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Abstract: Reinforcement is the process by which selection against hybridization increases
reproductive isolation between taxa. Much research has focused on demonstrating the existence
of reinforcement, yet relatively little is known about the genetic basis of reinforcement or
the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s
characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry,
we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three
patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of
alternative processes and complicating factors that may make the identification of reinforcement at
the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if
and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and
between allopatric and sympatric populations of the same lineage. Our major goals are to understand
if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the
genetic basis of reinforcement, or infer the conditions under which reinforcement evolved.

Keywords: reinforcement; speciation; selection; genetic divergence; gene flow; reproductive isolation;
genome scans

1. Introduction

The evolution of barriers to reproduction between lineages is fundamental to the process of
speciation. Recent advancements in genome sequencing technologies and analyses have improved
our ability to identify and characterize the genetic and evolutionary mechanisms underlying these
reproductive isolating barriers. Genomic studies have extensively focused on understanding how
barriers evolved in response to natural selection for local adaptation (e.g., [1–4]); however, selection also
plays an important role in speciation through the process of reinforcement. Here we outline the genomic
patterns of variation that may result from reinforcement and discuss what we can and cannot learn
about the evolutionary processes underlying reinforcement from genomic variation.

Reinforcement is the process by which reproductive isolation increases between taxa in sympatry
due to natural selection against hybridization [5]. A variety of definitions of reinforcement have been
used [5–8], but here we use a broad definition that encompasses the evolution of traits that decrease
hybridization or the production of hybrids between closely related lineages due to selection against
unfit hybrid progeny or costly mating. Since Dobzhansky’s instrumental work on the topic [9–11]
evidence for reinforcement has accumulated from across the tree of life, including in plants [12–14],
fish [15–17], insects [18–22], amphibians [23–26], birds [27], and mammals [28,29]. In all of these
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examples, divergence in at least one species causes increased reproductive isolation in sympatric
populations of a closely related species. Although there are other scenarios by which reinforcement
can occur (e.g., the one-allele model; see Section 3.3), most of our discussion centers on a simplified
evolutionary scenario consistent with what is predominantly studied in nature. The number of
examples of reinforcement observed across the tree of life suggests the potential importance of
reinforcement for the formation and stability of species, yet there remains much to be learned about
the prevalence of reinforcement, the genetic basis of traits involved, and the strength of selection and
gene flow during reinforcement’s evolution [6,7,30–33].

Investigating genomic patterns associated with reinforcement may provide new insights into
when and how reinforcement evolves. Identifying targets of selection in the genome and inferring
evolutionary processes acting on genetic loci is becoming increasingly feasible through advancements
in sequencing technology and analytical methods [34–37]. These genomic approaches have revealed
the genetic basis and evolutionary history of traits conferring reproductive isolation [38,39].
We hypothesize the evolution of reinforcement can leave an identifiable genomic signature. Therefore,
genomic analyses may help to identify the process of reinforcement in natural populations and isolate
the genetic loci underlying reinforcement traits. This approach might be especially useful when the
reinforcement phenotype is cryptic or not easily studied in the lab. Some efforts have been made to
identify the genetic basis of reinforcement [13,40–43], and a few studies have searched for signatures
of selection at known [44] and putative [43,45] reinforcement loci. These studies motivate the need to
articulate the expected genomic signature of reinforcement and discuss the potential insights we can
gain from genomic studies of this process.

First, we describe the expected genomic and population genetic signatures of reinforcement.
Second, we discuss alternative causes of these genomic patterns and how these alternatives might
be differentiated from reinforcement. Third, we explore a myriad of factors that can interact with
reinforcement’s genomic signature, making it easier or more difficult to identify. Finally, we address
how genomic analyses of gene flow can be used to understand how reinforcement evolves.

2. The Genomic Signature of Reinforcement

Reinforcement often results in a pattern of character displacement, with greater reproductive
isolation in sympatric populations compared to allopatric populations (Figure 1) [5–7,32].
This well-studied phenotypic pattern motivates us to search for a similarly distinctive genomic pattern
associated with reinforcement. The process of reinforcement can be described as a simplified scenario
that starts with two lineages diverging in allopatry or with limited gene flow. After accumulating some
postzygotic barriers to reproduction resulting from intrinsic or extrinsic incompatibilities, these two
lineages come into secondary contact in a region of sympatry. Prezygotic reproductive isolation is not
complete, allowing for costly hybridization between the diverged lineages. The reduction in fitness
due to hybridization generates indirect selection favoring traits that increase prezygotic reproductive
isolation. A novel trait value that reduces hybridization can spread throughout sympatry and create
the pattern of greater reproductive isolation in sympatry than allopatry (Figure 1) [46–49]. For this
discussion, we will often refer to these diverging lineages as ‘species’. This taxonomic distinction is
arbitrary and used for simplicity.

What might this classic scenario of reinforcement look like at the genetic level? Two isolated
lineages will accumulate genetic divergence through drift and natural selection. Some of these genetic
differences will result in intrinsic or extrinsic incompatibilities between lineages. Upon secondary
contact, reinforcing selection will favor mutations within a lineage that decrease maladaptive
hybridization between the two lineages. This selection will drive the mutations associated with
increased prezygotic reproductive isolation to fixation or high frequency throughout the sympatric
portion of a lineage’s range.
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Figure 1. The phenotypic pattern of reinforcement. (a) A schematic of the relationship between two
species each with sympatric and allopatric populations. Secondary contact between the lineages in
sympatry results in costly hybridization, causing reinforcement in Species 1. (b) Reinforcement selects
for a new reproductive trait value in Species 1 (solid line) to prevent mating with Species 2 (dashed line)
in sympatry (purple). Allopatric populations of Species 1 (red) retain the ancestral phenotype. In this
simplified scenario, Species 2 does not change trait value in sympatry or allopatry (blue), but in some
cases Species 2 may also diverge in trait value in sympatry. (c) For Species 1, reinforcement increases
reproductive isolation (solid line) with Species 2 in sympatry relative to allopatry.

From this simplified genetic scenario of reinforcement emerge three predictions about the
patterns of genetic variation within and between two sympatric species (Figure 2). (1) In the species
that undergoes trait divergence due to reinforcement, we expect a genomic signature of selection
surrounding mutations that cause increased reproductive isolation in sympatric individuals, but no
signature in allopatric individuals. (2) We predict elevated genetic divergence between allopatric and
sympatric individuals of the same species at loci causing increased prezygotic reproductive isolation.
(3) We expect greater genetic divergence between the sympatric than the allopatric individuals of
different species at genomic regions causing increased prezygotic reproductive isolation. These three
predicted patterns of genetic variation are related as they arise from the same process, selection favoring
divergence in sympatry.
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Figure 2. Hypothetical examples of three genomic signatures that may result from the evolution of
reinforcement. (a) Reinforcement can cause a signature of a selective sweep in sympatry, distorting the
site frequency spectrum near the reinforcement locus. In sympatric populations, there will be an
excess of fixed and rare alleles compared to allopatric populations. (b) Trait divergence in sympatric
populations can cause increased genetic divergence around the reinforcement locus between allopatric
and sympatric populations of the same species. Both an increase in absolute divergence between
allopatric and sympatric populations and a decrease in diversity within sympatric populations can
cause elevated FST near reinforcement loci. (c) Reinforcement only selects for divergence between
hybridizing sympatric species and not their allopatric counterparts. This pattern can cause greater
divergence (FST) between sympatric populations of the two species compared to allopatric populations
of the two species at the reinforcement locus. Increased FST could be caused by both greater divergence
between sympatric alleles and less allelic diversity within a sympatric population.

A rapid increase in frequency of a reinforcement allele due to selection is expected to distort
variation in linked genetic sites causing a genomic signature of a selective sweep [34,50,51].
This signature will be strongest at the site of selection and dissipate with distance. A selective
sweep is not dependent on the source of selection and therefore we will not review how to detect a
signature of selection as that has been done elsewhere [37,52–54]. In general, we expect a signature
of selection characterized by reduced genetic variation [55], increased linkage disequilibrium or
haplotype blocks [56–59], and a skewed site frequency spectrum [34,60,61] surrounding the causal
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mutations (Figure 2a). These patterns of genetic variation can be summarized using statistics such as
Tajima’s D [62], Fay and Wu’s H [60],ω-statistic [57], and integrated haplotype score (iHS) [63] that are
calculated and analyzed across the genome using programs such as SweepFinder2 [64], SweepD [65],
and OmegaPlus [66]. The predicted signature may vary depending on the evolutionary history of the
alleles under selection (see Section 4.1 for a discussion on variation between soft and hard sweeps).
Importantly, under our hypothetical scenario, we expect these patterns of selection to only occur in
sympatry and not allopatry.

Traits favored by reinforcement in sympatry are often costly or not favored in allopatry [67,68],
leading to the phenotypic pattern of character displacement. As with any trait under divergent selection
across geographic space, we predict elevated genetic divergence between alleles at the reinforcement
loci in allopatric and sympatric populations. Scanning the genome for outliers of summary statistics
such as FST [69] and derivatives of FST [70] can reveal candidate loci under divergent selection. FST is a
relative measure of divergence and therefore an increase in this summary statistic can be caused by
both increased allelic divergence between allopatric and sympatric populations and also a decrease in
allelic diversity within populations [71].

Character displacement, whether due to reinforcement or competition is defined by greater
phenotypic divergence between two species in sympatry relative to divergence in allopatry [47,72].
The same pattern of divergence may be evident at the genomic level as well. During character
displacement, derived alleles cause phenotypic divergence in sympatric populations, implying that
allopatric individuals from both species retain ancestral alleles or alleles that have undergone
less genetic divergence since the most recent common ancestor of the two species. Therefore,
sympatric individuals of different species may have greater measures of genetic divergence (FST)
than allopatric individuals of these species at reinforcement loci. As above, elevated FST may result
from increased absolute divergence between species at alleles in sympatry or due to decreased allelic
diversity within one or both species in sympatric populations. Significant absolute allelic divergence
may be hard to detect depending on the number of mutations in a particular allele, the average
divergence between species, and the allelic diversity within each species. Therefore, if this pattern is
not observed, it does not mean reinforcement did not evolve.

We know of only two systems for which a genetic signature of reinforcement has been
investigated [44,45]. In Phlox, P. cuspidata and P. drummondii exhibit similar light-blue flowers
throughout their allopatric ranges, but when these species occur in sympatry, P. drummondii has
evolved dark-red flowers to prevent hybridization with P. cuspidata [73]. The flower color divergence in
P. drummondii is caused by cis-regulatory changes to two genes in the anthocyanin biosynthesis pathway,
flavanone-3′5′-hydroxylase (F3′5′h) and R2R3-Myb transcription factor [13]. Genetic diversity (π) in
the coding sequence of F3′5′h within sympatric populations is less than within allopatric populations
suggesting a possible history of selection at this locus [44]. All other genetic tests for selection suggest
that these two flower color genes evolved neutrally. The mutations causing expression variation
in these flower color genes are still unknown leaving open the possibility that genetic variation
surrounding the causal sites may support a history of selection. The second study by Smadja et al. [45]
investigates plausible candidate genes involved in assortative mating in the hybrid zone between
Mus musculus musculus and M. m. domesticus. They use the lnRH statistic [74,75] to evaluate allele
frequency variation in microsatellites in or near genes involved in pheromone signaling and olfactory
recognition, and they find a number of regions showing significant patterns of reduced variability
in a M. m. musculus ‘contact’ population, adjacent to the hybrid zone, that has elevated assortative
mating relative to an allopatric population of M. m. musculus. These patterns of variation suggest
candidate genes experienced recent selection in populations near the zone of contact but not in
allopatric populations. While both of these studies have laid the foundation for identifying and
characterizing reinforcement at the genomic level, to date this field remains largely unexplored.
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3. Alternative Hypotheses to the Signatures of Reinforcement

Linking genomic patterns of diversity and divergence to their causal evolutionary processes
remains an ongoing challenge. Although we have described several expectations for a genomic
signature of reinforcement, other processes can create a similar phenotypic pattern of character
displacement [5,30,46,72,76], and therefore may leave similar genomic patterns of variation. Here,
we discuss factors that may mimic the patterns of genetic divergence associated with reinforcement.
With appropriate experimental design and genomic analysis, reinforcement may be differentiated from
some of these factors. However, reinforcement may evolve as a secondary result of or in tandem with
some of these processes, and therefore reinforcement may not be separable from other evolutionary
mechanisms [32].

3.1. Ecological Character Displacement

Ecological character displacement (ECD) is the process of divergence between sympatric taxa
due to selection to reduce competition (e.g., for food, space, shelter) [47,72,77–79]. Phenotypically,
this process can mimic reinforcement. ECD occurs when two divergent lineages come into secondary
contact and occupy overlapping ecological niches. Selection to decrease resource competition
favors trait divergence. This process results in a phenotypic pattern of increased trait divergence
between sympatric populations, where there is competition, but not in allopatric populations,
where competition is absent. The resulting trait divergence can involve traits associated with mate
choice or assortative mating, such as mating calls, flowering time, habitat choice, that may or may not
cause prezygotic reproductive isolation [30,80]. Therefore, without identifying the source of selection,
differentiating reinforcement from ECD can be difficult [15].

ECD and reinforcement can also leave similar patterns of genetic variation across the genome.
In sympatry, selection due to interspecific competition increases the frequency of alleles causing
genetic divergence, potentially resulting in a selective sweep. Divergent selection between sympatry,
where there is competition, and allopatry, where there is not competition, can generate elevated
genetic divergence at loci underlying ECD. If sympatric species are closely related and similarities
in homologous traits cause niche overlap, then we might expect greater genetic divergence between
species at loci causing ECD in sympatry than in allopatry. These three genomic patterns of variation
mirror the expected genomic patterns of variation from reinforcement. Therefore, to differentiate
between ECD and reinforcement it is necessary to identify the source of selection causing genetic
divergence. Without understanding the biology of the interactions all that can be identified is a genetic
pattern of character displacement.

3.2. Local Adaptation

Patterns of phenotypic divergence, and therefore genetic divergence, due to local adaptation
can closely resemble patterns caused by reinforcement. Local adaptation is the process by which a
population of individuals evolves higher fitness in a resident environment relative to individuals from
other environments [81,82]. Local adaptation is characterized by phenotypic and genetic differentiation
along environmental gradients or across diverging habitats [83–85]. During the process of local
adaptation, natural selection can sweep favored alleles to fixation within populations, generating
genomic divergence between populations experiencing different environments. Sympatric and
allopatric populations are, by definition, geographically distinct. Selective sweeps in sympatry and
genetic divergence between sympatric and allopatric populations within a species may arise due to
local adaptation to the sympatric environment rather than selection against costly hybridization with a
sympatric species.

Although selection due to local adaptation and selection due to reinforcement can leave
similar patterns of genetic variation, it may be possible to disentangle the causal evolutionary
force. Candidate loci underlying local adaptation are often identified by correlations between allele
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frequencies and environmental variables across populations [86–90]. Some environmental gradients
may be perfectly aligned with the presence/absence of a closely related species, but in most cases
thoughtful sampling can identify populations across which selection due to hybridization and selection
due to a dominant environmental variable are not perfectly correlated. If populations spanning
variable environments within allopatry and sympatry are sampled, then statistical models could
potentially identify loci that are more strongly associated with region (allopatric vs. sympatry) than
with environment. Smadja et al. [45] did this to some extent by comparing an allopatric population
of M. m. musculus near a population close to the contact zone with an allopatric population far from
the zone of contact. Loci that showed elevated divergence between these two allopatric populations
were eliminated as reinforcement candidates even if they showed high divergence in the ‘contact’
population. Ideally, multiple populations in both allopatry and sympatry that span environmental
variation would be used in this type of analysis.

In some cases, environmental variability may be inseparable from the presence of a heterospecific
species thus making inferring the mechanism of selection impossible from genomic data. Furthermore,
theoretical models have demonstrated that reinforcement is more likely to be successful if loci
that decrease hybridization are also under direct selection in the sympatric environment [91,92].
This finding suggests that divergence between sympatry and allopatry (at both the phenotypic
and genetic level) could likely be due to both local adaptation and reinforcement. For this reason,
experiments that measure selection in natural settings and can therefore identify the source or sources
of selection (e.g., [73]) are needed to validate genomic signatures.

3.3. Adaptive Introgression and the One-Allele Model

Adaptive introgression occurs when a genetic variant that was introduced into a population via
gene flow from a distinct group is favored by natural selection [93]. Demonstrating that adaptive
introgression has occurred requires both evidence that a trait is adaptive and that the adaptive allele
spread between species. At the genomic level, regions sharing signatures of selection and introgression
are compelling candidates for loci involved in adaptive introgression [94–96]. Adaptive introgression
may be indistinguishable at the genomic level from the one-allele model of reinforcement.

Our simple scenario of reinforcement involves the divergent evolution of a trait value that
increases reproductive isolation between sympatric populations of two species. This model is a
two-allele model of reinforcement as it assumes that the two sympatric species have different alleles
at the loci causing reproductive isolation [97]. By contrast, the one-allele model of reinforcement
assumes that a single allele increases reproductive isolation when it occurs in both of the two sympatric
taxa [33,97,98]. For example, an allele that increases assortative mating between phenotypically similar
individuals could be favored by reinforcing selection in both sympatric species if these sympatric
species are phenotypically distinct. Evidence for such a system has been documented in Drosophila,
in which a single allele confers female choosiness in the genetic background of both sympatric
species [99].

In cases of adaptive introgression, sympatric populations of two distinct groups will, by definition,
share the same adaptive allele at a locus underlying the adaptive trait. This genetic pattern
contrasts with the expected pattern for the two-allele model of reinforcement, in which sympatric
populations of distinct groups will have different alleles at a locus involved in reproductive
isolation. However, one-allele reinforcement resembles adaptive introgression. In fact, the one-allele
model of reinforcement is a special case of adaptive introgression in which the source of selection
(costly hybridization) and involved traits (barriers to reproduction) are specified. If an allele arises
in one species and spreads into the sympatric population of another species, then it is an example of
introgression. If this shared allele is favored by selection in both populations because it decreases costly
hybridization, then it is adaptive. Therefore, population genomic data may be used to identify putative
examples of the one-allele model of reinforcement by combining methods developed to search for
signatures of introgression and selection, as have been applied to searches for adaptive introgression



Genes 2018, 9, 191 8 of 18

more generally. Notably, the reinforcement allele underlying the one-allele model of reinforcement
is only advantageous in the zone of sympatry, so while there will be no genetic divergence between
sympatric species at the reinforcement locus, there should still be genetic divergence between the
sympatric and allopatric populations of the same species. However, this signature is not exclusive
to the one-allele model of reinforcement as loci conferring adaptation to the sympatric environment
would show a similar pattern. Genomic data are therefore unlikely to be able to distinguish one-allele
reinforcement from other cases of adaptive introgression because the criteria that make the one-allele
model a unique case (source of selection and nature of involved traits) are not associated with diagnostic
genomic signatures.

4. Complicating Factors to Identifying Genomic Signatures of Reinforcement

Patterns of genomic divergence can be variable even in the absence of selective processes. Here we
discuss how the history of a mutation and variation in recombination rate could further complicate the
identification of reinforcement from genomic data.

4.1. History of Mutation

The evolutionary history of a selectively favored allele affects the patterns of genetic diversity
surrounding that allele. Adaptive alleles arise either as new mutations or exist as standing genetic
variation within a population prior to being a target of selection. These two scenarios tend to give rise to
different signatures of selection (i.e., a hard selective sweep or a soft selective sweep respectively) [100].
Here we focus solely on how the evolutionary history of a mutation specifically affects reinforcement.

Reproductive isolation may be caused by a new mutation in sympatry, standing genetic
variation prior to colonization in sympatry, or by migration of an allele from allopatry into sympatry.
The dynamics of reinforcement may make the evolution from standing genetic variation more plausible.
When two species spread into secondary contact hybridization can cause their fusion, extinction of one
or both of the species, or reinforcement [46]. Successful reinforcement depends on premating isolation
evolving before the taxa fuse or go extinct. Therefore, reinforcement may be more successful if an
allele causing increased premating reproductive isolation exists at low frequency prior to reinforcing
selection. Under this scenario, the causal mutation under selection may recombine into multiple
genetic backgrounds prior to increasing in frequency, resulting in a soft selective sweep.

Soft selective sweeps are more difficult to identify and therefore may go undetected by frequency-
and diversity-based methods compared to haplotype-based methods [37,53]. If alleles causing increased
reproductive isolation arose as standing genetic variation in sympatry or in allopatry and migrated
on multiple genetic backgrounds into sympatry after secondary contact, there may not be a strong
signature of selection in sympatry or significant genetic divergence between allopatric and sympatric
populations at these loci. However, increased genetic divergence between species in sympatry is likely
to still occur regardless of the history of the mutations.

4.2. Recombination

The success of reinforcement (under the two-allele model) depends on high linkage disequilibrium
between reinforcement alleles and alleles causing postzygotic reproductive isolation [97,101].
Alleles conferring increased prezygotic reproductive isolation are adaptive if they act to pair
mutually compatible alleles. Recombination may cause these alleles to associate with opposing
incompatibility alleles, resulting in incompatible pairings [32,101]. If recombination breaks down
linkage disequilibrium between alleles causing prezygotic and postzygotic barriers then selection
against hybrids can cause the local extinction of a species, or selection can eliminate hybrid
incompatibilities and facilitate fusion of the sympatric populations [102,103]. Thus, reinforcement will
be more likely to be successful if recombination is reduced between reinforcement genes and genes
causing postzygotic reproductive isolation through tight physical linkage or their presence in regions
of reduced recombination [101,104,105].
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Recombination rates vary widely across the genome, both within and between chromosomes,
as well as across species [36]. If a mutation causing increased prezygotic reproductive isolation arises in
an area of low recombination it will be more likely to maintain linkage disequilibria with neighboring
alleles causing species differences [106]. In this way, genomic regions of reduced recombination
can harbor hybrid incompatibilities, species-specific adaptive alleles, and reinforcement alleles to
allow persistence of linkage disequilibria in the face of gene flow. In particular, sex chromosomes
and chromosomal rearrangements between species have reduced recombination rates [27,107],
and therefore can facilitate the success of reinforcement alleles [108,109]. Empirical studies lend
support to the importance of reduced recombination regions for the success of reinforcement. In two
sympatric Ficedula flycatcher species, loci causing hybrid incompatibilities, male plumage color
variation, and female species recognition all map to the Z chromosome [42]. Similarly, in two Drosophila
species hybrid sterility, courtship displays, and female species preferences are all associated with
inverted regions on one X chromosome and one autosome [108].

Genomic regions with reduced recombination tend to show patterns of elevated nucleotide
diversity and sequence divergence across populations similar to those caused by strong divergent
selection. Regions of low recombination rate experience increased genetic hitchhiking near selected
loci; background selection can reduce nucleotide diversity within a population at these regions [36].
In addition, lower rates of gene exchange between populations due to reduced recombination cause
higher sequence divergence due to drift. Therefore, genome scans for signatures of selection may
mistake regions of low recombination for loci under strong divergent selection [71,110]. The effects
of reduced recombination are expected to be weaker when gene flow is high; therefore, the signal of
divergent selection in comparisons between allopatric and sympatric populations of the same species
might be more evident than in comparisons between sympatric populations of different species.

To distinguish true signatures of selection for reinforcement from false positives due to
background selection in areas of reduced recombination, we must consider the hallmarks of
reinforcement: evidence of selective sweeps in sympatry that are absent in allopatry, and higher genetic
divergence between sympatric and allopatric populations. Assuming genome–wide recombination
rates are similar in allopatric and sympatric individuals of the same species, a signature of a
selective sweep due to variation in recombination rates should occur in both allopatric and sympatric
populations. Similarly, we do not necessarily expect higher divergence between allopatric and
sympatric populations than between two sympatric populations in regions of low recombination.
In fact, selective sweeps due to reinforcement in low recombination regions may be easier to detect
because larger blocks of the genome will hitchhike to high frequency than they would in high
recombination areas. However, isolating the causal mutations within these blocks may be more
difficult [36].

The discussion above assumes that members of the same species do not differ substantially in
their recombination rate. Polymorphic chromosomal rearrangements or variation in recombination
rate between populations can confound this assumption [107]. For example, if sympatric and allopatric
populations differ in the arrangement of an inversion, they may display high sequence divergence akin
to a reinforcement scenario [111,112]. Also, a recently occurring inversion limited to the sympatric zone
may exhibit reduced nucleotide diversity [113] matching our hypothetical reinforcement signature.
While an inversion fitting this description may be a false positive, it is likely either a true carrier
of reinforcement traits or is under divergent selection for another reason, such as local adaptation
or ecological trait displacement. In fact, as stated above, if a reinforcement allele does get captured
by an inversion along with alleles causing postzygotic reproductive isolation, this inversion will be
favored in sympatry (although not in allopatry) due to reduced recombination between alleles causing
reproductive isolation.
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5. Gene Flow and the Evolution of Reinforcement

Genomic analyses of reinforcement can be used to identify causal genomic regions, but they can
also inform the conditions under which reinforcement occurred. The evolution of reinforcement is
rarely discussed without considering gene flow. The ability for new reproductive isolating barriers
to evolve in sympatry is dependent on the extent of gene flow between sympatric species [7,114],
thus gene flow can hinder or prevent the evolution of reinforcement [48,97]. With genomic analyses,
we can discern if and how much gene flow occurs during reinforcement.

5.1. Gene Flow between Species

As discussed above, for new alleles causing reproductive isolation to evolve, they must
maintain linkage disequilibrium with other species-specific alleles that cause local adaptation and
incompatibilities [101,115]. Gene flow and recombination between sympatric species can disassociate
alleles from their beneficial species-backgrounds and prevent the evolution of reproductive isolation.
Extensive theory describes the parameter values (e.g., strong selection and weak gene flow) under
which reinforcement can successfully occur [92,104,116,117]. However, empirical investigations of
gene flow during reinforcement are rare.

With advancements in genomic analyses, we can now infer if and to what extent gene flow occurs
or has occurred during reinforcement [96,118,119]. For example, there is genomic evidence of gene
flow in the aforementioned example of reinforcement in Phlox. Patterns of genomic variation across
species indicate gene flow between Phlox species in sympatry, but no evidence of gene flow with
allopatric P. drummondii and P. cuspidata [120]. This geographic pattern of gene flow is consistent with
reinforcement evolving in sympatry despite gene flow between Phlox species. This study did not have
the resolution to estimate timing of gene flow, but promising genomic analyses suggest this type of
inference could be possible in future studies of reinforcement [121].

A variety of statistical methods can be used to detect gene flow between populations
and species [122–125]. For example, model-based methods such as STRUCTURE [126] and
ADMIXTURE [127] deduce ancestry from population variation data. Summary statistics such as
Patterson’s D [128] and F4 [129] use phylogenomic inference, and phylogenetic network methods,
such as PhyloNetworks [130], test alternative models of reticulate evolution to determine the best
fit given a distribution of gene trees (Figure 3a). Furthermore, demographic model choice methods
can infer a history of gene flow, using likelihood [131], Approximate Bayesian Computation [132,133],
or diffusion approaches [134]. Together these methods can provide novel insights into the timing,
magnitude, and direction of gene flow. Having a detailed understanding of gene flow during
reinforcement will significantly improve our understanding of how well the process empirically
matches our theoretical expectations of how reinforcement evolves.
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Figure 3. Gene flow affects the evolution of reinforcement (a) a phylogenetic network analysis of two
species with sympatric and allopatric populations can allow for the identification of the direction and
quantity of gene flow between the lineages. (b) Hypothetical examples of how gene flow, or the lack
thereof, may impact genome-wide divergence between sympatric species. (Left) Gene flow between
sympatric species (dashed) will decrease genome-wide genetic divergence, making identification of the
reinforcement locus easier. (Right) Hypothetical example of how a lack of gene flow between allopatric
and sympatric populations within a species impacts identification of reinforcement loci. Over time,
cascade reinforcement (dotted) may increase the amount of genetic divergence observed between the
allopatric and sympatric populations, making identification of the reinforcement locus more difficult.

If gene flow does occur during the evolution of reinforcement, it will also have a pivotal role
in shaping the patterns reinforcing selection leaves on the genome. Theory suggests that gene flow
between species creates heterogeneous levels of genetic divergence across the genome. Loci under
divergent selection (e.g., species-specific adaptation and hybrid incompatibilities) will have low
effective migration and are likely to be highly differentiated, while neutral loci can recombine into
either species’ genome without constraint [39,135]. Gene flow between sympatric species may therefore
make loci causing reinforcement more prominent because the background levels of divergence between
sympatric species will be lower (Figure 3b).

5.2. Gene Flow within Species

Gene flow is likely to occur between sympatric and allopatric populations within a species.
If the trait causing increased reproductive isolation in sympatry is neutral, beneficial, or linked
to an advantageous trait, the causal allele may spread into allopatry [7,116,136]. In this case,
reinforcement will not cause the phenotypic or genomic patterns associated with character
displacement. This situation may result in a signature of selection at the reinforcement locus in
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both sympatry and allopatry, low genetic divergence between conspecific populations, and similar
genetic divergence between heterospecific sympatric and allopatric populations.

Trait evolution caused by reinforcement is often detrimental in allopatry, causing divergence
between allopatric and sympatric populations. The divergence between allopatric and sympatric
populations in mate preference or assortative mating traits can create reproductive isolation
between conspecifics in divergent populations. Reduced gene flow between allopatric and sympatric
populations due to this ‘cascade reinforcement’ could drive further genetic divergence that
eventually leads to speciation [32,137]. Cascade reinforcement has been documented in some cases of
reinforcement (e.g., [17,25,138–143]); however, its prevalence in nature remains unknown.

Cascade reinforcement will not interfere with a signature of selection in sympatry due to
reinforcement, or genetic divergence between sympatric individuals of different taxa. However,
over time, the reduced interbreeding between allopatric and sympatric populations of the same
species due to cascade reinforcement will allow for accumulation of genetic divergence between
the conspecific populations making the genetic differentiation at the reinforcement locus become
less distinct (Figure 3b). If cascade reinforcement has occurred, identification of the original locus
underlying reinforcement will be difficult without testing the function of all candidate regions.

Furthermore, sympatric and allopatric populations are, by definition, geographically isolated
and thus migration and gene flow may be limited between these regions. Under this circumstance,
the genome-wide divergence between sympatric and allopatric populations could increase over time
and mirror the effects of cascade reinforcement.

6. Conclusions

Advancements in next-generation sequencing technology and genomic analyses have
revolutionized our understanding of the genetic basis of reproductive isolation and the process
by which speciation occurs [38]. However, reinforcement has rarely been studied at the genomic
level. Here we describe three patterns of genomic variation that may result from reinforcement.
Genome scans for these patterns may help to identify if reinforcement has occurred, as well as provide
insights into the genetic basis of previously identified cases of reinforcement. Detailed analyses
of genetic variation can yield insight into the nature and origin of a reinforcement allele, if and to
what extent reinforcement evolved with gene flow, and how the genomic architecture has facilitated
its evolution.

As with any genomic analysis, there are many caveats to interpreting genomic patterns consistent
with reinforcement. There are other evolutionary processes and characteristics of genome structure that
can create similar patterns of genomic variation. Genomic analyses can complement but not replace
ecological studies that measure selection and reproductive isolation, and molecular studies that validate
the function of genomic variation. Nonetheless, with new molecular tools, sequencing technologies,
and genomic analyses, genomic studies of reinforcement can significantly improve our understanding
of how reinforcement occurs during speciation.
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