is provided in Figure 1. As seen from Figure 1A, the UvrA1 protein from
Deinococcus contains a 30 amino acid insertion within a conserved region that is uniquely shared by all
Deinococcus species. The UvrA homologs from other groups of bacteria as well as the UvrA2 homologs
from Deinococcus species lack this large insert, indicating that this insert is specific for the UvrA1
homologs. Although a shorter insert in this position is present in the Meiothermus species, this insert
shows minimal sequence similarity to the insert in the Deinococcus homologs indicating that it has
very likely originated independently. In addition to the UvrA1 protein, UvrC protein from Deinococcus
species also contains a 16 amino acid insertion in a conserved region that distinguishes the Deinococcus
homologs from the UvrC homologs in all other bacteria (Figure 1B). Sequence information for two other
Deinococcus-specific CSIs found in the UvrD and UvsE proteins are presented in Figure 2. Sequence
information for the remainder of the Deinococcus-specific CSIs in DNA repair proteins identified in
this work is provided in Figures S1–S15. Although sequence information for different CSIs is shown
here for a limited number of species, unless indicated otherwise, these CSIs are specifically present in
all genome-sequenced Deinococcus species. Due to the specificities of these CSIs for the Deinococcus
species, the genetic changes responsible for most of these CSIs likely occurred in a common ancestor of
the genus Deinococcus.
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Figure 1. Conserved signature indels in the UvrA1 and UvrC proteins that are specific for the 
Deinococcus homologs. (A) Partial sequence alignment of the UvrA protein showing a 30 amino acid 
insertion in a conserved region that is uniquely shared by the UvrA1 homologs from all 26 
genome-sequenced Deinococcus species including Deinococcus aerius. This insert is not shared by the 
UvrA2 homologs of Deinococcus spp. but a shorter unrelated insert in this position is present in 
Meiothermus spp.; (B) Excerpts from the sequence alignment of UvrC protein showing a 16 amino 
acid insertion that is specific for Deinococcus homologs. The dashes (–) in these as well as other 
sequence alignments indicate identity with the amino acid present on the top line. The numbers on 
the top indicate the location of the sequence in the Deinococcus radiodurans protein. 

Figure 1. Conserved signature indels in the UvrA1 and UvrC proteins that are specific for the
Deinococcus homologs. (A) Partial sequence alignment of the UvrA protein showing a 30 amino
acid insertion in a conserved region that is uniquely shared by the UvrA1 homologs from all 26
genome-sequenced Deinococcus species including Deinococcus aerius. This insert is not shared by the
UvrA2 homologs of Deinococcus spp. but a shorter unrelated insert in this position is present in
Meiothermus spp.; (B) Excerpts from the sequence alignment of UvrC protein showing a 16 amino acid
insertion that is specific for Deinococcus homologs. The dashes (–) in these as well as other sequence
alignments indicate identity with the amino acid present on the top line. The numbers on the top
indicate the location of the sequence in the Deinococcus radiodurans protein.
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Figure 2. Partial sequence alignment showing conserved indels in (A) DNA helicase (UvrD) protein
and (B) UV damage endonuclease (UvsE) protein which are specific for Deinococcus.

3.2. Locations of the Conserved Indels (CSIs) in the Structures of the Proteins

The locations of the identified CSIs in the structures of a number of DNA repair proteins viz.
UvrA1, UvrC, UvrD and UvsE, were examined. Of these four proteins, three dimensional structure
of UvrD protein is available from D. radiodurans [78]. For the other three proteins, three-dimensional
structural models for the D. radiodurans homologs were constructed by the homology modeling
approach using suitable available template structures as described in the Methods section [63].

All of the generated models were of good stereo-chemical qualities as assessed by means of five
independent structural validation servers (see Methods section). The locations (surface representations)
of the identified CSIs in the structures of the modeled or solved structures of the proteins UvrA1, UvrC,
UvrD and UvsE are shown in Figure 3. In addition, this figure also presents information regarding
the secondary structures of the CSI-containing region (shown on top in purple color) as predicted by
the PSIPRED server [64]. As seen from Figure 3, the CSIs in the UvrA1, UvrC and UvsE proteins are
present in surface exposed loops of the modeled proteins. The 6 amino acid CSI in the UvrD protein is
also located on the protein surface but it is present within an alpha helix, which appears to play a role
in stabilizing the binding of the adjacent loop with the single-stranded DNA [78].
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deserti, Deinococcus proteolyticus and Deinococcus maricopensis) and of these four species, all except D. 
radiodurans showed a genetic linkage of the uvrA1 to the genes for the above three proteins (Figure 
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Figure 3. Secondary structure characteristics and structural locations of the identified CSIs in some
DNA repair proteins. (A) Carton and surface representation of the location of the 30 amino acid CSI in
the modeled structure of the UvrA1 protein from D. radiodurans; (B) Location of the 16 amino acid CSI
in the modeled structure of UvrC protein; (C) Cartoon and surface representation of a 6 amino acid CSI
in crystalized UvrD protein (PDB id: 4C2T); (D) Structural analysis of the 1 amino acid CSI in UvsE
protein in the modeled structure of D. radiodurans.

3.3. Novel Genomic Organization-Linkage of the Genes for UvrA1 and UvsE Proteins in Deinococcus Species

The CSIs in most studied proteins are located in surface loops and commonly involved in
facilitating novel protein-protein or protein-ligand interactions [37–40]. To determine, whether any of
the CSI-harboring proteins from Deinococcus exhibit any novel interactions, the interaction profiles
of different CSI-containing proteins was investigated using the STRING database [61]. This database
predicts protein-protein interactions (PPIs) based on experimental data as well as co-occurrence of the
proteins, gene fusion data, co-expression of the proteins and genetic neighborhood analysis [61,62].
Of the different DNA repair proteins containing the CSIs, the STRING server predicted novel
protein-protein interactions for two proteins. In the first case, UvrA1 protein from Deinococcus
was found to exhibit unique interactions with three other proteins based on its conserved genomic
neighborhood. The three proteins whose genes were found to be in the immediate neighborhood of the
uvrA1 gene from Deinococcus included a conserved Deinococcus-specific CSP, which is referred to here
as dCSP-1 (for Deinococcus-specific conserved signature protein-1; accession number NP_295493) and
two other proteins DsbA and DsbB, which are known to play central roles in disulfide bond formation
in proteins [50–52]. In the STRING database, information regarding PPIs was present for only five
Deinococcus species (D. radiodurans, Deinococcus geothermalis, Deinococcus deserti, Deinococcus proteolyticus
and Deinococcus maricopensis) and of these four species, all except D. radiodurans showed a genetic
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linkage of the uvrA1 to the genes for the above three proteins (Figure 4). In case of D. radiodurans, only
the gene for the dCSP-1 protein was indicated to be in the immediate neighborhood of the uvrA1 gene.
In contrast to the Deinococcus species, no other bacterial species exhibited any genetic linkage of the
uvrA gene to the genes for any of these proteins.
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Figure 4. Genomic neighborhood of the gene for UvrA1 protein from Deinococcus species showing its
specific linkage to the genes for dCSP-1, DsbA and DsbB proteins. The genes for these four proteins are
oriented in the same direction and their intergenic distances in most cases are <100 base pairs indicating
that they likely form an operon. The genes for UvrA2 from Deinococcus as well as the uvrA genes
from other bacterial groups do not show specific genetic linkage to genes for any of these proteins.
In D. radiodurans and D. wulumuqiensis, the gene for UvrA1 shows specific genetic linkage to the genes
for dCSP-2 and dCSP-1 proteins, both of which are Deinococcus-specific.

The close genetic linkage of the uvrA1 gene in Deinococcus species to the genes for the above
three proteins by STRING analysis prompted us to examine in detail the genomic neighborhood of
the uvrA1 gene in all available Deinococcus genomes. For these studies, the genomic neighborhood
of the uvrA1 gene was manually examined in different Deinococcus genomes and a summary of the
results of these analyses is presented in Figure 4. These studies revealed that of the 26 Deinococcus
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genomes currently available, 24 of them exhibited identical genomic organization where the genes
for dCSP-1, DsbA and DsbB proteins were present in the immediate neighborhood of the uvrA1 gene
and their relative gene orders as well as orientations were identical (Figure 4). In the remaining two
genomes, corresponding to D. radiodurans and D. wulumuqiensis, only the gene for the dCSP-1 was
found immediately downstream of the uvrA1 gene but the linkage to the genes for DsbA and DsbB
proteins was not observed (Figure 4). However, in these two species, the gene for another novel CSP
referred to here as dCSP-2 (Accession number WP_010888407.1), which is only found in D. radiodurans
and D. wulumuqiensis, was located immediately upstream of the uvrA1 gene. The indicated novel
genomic arrangements were only observed for the uvrA1 gene from Deinococcus species and similar
gene arrangement was not found in any other studied bacteria (Figure 4 and other results not shown).
As noted earlier, Deinococcus species contain another homolog of the UvrA protein (UvrA2) [79,80]
and the gene for this homolog also exhibited no linkage to these genes (Figure 4). In all of these cases,
the genes in the neighborhood of uvrA were found to be different and showed no specific pattern
(Figure 4).

In prokaryotic organisms, ~60% of the genes are present in polycistronic operons [81,82].
An operon consists of a cluster of genes arranged in tandem on the same strand of a genome sharing
common promoter and terminator. The specific linkage of the genes for UvrA1, dCSP-1, DsbA
and DsbB proteins in most Deinococcus species and of the genes for dCSP-2, UvrA1 and dCSP-1 in
D. radiodurans and D. wulumuqiensis, suggests that these two sets of genes likely form distinct operons.
This inference is consistent with the observation that all of these genes are present on the same strand
of DNA and they are transcribed in the same direction. We have also measured the genetic distances
between these genes in different Deinococcus genomes and in most cases, the intergenic distances
separating these genes are <100 base pairs (bp) (Figure 4). Analyses of genes from well-studied
prokaryotic species indicate that when the genetic distance between two gene exhibiting similar
phylogenetic profiles is <200 bp, there is a strong likelihood that these genes are part of an operon [82].
We also used the DOOR 2.0 database to determine whether the genes for these four proteins are part of
an operon [83]. The DOOR 2.0 database contains computationally predicted operons of prokaryotic
genomes and its accuracy for correctly predicting the operonic organization for Bacillus subtilis and
E. coli is >90% [83]. Information for six Deinococcus species was available in the DOOR 2.0 database
and based on its computational prediction, the genes for UvrA1, dCSP-1, DsbA and DsbB proteins
were present in a single operon in 3 out of 6 species (viz. D. deserti, D. gobiensis and D. geothermalis).
Of the remaining three species, in D. proteolyticus and D. maricopensis, the genes for UvrA1 and dCSP-1
proteins were indicated to be part of one operon, whereas the genes for DsbA and DsbB proteins were
part of an adjacent operon. However, since the intergenic distance between these two neighboring sets
of genes (or operons) is <100 bp, it is highly likely that all four of these genes are part of a single operon.
In D. radiodurans, an operonic arrangement was observed only for the genes for dCSP-2, UvrA1 and
dCSP-1 proteins and the genes for DsbA and DsbB were not present in its neighborhood [82,83].

Besides the UvrA1 protein, our genetic neighborhood analysis also reveals that the gene for the
UvsE protein in Deinococcus species also exhibits a novel and specific genetic linkage to the gene for
a Zn-ribbon (Zn-R) protein (accession number AFD24462.1) (Figure 5). The DOOR.2 database also
predicts that the genes for UvsE and Zn-R are part of an operon in Deinococcus species.
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Figure 5. (A) Genomic neighborhood analysis of the gene for UvsE protein showing its specific genetic
linkage in Deinococcus species to the gene for Zn-ribbon protein (Zn-R). The genes for these two proteins
are oriented in the same direction and their coding regions overlap suggesting that they form an operon.
(B and C) Predicted secondary structure and membrane topology of the Zn-ribbon protein (Accession
ID: AFD24462.1).

3.4. Structural and Biochemical Characteristics of the Proteins Linked to the UvrA1 Protein

Our results indicate that the genes for UvrA1, dCSP-1, DsbA and DsbB proteins in Deinococcus
species exhibit specific genetic linkage and they likely form an operon. As the genes within an operon
generally carry out related functions [82,84,85], it is of much interest to understand the functions of
the three proteins that are genetically linked to the UvrA1 protein. Of these three proteins, dCSP-1
is a protein that is uniquely found in Deinococcus species. In our earlier work, this protein was
identified as a CSP that was specifically found in all Deinococcus species for which genome sequence
information was available [5,22]. The specificity of this protein for Deinococcus species was re-examined
by BLASTp searches and the results obtained confirm that this protein is a distinctive characteristic of
all Deinococcus species (Appendix A, Figure A1).

The protein dCSP-1 (NP_295493) is 247 amino acids long in D. radiodurans and it is annotated as a
hypothetical protein of unknown function. To gain insights into the possible function of this protein,
its sequence was analyzed using the PSIPRED server [64]. This server uses multiple methods for
predicting secondary structure of proteins and it also indicates whether a given protein is a membrane
protein and its membrane topology [64]. The secondary structure predicted for the dCSP-1 by the
PSIPRED server is shown in Figure 6A. Most of the residues from dCSP-1 are present in 6 alpha helices
(shown in magenta color) and it contains only a small beta strand region shown in yellow. Based
on its predominantly helical structure, the PSIPRED server predicts that dCSP-1 is a transmembrane
protein containing five membrane-spanning regions and its overall membrane topology is as shown in
Figure 6B.
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Figure 6. Secondary structure prediction (A) and membrane topology (B) of the dCSP-1 protein
(Accession ID: NP_295493). Most residues in this protein are present in helix regions and it is predicted
to be a cytoplasmic membrane protein with five transmembrane helices.

The other two proteins DsbA and DsbB, showing genetic linkage to the UvrA1 and dCSP-1
proteins function together in the formation of disulfide bonds in proteins [50,51]. Of these, DsbA
is localized in the periplasmic space and it catalyzes intrachain disulfide bond formation in newly
formed proteins as they emerge in the periplasm. The continued functioning of DsbA requires DsbB,
which is a cytoplasmic membrane protein containing two CXXC motifs, which oxidizes DsbA to
regenerate its active form [50,51,86]. We have examined whether the proteins DsbA or DsbB contain
any novel sequence features that are specific for the Deinococcus species. These studies have identified
a 5–7 amino acid insert in a highly conserved region of the DsbA protein that is specifically present in
all Deinococcus-species (Figure 7). While all other Deinococcus species contain a 7 amino acid insertion
in the DsbA, D. radiodurans and D. wulumuqiensis contain a shorter 5 amino acid insert in the same
position (Figure 7).
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Figure 7. (A) Partial sequence alignment of the DsbA oxidoreductase protein showing a 5–7 amino
acid insertion in a conserved region that is specific for Deinococcus species; (B) Location of the CSI in the
modeled structure of DsbA protein from D. deserti constructed using the template structure of DsbA
protein from Bacillus subtilis (PDB id: 3eu3).
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As noted above, the gene for the UvsE protein also exhibits a specific genetic linkage to the gene
for a Zn-ribbon (Zn-R) protein in Deinococcus species (Figure 5A). The genes for these two proteins
show partial overlap in most Deinococcus species (Figure 5A). The Zn-ribbon protein linked to UvsE is
67 aa long and analysis of its sequence by the PSIPRED server indicates that this protein also contains
a transmembrane helix (Figure 5B) and is predicted to be a cytoplasmic membrane protein (Figure 5C).

3.5. Presence of CXXC Motifs in DNA Repair Proteins

The observed genetic linkage of UvrA1 to the DsbA and DsbB proteins, which provide the main
cellular machinery for oxidation-reduction of CXXC motifs in proteins, indicates that this aspect should
be of importance for Deinococcus species. Hence, we have examined the sequences of various DNA
repair proteins for the presence of CXXC motifs. The results of our analysis indicate that CXXC motifs
are present in a large number of DNA repair proteins including UvrA1, DNA ligase, DNA polymerase
II subunit gamma/tau, MutY, MutM, Nth, Rad 25, RecO, RecR, RecQ, SbcC and RadA (Appendix A
Table A1 and Figure S17(A–L)). While all other DNA repair proteins listed in Table A1 contain either
one or two CXXC motifs, the UvrA1 protein is found to contain five CXXC motifs, indicating that
these motifs should play important role in the functioning of this protein. All of the CXXC motifs
in UvrA1 are located on protein surface and they are parts of three zinc finger elements [47,55],
commonly utilized by proteins for binding to specific regions in DNA or for mediating protein-protein
interactions [55,56,66,79,87,88]. Partial sequence alignment of the UvrA protein showing two of the
CXXC motifs, which are present near the C-terminal end, as well as the locations of these motifs in the
structure of UvrA are shown in Figure 8. Earlier work has shown that substitution of one of the cysteine
(marked in red) from these CXXC motif causes functional inactivation of the UvrA1 protein [54].
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Figure 8. (A) Partial sequence alignment of the C-terminal region from UvrA protein showing the
presence of a Zinc-finger element containing CXXC motifs. The CXXC motifs shown here are conserved
in all UvrA homologs. Mutational studies on the cysteine residue marked in red indicates that it plays
an important role in the functioning of the UvrA protein [54,56]; (B) Location of two the CXXC motifs,
which are part of a Zinc finger element, in the structure of UvrA protein.
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4. Discussion

Deinococcus species are highly resistant to UV and ionizing radiations and prolonged desiccation,
due to their ability to protect their proteome from the harmful effects of ROS [12,14,19,20,28,89].
However, the biochemical mechanisms enabling these bacteria to protect their critical proteome from
oxidatively-generated damage remain unidentified [12]. In this context, the results of our comparative
analyses of DNA repair proteins, which have identified multiple highly-specific molecular signatures
in the forms of CSIs that are specific for Deinococcus homologs, are of much interest. Earlier work
on CSIs provides evidence that the genetic changes of this kind play important functional roles in
the organisms for which they are specific [38,39,90]. Further, most of the studied CSIs in proteins,
including in the DNA repair proteins examined in the present work, are present in surface loops of
proteins, which are generally involved in mediating novel protein-protein or protein-DNA (ligand)
interactions [5,37,39,40]. While the possible cellular functions of most of the CSIs identified in this
study remains to be delineated, a number of novel observations reported here provide important
insights into the possible cellular function of a large CSI found in the UvrA1 protein. The UvrA1
protein is a central component of the NER pathway comprising of the UvrABC proteins [12,47,48,87].
This protein is unique in its ability to recognize a broad range of DNA damages including cyclobutane
pyrimidine dimers and 6,4-photoproducts formed by UV light and multiple other types of damaged
nucleotides/bases resulting from exposure to ionizing radiation [12,47,48,87]. Following, initial DNA
damage identification by UvrA1, other proteins in the pathway viz. UvrB and UvrC, excise the
damaged region and the gap created is filled by DNA polymerase I and subsequently ligated by DNA
ligase [12,47,48,87]. Although Deinococcus species contain two different UvrA homologs, only the
UvrA1 protein but not UvrA2, plays an important role in DNA repair process [80]. The gene for UvrA1
protein is also induced upon radiation and desiccation [12]. The present work has identified two
novel characteristics of the UvrA1 protein that are uniquely observed for Deinococcus species. First,
the UvrA1 protein from Deinococcus contains a 30 amino acid insertion in a conserved region that is
absent in all other UvrA homologs (including UvrA2). Second, the gene for UvrA1 in all Deinococcus
species is linked to the gene for a novel protein (dCSP-1) that is only found in different Deinococcus
species. Additionally, in most Deinococcus species, except D. radiodurans and D. wulumuqiensis, the
genes for uvrA1 and dCSP-1 are also specifically linked to the genes for DsbA and DsbB proteins and
all four of these genes are predicted to form an operon. This novel arrangement/linkage of genes i.e.,
uvrA1-dCSP-1-dsbA-dsbB is only seen in Deinococcus species but in no other bacteria.

Of the three proteins genetically linked to UvrA1, dCSP-1 is a transmembrane protein, similar
to the DsbB protein. The other two proteins, DsbA and DsbB, are both involved in the formation
of intrachain disulfide bonds in proteins by catalyzing oxidation-reduction of cysteine residues in
protein sequences. Of these, DsbA is localized in periplasm, whereas DsbB is an integral cytoplasmic
membrane protein. As most of the proteins showing genetic-linkage to the Deinococcus UvrA1 are
either cytoplasmic membrane or periplasmic proteins and two of them whose functions are known
are involved in the oxidation-reduction of cysteine residues in proteins, it focuses attention on the
significance of cysteine oxidation-reduction and membrane association in the functioning of UvrA1
protein. There is now considerable evidence that proteins are the major initial targets of free radicals
or ROS in comparison to either DNA or lipids [19,29,30,89]. In proteins, cysteine residues, when
present, generally serve important catalytic, regulatory, structure-stabilizing, or metal and cofactor
binding functions and they are highly susceptible to modification by reactive oxygen species [53,91].
Many cytosolic proteins involved in catalyzing oxidation-reduction reactions contain CXXC motifs
and the Cys residues in them exist as highly-reactive thiolate (S−) ions, whose oxidation can result
in the functional inactivation of proteins [30,53,91,92]. In this context, it is of much interest that
cysteine residues and CXXC motifs are present in a large number of DNA repair proteins (Table A1
and Figure S17). Of particular interest in this context is the fact that of all the DNA repair proteins,
maximal numbers of CXXC motifs (5 in comparison to 0–2 found in other proteins) are present in the
UvrA1 protein and they are parts of zinc finger elements, which play important roles in the binding
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of UvrA to DNA and in DNA damage recognition [54–56,88]. The above characteristics of the UvrA
protein make it a prime target to be affected by oxidative stress and ROS. The importance of cysteine
residues in the functioning of UvrA protein is also supported by a number of other observations:
(i) Substitution of a cysteine in one of the C-terminal CXXC motifs causes inactivation of the UvrA
protein [54]; (ii) Treatment of D. radiodurans with iodoacetamide (IAA), which alkylates –SH groups in
cysteines, abolishes or greatly reduces its radiation resistance [93]; (iii) Treatment with IAA also causes
repression (or inactivation) of a protein that excises DNA from a DNA-membrane complex [94,95];
(iv) Irradiation of D. radiodurans in presence of cysteine, which should protect Cys residues in proteins
from oxidation, decreases their radiation sensitivity [96]; (v) Treatment of Deinococcus with sublethal
concentration of cadmium leads to upregulations of a large number of genes involved in cysteine
biosynthesis and disulfide stress indicating the importance of Cys-related systems in resistance to
oxidative stress [97]. A number of observations also indicate that the cellular function of UvrA involves
interaction with membrane. Based on earlier studies DNA in unirradiated Deinococcus is bound to
membrane and it dissociates from membrane upon radiation treatment; importantly the re-association
of DNA with membrane is inhibited by IAA [94,98,99]. Further, it has been reported that following UV
irradiation, many DNA repair proteins relocate to the inner membrane and UvrA protein serves as a
site of attachment for these proteins to the membrane [100].

Based on the above observations, to account for the different novel properties of the UvrA1
gene/protein from Deinococcus species reported here and how they may serve to protect this protein
from oxidatively generated damage, we are proposing a model shown in Figure 9.
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Figure 9. Proposed model to account for the novel genomic-proteomic characteristics of the UvrA1
gene/protein from Deinococcus species and their possible roles in protection of this protein from
oxidatively generated damage. The model shown here proposes that the 5–7 amino acid insert present
specifically in the Deinococcus DsbA protein (shown in red) plays a role in its interaction with the
membrane embedded Deinococcus-specific protein dCSP-1. The model also suggests that the 30 amino
acids insert found uniquely in Deinococcus UvrA1 homologs allows specific interaction with the dCSP-1
protein. These interactions position the UvrA1 protein in the proximity of cytoplasmic membrane
such that the CXXC motifs in UvrA1 can receive electrons from DsbB protein to reduce oxidized
cysteines and regenerate the functional non-oxidized form of the UvrA1 protein. The arrows indicate
the direction of electron flow from DsbA to DsbB and to the membrane-associated UvrA1 protein.
FP and UFP refer to folded and unfolded proteins.
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In this model, the proteins DsbA and DsbB, both of which contain CXXC motifs, are located
in periplasm and cytoplasmic membrane, respectively, performing their well-studied functions in
the oxidation-reduction of disulfide bonds in proteins [50,51,101,102]. A CXXC motif present at the
active site of DsbA serves as the primary donor of disulfide bond to other unfolded proteins (UFP) in
the periplasmic space. The reduced form of DsbA is reoxidized by transfer of electrons to the CXXC
motifs in the DsbB protein and reducing it [50,51,101,102]. The DsbA protein in Deinococcus contains a
5–7 amino acid insert (shown in red) that is uniquely found in these bacteria. The model proposes
that one possible function of this insert could be to enable specific interaction between the DsbA
protein of Deinococcus and the membrane embedded dCSP-1 protein, which is also uniquely found
in these bacteria. Another novel characteristic of Deinococcus identified in this work is the 30 amino
acid insertion in the UvrA1 protein (shown in green in Figure 9). We are suggesting that one possible
function of this insert in UvrA1 is to enable specific interaction with the dCSP-1 protein, thereby linking
the UvrA1 to the dCSP-1, DsbA and DsbB proteins. The observed close genetic linkage of the uvrA1 and
dCSP-1 also suggests the possibility that these two proteins are co-expressed under different conditions.
It is suggested that the proposed interactions between the insert in the UvrA1 protein and dCSP-1
and the insert in DsbA protein and dCSP-1, the characteristics which are distinctive of Deinococcus
species, serve to position the UvrA1 protein in Deinococcus in the proximity of membrane-bound DsbB
protein (Figure 9). The reduced form of DsbB generally transfers electrons to the terminal oxidases
via the quinone cofactor [50,51,101–103]. However, in Deinococcus species, we are proposing that due
to the specific association of UvrA1 with the membrane embedded dCSP-1, electrons transfer can
occur from DsbB (either directly or through quinone intermediate) to the oxidized CXXC motifs in the
UvrA1 protein, thereby removing oxidative damage from this critical protein and restoring it into its
non-oxidized functional state (Figure 9).

It should be noted that while DsbA homologs from most Deinococcus species contain a 7 amino
acid insertion (Figure 7), the insert in D. radiodurans and D. wulumuqiensis is 5 amino acids long. In these
two Deinococcus species, the genes for UvrA1 and dCSP-1 are also not genetically linked to the genes
for DsbA and DsbB proteins but instead they exhibit a close genetic linkage to the gene for another
novel protein dCSP-2, which is only found in these two Deinococcus species. The protein dCSP-2 is
also predicted to be a membrane-associated protein and it is possible that this protein functioning
in conjunction with the shorter CSI found in the DsbA homologs of these species, enables/augment
specific interaction between the DsbA and dCSP-1 proteins in these two Deinococcus species.

In addition to the unique genetic linkage of the Deinococcus UvrA1 to the membrane associated
dCSP-1, DsbA and DsbB proteins, a number of other important DNA repair proteins in Deinococcus
species contain novel sequence features and some of them exhibit unique genetic linkages to
membrane-associated proteins. We have shown in this work that the UvsE protein, central to the
UvsE-dependent pathway of excision DNA repair [12,49], also contains a 1 amino acid CSI that is
distinctive of Deinococcus homologs and its gene exhibits a novel operonic arrangement in Deinococcus
with the gene for a Zn-ribbon (Zn-R) protein, which is predicted to be a transmembrane protein
(Figure 5). Further, it has been reported that the gene for RecA in D. radiodurans forms a polycistronic
operon with the genes for CinA and LigT proteins [104]. Our analysis indicates that a specific genetic
linkage of the genes for RecA, CinA and LigT is a shared characteristic of all Deinococcus-Themus
species (see Figure S16). Further, it has been reported that the CinA protein binds RecA and locates it to
the cell membrane [105]. Thus, it is possible that the membrane association of UvsE and RecA proteins,
seen specifically in Deinococcus species may also serve to protect these proteins from oxidatively
generated damage.

In summation, the present work has identified many novel sequence features in the DNA repair
genome/proteome of Deinococcus species which are predicted to contribute towards the increased
resistance of these organisms to radiation/desiccation and other oxidative stress inducing agents.
While the model proposed in Figure 9 is consistent with a large number of observations, it is primarily
based on novel sequence and structural characteristics of the UvrA1 protein from Deinococcus and
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other proteins whose genes are genetically linked to the UvrA1 protein in these bacteria. It would be
important to confirm various aspects of the suggested model by means of experimental approaches.
However, it should be noted that one observation which conflicts with the present model concerns
the report that the uvrA gene from E. coli (which is similar to the uvrA2 gene found in Deinococcus)
can complement the mitomycin C-sensitive phenotype of some D. radiodurans mutants [106]. This
observation is surprising in view of the various novel sequence features of the UvrA1 gene/protein
from Deinococcus species identified in this work, which distinguish it from all other homologs. Earlier
work on CSIs and CSPs strongly indicates that these characteristics are functionally important for the
group of organisms for which they are specific and deletion or mutational changes in them generally
leads to functional inactivation [38,39,90,107]. Based on this, it is expected that the novel sequence
features of the UvrA1 protein identified here should also serve important functions in Deinococcus
species and that other UvrA homologs lacking these novel features, including the UvrA2 homolog
from Deinococcus, should not be able to serve similar function. Thus, the ability of the E. coli uvrA gene
to replace/complement the function of the uvrA1 gene of Deinococcus is contrary to these expectations
and it needs to be investigated more thoroughly. The possible cellular functions of CSIs in other
DNA repair proteins, which are specific for Deinococcus species also remains to be determined and
further studies on them could provide other useful insights into novel functional aspects of other DNA
proteins in Deinococcus.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/9/3/149/s1.
Figure S1: Partial sequence alignment of MutY protein showing a 4 aa CSI specific for Deinococcus; Figure S2:
Partial sequence alignment of MutM protein showing a Deinococcus-specific CSI; Figure S3: Partial sequence
alignment of Endonuclease III (Nth) protein showing a showing a Deinococcus-specific CSI; Figure S4: Partial
sequence alignment of RecA protein showing a showing CSI specific for Deinococcus-Thermus; Figure S5: Partial
sequence alignment of RecR protein showing a showing a showing CSI specific for Deinococcus-Thermus; Figure
S6: Partial sequence alignment of DNA helicase RecQ protein showing a Deinococcus-specific CSI; Figure S7:
Partial sequence alignments of RecD protein showing two 2 CSIs that are specific for Deinococcus; Figure S8: Partial
sequence alignment of RuvC protein showing a Deinococcus-specific CSI; Figure S9: Partial sequence alignment of
RecG protein showing a CSI that is specific for Deinococcus species; Figure S10: Partial sequence alignment of DNA
polymerase I (PolA) showing a CSI that is specific for Deinococcus species; Figure S11: Partial sequence alignment
of DNA polymerase III alpha (DnaE) showing a CSI that is specific for Deinococcus species; Figure S12: Partial
sequence alignment of conserved region of DnaE protein showing another CSI that is specific for Deinococcus
species; Figure S13: Partial sequence alignment of LigA protein showing a CSI that is specific for Deinococcus
species; Figure S14: Partial sequence alignment of DNA gyrase A (GyrA) protein showing a 1 amino acid CSI
that is uniquely shared by all Deinococcus homologs; Figure S15: Partial sequence alignment of GyrB protein
showing a CSI that is specific for Deinococcus species; Figure S16: Genomic neighborhood of the recA gene from
representative Deinococcus-Thermus spp.; Figure S17: Sequence alignment showing the presence of CXXC motifs
(highlighted) in different DNA Repair proteins.
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Appendix A

Table A1. Presence of Cysteine Residues and CXXC Motifs in DNA Repair Proteins.

Protein Name Protein ID # Of Cys Residues CXXC Motifs Figure Number

UvrA1 DR1771 11 5 Figure S17A
AlkA DR2074 3 - -

Endonuclease V (Nfi) DR2162 1 - -
MutM DR0493 5 2 Figure S17B

8-Oxoguanine DNA glycosylase (MutY) DR2285 6 1 Figure S17C
Endonuclease III (Nth) DR0928 6 1 Figure S17D
Exonuclease III (Xth) DR0354 2 -

UvrB DR2275 6 - -
UvrC DR1354 3 - -
UvsE DR1819 4 - -
Rad25 DRA0131 10 2 Figure S17E
RecA DR2340 1 - -
RecO DR0819 4 2 Figure S17F
RecR DR0198 5 2 Figure S17G
RecJ DR1126 2 - -
RecN DR1477 1 - -
RecQ DR1289 9 1 Figure S17H
RecD DR1902 1 - -
SbcC DR1922 4 1 Figure S17I
SbcD DR1921 1 - -
RuvA DR1274 1 - -
RuvC DR0440 2 - -
RecG DR1916 4 - -
RadA DR1105 5 2 Figure S17J

Rad54 DNA helicase DR1259 3 - -
DdrA DR0423 2 - -
MutL DR1696 4 - -
MutS DR1039 4 - -
PolA DR1707 5 - -

DNA polymerase III, α subunit (DnaE) DR0507 14 - -
DNA polymerase III ε subunit (DnaQ) DR0856 1 - -

DNA polymerase III subunit beta DR0001 1 - -
DNA ligase (LigA) DR2069 4 1 Figure S17K

DNA polymerase III subunit gamma/tau DR2410 7 1 Figure S17L
UvrD DR1775 1 - -

Gyrase A(GyrA) DR1913 1 - -
Gyrase B(GyrB) DR0906 2 - -
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