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Abstract: Atrioventricular septal defect (AVSD) is a clinically significant subtype of congenital heart
disease (CHD) that severely influences the health of babies during birth and is associated with Down
syndrome (DS). Thus, exploring the differences in functional genes in DS samples with and without
AVSD is a critical way to investigate the complex association between AVSD and DS. In this study,
we present a computational method to distinguish DS patients with AVSD from those without AVSD
using the newly proposed self-normalizing neural network (SNN). First, each patient was encoded
by using the copy number of probes on chromosome 21. The encoded features were ranked by
the reliable Monte Carlo feature selection (MCFS) method to obtain a ranked feature list. Based
on this feature list, we used a two-stage incremental feature selection to construct two series of
feature subsets and applied SNNs to build classifiers to identify optimal features. Results show that
2737 optimal features were obtained, and the corresponding optimal SNN classifier constructed on
optimal features yielded a Matthew’s correlation coefficient (MCC) value of 0.748. For comparison,
random forest was also used to build classifiers and uncover optimal features. This method received
an optimal MCC value of 0.582 when top 132 features were utilized. Finally, we analyzed some key
features derived from the optimal features in SNNs found in literature support to further reveal their
essential roles.

Keywords: atrioventricular septal defect; Down syndrome; self-normalizing neural network;
Monte Carlo feature selection; random forest

1. Introduction

Congenital heart disease (CHD) is a defect of the heart structure at birth [1] and is one of the
most common birth defects in America with 8 out 1000 newborns affected with different severities [2].
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In 2010, more than 35,000 babies in the United States are born with CHD [2,3]. With the advances in
medical technologies, majority of these babies can have active, productive lives with proper medical
interference. To date, more than 1 million adults live with CHD in the United States [3], implying that
this disease is a widely distributed and significant threat to the health of human beings.

As a structural defect of the heart at birth, CHD has similar major signs and symptoms to
cardiovascular diseases, including rapid breathing, cyanosis, fatigue, and poor blood circulation,
but do not hold the typical symptoms of other cardiovascular diseases, such as chest pain [4,5].
As a group of heart structural problems at birth, CHD can be further categorized into various
subtypes based on detailed pathogenesis, including different regions of the cardiovascular system and
similar symptoms [6]. Atrioventricular septal defect (AVSD) was previously described as common
atrioventricular canal defect or endocardial cushion defect, but is found to be a clinically significant
subtype of CHD, that accounts for over 5% of all CHD cases [7]. To geneticists, ASVD is particularly
important because of its strong association with Down syndrome (DS) [4,8,9]. Babies with DS are likely
to have AVSD with an incidence 2000 times higher than that in the euploid population. According to
clinical statistics, approximately 15% to 20% of newborns with DS also suffer from the AVSD, indicating
the potential relationship between these two diseases [10,11].

DS, also known as trisomy 21, is caused by a genetic disorder induced by the presence of all or
part of a third copy of chromosome 21. The genetic contributions of trisomy 21 to the concurrence of
DS and AVSD are more significant compared with other factors, even environmental factors. In 2012,
a specific study [12] on CHD confirmed that variants in CRELD1, encoding an epidermal growth
factor-related gene, contribute to the concurrence of DS and AVSD. In addition, researchers identified a
group of CRELD1 variants that affect the susceptibility of AVSD in patients with DS, thus validating the
genetic causative component of AVSD, especially in DS populations [12]. In 2015, two studies [13,14]
confirmed that genes NKX2-5, GATA4, and CREL1 participate in the pathogenesis of AVSD in DS.
In 2016, another study [15] focusing on all types of genetic contribution on AVSD in DS showed that
not only the genetic variants but also other regulatory variants (e.g., altered microRNA expression)
may participate in such pathogenesis. As a specific form of genetic variants, copy number variants
(CNVs) have been widely identified in DS according to many recent publications. In 2017, a novel
study provided by the Gene Expression Omnibus (GEO) database (GSE93004) [16,17] describing the
CNVs anchored in chromosome 21 in DS confirmed that such a type of genetic variant may also affect
the susceptibility of AVSD in patients with DS. However, this study did not reveal that the detailed
regions/genes located on chromosome 21 that may contribute to the pathogenesis of AVSD in patients
with DS. Therefore, in this study, we tried to find out an applicable computational method to identify
the key genomic regions/genes that contribute to such pathogenesis.

Machine learning models provide a powerful solution to identify the crucial regions/genes
associated with AVSD in patients with DS. These models have been used to analyze the CNV data for
cancers [18,19]. For example, Ding et al. apply feature selection to identify crucial genes associated with
cancer; these genes are further coded into conventional machine learning models to distinguish cancer
samples from other control samples. However, these models still do not achieve high performance.

Deep learning has recently achieved remarkable results in computer vision and computational
biology [20–27]. Most successful applications use many layers of convolutional or recurrent neural
networks but are limited to vision or sequential tasks. For data without sequential characteristics
or local structure, the feed-forward neural network (FNN) can be applied. Successfully using
FNN with more than four layers is rarely reported. For deep network, the variations in the
distributions of the activations are known as internal covariate shift [28], resulting in slow training
and poor generalization [29–31]. In addition, training deep networks easily suffers from vanishing
or exploding gradient [32], which can be avoided by stabilizing variance of activations. Thus, batch
normalization [28] and other normalization tricks are applied to ensure zero mean and unit variance
of activations and thus robustly learn many layers. However, these tricks are easily perturbed by
stochastic gradient descent and dropout regularization. Both the convolutional neural network (CNN)
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and the recurrent neural network can cope with this issue using Rectified Linear Unit, weight sharing,
or skip connection (residual network ResNet [33]). On the contrary, deep FNNs are sensitive to these
perturbations and have high variance even when using all these techniques [32]. Currently, there
are no effective techniques that can be applied for training deep FNNs. The self-normalizing neural
network (SNN) [32] is proposed to handle the effect of the perturbations and build deep FNNs.

SNNs open the door for deep network applications on general data and are not limited to
sequential and image data. It has been evaluated on 121 UCI tasks, and the results reveal that SNNs are
superior to FNNs in all tasks and have outperformed random forests (RFs) and support vector machine
(SVM) when the data size is greater than 1000. Furthermore, SNNs outperformed all other methods,
including ultradeep CNNs, such as ResNet, on the Tox21 and astronomy dataset. The winning SNNs
are deep [32].

In this study, we present machine learning-based methods to analyze CNV data of 236 patients
with both DS and AVSD and 290 patients with only DS provided by the study from GEO we have
mentioned above (GSE93004) [16]. Considering the high dimension of CNVs, we first apply feature
selection methods to identify the informative genes that may contribute to the pathogenesis of AVSD.
Then, we train a deep SNN model on those informative genes to classify patients with DS and AVSD
from those only with DS. As a comparison, the powerful classification algorithm, RF [34], is also
used to build classifiers and estimate their prediction abilities on distinguishing the two types of
patient samples. With both qualitative and quantitative analyses, this study not only facilitates the
identification of pathogenic genes contributing to AVSD in DS populations, but also lays a statistical
foundation for further studies on the relationship and detailed mechanisms of CHD and DS.

2. Materials and Methods

We presented a machine learning-based method to identify the pathogenic genes associated with
AVSD in DS population (Figure 1). We first collect copy number data of total 526 samples. Then,
we applied feature selection methods to yield the informative genes. These informative features are
further fed into a deep SNN classifier to classify patients with DS and AVSD from those only with DS
and fed into Johnson reducer algorithm to generate some decision rules with biological support.

2.1. Dataset

We downloaded the copy number data of 236 patients with both DS and AVSD and 290 patients
who had only DS and did not have other simple forms of CHD [16] from GEO [35]. The copy numbers
of 52,842 probes on chromosome 21 were measured using Agilent Comparative Genomic Hybridization
arrays (Agilent, Santa Clara, CA, USA). By investigating the copy number difference between patients
with both DS and AVSD and patients with only DS, we may find the key genomic regions or genes
that trigger the AVSD for patients with DS.

2.2. Feature Analysis

In this study, each patient sample was represented by 52,842 features derived from the copy
number of probes. To select some essential features that might contribute to discriminating patients
with DS and AVSD from those only with DS, a reliable feature selection procedure was necessary to
achieve the goal. To this end, we applied Monte Carlo feature selection (MCFS) [36] and incremental
feature selection (IFS) methods. The details are described in the following sections.

2.2.1. Monte Carlo Feature Selection Method

MCFS method is designed to rank informative features for supervised classifiers using sampling
technique with replacement. In detail, a large number of decision tree classifiers are constructed, where
each tree is grown from a bootstrapped dataset with a randomly selected feature subset. In addition,
each feature f is assigned a score called relative importance (RIf). MCFS assigns greater RIf to feature f
if it participates more in the classification using the tree classifiers. For each time, a feature subset is
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constructed with m features (m�M, where M is the total number of features) and t tree classifiers
are grown, wherein each of the t trees is trained by a random sampled training and test sets from the
original training set. Repeating the abovementioned process s times, we obtained s feature subsets
and a total of t × s tree classifiers. Then, for each feature, we calculate the score RI by estimating the
overall number of splits involving this feature in all nodes of all constructed trees. Particularly, RI is
estimated for feature f using the following equation:

RI f =
s×t

∑
τ=1

(wAcc)u ∑
n f (τ)

IG
(

n f (τ)
)(no. in n f (τ)

no. in τ

)v

, (1)

where wAcc is the weighted accuracy for all samples, IG
(

n f (τ)
)

is the information gain of node n f (τ),
no. in n f (τ) is the number of samples in n f (τ), no. in τ is the number of samples in tree τ, and u
and v are fixed real numbers. By default u and v are set to 1, and a detailed discussion on how to
set parameters of MCFS method can be found in Draminski et al. study [36]. The wAcc is defined
as follows:

wAcc =
1
c ∑ c

i=1
nii

ni1 + ni2 + . . . + nic
, (2)

where c reprents the number of classes and nij denotes the number of samples from class i that are

classified as class j. The IG
(

n f (τ)
)

is defined as follows:

IG
(

n f (τ)
)
= Entropy (T)− Entropy (T, f ), (3)

where T is the target variable (class label) of node n f (τ), Entropy (T) is the entropy of the frequency
table of variable T and Entropy (T, f ) is the entropy of the frequency table of the two variables T
and f . One way of building a decision tree is to repeatedly find the attribute that returns the highest
information gain. Both s and t should be sufficiently large so that a feature has a great chance to appear
in many randomly generated feature subsets. Even so, there is still a chance that a feature is totally
ignored by the algorithm. However, the great majority of the features are properly ranked by the
algorithm which is sufficient for the feature selection in our work.

By using MCFS software downloaded from home page of Dramiński [37], we ranked all features.
As a result, we yielded a ranked feature list in descending order according to their RI values, which
can be formulated as

F = [f1, f2, . . . , fM], (4)

where M is the total 52,842 features.

2.2.2. Incremental Feature Selection Method

Based on the ranked feature list yielded from MCFS, we attempted to further determine a group
of optimal features with a supervised classifier, which would correctly distinguish the most of the two
types of patient samples in our dataset. Many supervised classifiers can be used, such as SVM, RF,
SNN, etc. In this study, we used SNN and RF (Section 2.3) as the supervised classifiers. Therefore,
we performedIFS method on the ranked feature list. First, we constructed a series of feature subsets,
formulated as S1

1, S1
2, . . . , S1

l , where S1
i = [ f1, f2, . . . fi∗k], i.e., the ith feature subset contained the first

i * k features in the original feature list. By using features in each feature subset to represent patient
samples in dataset, one classifier was built. After testing all feature subsets, we would obtain good
prediction performances in a feature interval represented as [min, max].

To exactly extract optimal features in this interval, another series of feature subsets, S2
min, S2

min+1,
. . . , S2

max, was also constructed. Similarly, we tested all feature subsets by building classifiers on them.
We obtained a feature subset with the best performance. Finally, the features in this feature subset were
denoted as optimal features for further utilization. We believed that the optimal features contained
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key chromatin segments, which can be used to distinguish different patient samples. Simultaneously,
we obtained an optimal classifier built on these optimal features.

Figure 1. Flowchart of our proposed pipeline. 236 patients with both Down syndrome (DS) and
atrioventricular septal defect (AVSD) (positive samples) and 290 patients had only DS (negative
samples) were measured by the copy numbers of 52,842 probes on chromosome 21. Then, all features
were evaluated by Monte Carlo feature selection method (MCFS), resulting in a feature list and
several informative features. The feature list was used in the incremental feature selection method to
construct an optimal self-normalizing neural network (SNN) classifier and extract optimal features.
The informative features were feed into the Johnson Reducer algorithm to extract decision rules.

2.2.3. Rule Extraction

Based on the MCFS method, a feature list can be obtained as formulated in Equation (4).
Informative features can be extracted from this list by selecting the top p% features in the list, where p
is a predefined number. The Johnson Reducer algorithm [38] is then used to find a single reduction of
the top p% features, which is a reduced subset of the features able to classify as well as using all of
the features. Johnson Reducer algorithm is a greedy heuristic algorithm, which generates a reduction
that is not guaranteed to have minimal size. Based on the reduction, Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) algorithm is applied to generate decision rules. The RIPPER,
proposed by Cohen [39] in 1995, is a rule learning algorithm, which is capable of handling large noisy
datasets effectively. It is an improved version of Incremental Reduced Error Pruning (IREP) [40], which
combines both the separate-and-conquer technique used first in the relational learner FOIL, a system
that learns Horn clauses from data expressed as relations [41], and the reduced error pruning strategy
proposed by Brunk and Pazzani [42]. The RIPPER algorithm is described briefly in Figure 2.
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Figure 2. The procedures of RIPPER algorithm.

In this study, the implementation of MCFS method from http://www.ipipan.eu/staff/m.
draminski/mcfs.html integrates the rule extraction method mentioned above. By analyzing the
extracted rules, a clearer comprehension can be achieved for DS population with AVSD. The rule
extraction approach generates IF-THEN rules, which are more easily interpreted by a human being as
they are similar to human language. In addition, it can narrow down the features to the most important
ones which deserve special attention from related researchers.

2.3. Classification Algorithm

As described in Section 2.2.2, a classification algorithm is necessary to build classifiers on the
feature subset derived from IFS method. In this study, a type of newly proposed neural network SNN
and a widely used algorithm RF were applied. The mechanism on building classifiers is briefly listed
as follows.

2.3.1. Self-Normalizing Neural Network Algorithm

SNN [32] is proposed to solve the problems by keeping the mean (µ) and variance (v) of activations
to a certain interval and making it (µ, v) converge to a fixed point, particularly to (0, 1). Two techniques
are adopted to achieve the self-normalizing properties as follows: (i) modify the activation functions;
and (ii) initialize the weights of the network. The authors tweak an Exponential Linear Unit (ELU)
activation function to obtain a Scale ELU (SELU) function.

selu(x) = λ

{
x if x > 0

αex − α if x ≤ 0
(5)

The authors [32] prove that after initializing the weights, SNN is indeed self-normalizing with the
SELU function, and if v is too high and approaches the upper bound, it will decrease v, and if v is too
low and approaches the lower bound, it will increase v.

In terms of initializing, Gaussian distribution with mean 0 and variance 1√
n , where n is the number

of weights, is applied. The authors prove that with such initializing and the fixed point being (0, 1),
SNN obtains an optimum solution λ = 1.0507 and α = 1.6733 in SELU function [32].

http://www.ipipan.eu/staff/m.draminski/mcfs.html
http://www.ipipan.eu/staff/m.draminski/mcfs.html
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In addition, alpha dropout [32] is proposed to maintain the self-normalizing properties. Instead
of using zero, which would perturb the mean and variance, the authors suggest using −αλ as the
inputs of any dropout neurons. Then, the variance is preserved by applying an affine transformation
ax + b where a, b can be computed relative to the dropout rate and the most negative activation.

In this study, all the constructed SNN classifiers have three hidden layers, each layer containing
200 hidden nodes.

2.3.2. Random Forest Algorithm

RF is an ensemble classifier [43], which grows multiple decision trees. In the training stage, two
statistical techniques including bootstrap method [44] and random feature subsets [45] are combined
to build decision trees. In the procedure of bootstrap, a training dataset containing N samples is
repeatedly sampled B times (B as a parameter representing the number of decision trees). For each
decision tree, the randomly selected N samples (with replacement) comprise its training set, and a
random feature subset is adopted to split the nodes of this decision tree. Eventually, B decision trees
are grown. For a new sample, each decision tree provides a predicted result, and the predicted result
of the RF was finally determined by majority voting. To date, it has been applied to tackle many
biological problems [46–55].

The RF algorithm was implemented by the RandomForest classifier with default parameters in
Weka [56] software, which contains some state-of-the-art machine learning algorithms.

2.4. Performance Measurements

To evaluate prediction ability of SNN classifier, we performed a 10-fold cross-validation [57–60].
Compared with jackknife cross validation test [61,62], the 10-fold test usually yielded a similar result.

As a binary classification problem, each positive or negative sample received a predicted class
label from the constructed classifier. By comparing with their real labels, four values are calculated.
They are true positive (TP), true negative (TN), false negative (FN), and false positive (FP) [63], where
TP/FN is the number of positive samples that are predicted correctly/incorrectly, TN/FP is the number
of negative samples that are predicted correctly/incorrectly. Based on the four values, a measurement
called Matthew’s correlation coefficient (MCC) [64] is calculated to evaluate the prediction ability of
classifier, defined as follows:

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

The range of MCC is between −1 and 1. +1 represents a perfect prediction, 0 shows the prediction
is close to random guessing and −1 indicates total disagreement between prediction and real labels.
The predicted results were primarily evaluated using MCC because the two sample sizes in our dataset
were slightly different.

In addition to MCC, we also employed the area under curve (AUC) for evaluating the performance
of different classifiers. To calculate AUC, the receiver operating characteristic (ROC) curve should be
plotted, which is defined by setting true positive rate (TPR) as its Y-axis and false positive rate (FPR)
as its X-axis. Then, the AUC is defined as the value of area under the ROC curve. Generally, AUC is
larger than 0.5 and a high AUC always implies good performance.

3. Results

In this study, we used different copy numbers of probes of chromosome 21 as input features
to distinguish patients with DS and AVSD from those with only DS. To evaluate these features
on discriminating two types of patient samples, a MCFS method was used to rank all features
in descending order according to their RI values using Monte Carlo method and decision trees.
We selected the top 5000 features (listed in Supplementary Material S1) in feature list and executed
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IFS method on them because our goal was to extract important features and most of them are weakly
correlated with patient samples.

3.1. Results from Self-Normalizing Neural Network Algorithm

After the feature ranking procedure using MCFS, we obtained two series of feature subsets as
introduced in Section 2.2.2. For the first series of feature subsets, the parameter k was set to 10. Thus,
the ith feature subset contained top 10 * i features in the original feature list. Then, we constructed a
SNN classifier on each feature subset, executed 10-fold cross validation test and calculated its MCC
value. The obtained MCCs are listed in Supplementary Material S2. To provide a clear exhibition
of these MCCs, we plotted an IFS curve using MCC as its Y-axis and the number used features as
its X-axis, which is shown in Figure 3A. It can be observed that the IFS curve first follows a sharp
increasing trend and then becomes stable. By careful checking, several good MCC values (most of
them are larger than 0.600) were achieved by using number of features ranging from 2000 to 5000.
Therefore, we determined a number interval [2001, 4999] for subsequent utilization.

The second series of feature subsets were built using the number of features in the number interval
[2001, 4999]. Each feature subset had one more feature than the former one. Similarly, by testing all of
them, we accessed several MCC values, which are also listed in Supplementary Material S2. Similarly,
an IFS curve was also plotted to illustrate these values, which is shown in Figure 3B. The optimal MCC
value (0.748) was yielded when top 2737 features were used to construct the SNN classifier (Table 1),
which in turn demonstrated the discriminative ability of those top 2737 genes. In addition, we also ran
the similar pipeline using RF as the classifier. The RF classifier yielded an optimum MCC 0.582 using
optimum 132 features (see Section 3.2). RF yielded a much lower MCC than 0.748 of the SNN classifier,
which demonstrated the power of deep SNN classifier. Accordingly, we obtained an optimal feature
subset and an optimal SNN classifier.

Figure 3. Incremental feature selection (IFS) curves derived from the IFS method and SNN algorithm.
X-axis is the number of features participating in building classifiers in feature subsets. Y-axis is their
corresponding Matthew’s correlation coefficient (MCC) or area under the curve (AUC) values. (A) IFS
curve with X-values of 10 to 5000. The selected feature interval for SNN algorithm is [2001, 4999], which
were marked with two vertical lines. (B) IFS curve with X-values of 2001 to 4999 for SNN algorithm.
When first 2737 features in feature list were considered, the optimal MCC value reached 0.748, which is
marked by a red diamond.
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As mentioned in Section 2.4, to give a full evaluation of different classifiers, we also counted the
AUCs for all SNN classifiers, which are provided in Supplementary Material S2. Also, we plotted
the IFS curves for these AUCs, which are shown in Figure 3. It can be seen that the trends of these
IFS curves are always similar to those for MCCs. In addition, for the optimal SNN classifier, its AUC
(0.915) is listed in Table 1 and the corresponding ROC curve is illustrated in Figure 4.

Table 1. Optimal number of features and MCC values yielded from the optimal SNN and RF classifiers.

Classification Algorithm Number of Features MCC AUC

SNN 2737 0.748 0.915
Random forest 132 0.582 0.834

Figure 4. The receiver operating characteristic (ROC) curves for the optimal SNN and Random
Forest classifier.

3.2. Results from Random Forest Algorithm

Similar to SNN algorithm, we also applied RF algorithm to build classifiers on feature subsets
derived from IFS method, and each classifier was evaluated by a 10-fold cross validation test. Because
the RF algorithm is quite fast, all feature sets containing 10–5000 features were tested. The obtained
MCC and AUC values are provided in Supplementary Material S3. Also, for a good observation, the IFS
curves for MCC and AUC were plotted in Figure 5, from which we can see that the optimal MCC value
is 0.582 when top 132 features in feature list were used (Table 1). Accordingly, the top 132 features
and RF algorithm can construct the optimal RF classifier. The AUC yielded by this classifier was also
calculated, it was 0.834 (Table 1). Obviously, the MCC and AUC obtained by the optimal RF classifier
were much less than those obtained by the optimal SNN classifier. In addition, in most of the range of
X-values, the corresponding MCC and AUC values of classifiers constructed using the RF algorithm
were lower than those using the SNN algorithm (RF: majority of MCC values < 0.550 and all AUC
values < 0.9, see Figure 5; SNN: majority of MCC values > 0.550 and all AUC values > 0.9, see Figure 3),
indicating good prediction abilities of SNN classifiers on distinguishing complex biological samples.
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Figure 5. IFS curves derived from the IFS method and RF algorithm. X-axis is the number of features
participating in building classifiers in feature subsets. Y-axis is their corresponding MCC or AUC
values. When first 132 features in feature list were considered, the optimal MCC value reached 0.582,
which is marked by a triangle.

3.3. Decision Rules

As mentioned in Section 2.2.3, IF-THEN rules were generated by the program of MCFS method,
which are listed in Table 2. Two gene regions were involved in these rules: A_16_P41408273 and
A_16_P03593084. Following these rules, the predicted results were measured as a MCC of 0.169.
We also estimated an odds ratio for these rules of 2.01 (p = 2.62 × 10−11, 95% Confidence Interval (CI):
lower, upper were 1.63, 2.48). These results also suggest that the predicted class from these rules was
consistent with class of the observed disease groups. Although it is not very satisfactory, we can still
find important clues that indicate the differences between DS populations with and without AVSD by
analyzing A_16_P41408273 and A_16_P03593084, which is given below.

Table 2. Three decision rules extracted from the informative features.

Classification Rules Features Criteria

With AVSD Rule 1 A_16_P41408273 ≤−0.00593

With AVSD Rule 2
A_16_P03593084 ≥−0.0164
A_16_P03593084 ≤0.075
A_16_P41408273 ≥0.0248

Without DS Rule 3 Other conditions

Three rules have been screened to identify two subgroups of DS populations with or without
AVSD. In Rule 1, only one specific gene region named A_16_P41408273 in our reference database [16]
has been screened out. According to this rule, patients with a reduction in copy number in
A_16_P41408273 are more likely to have AVSD. Aside from our original database, minimal direct
evidence confirmed the CNV of such region in patients with AVSD. Based on the GSE93004,
GSE18152 from GEO database, and a specific publication [65], the copy number of such gene region
is downregulated in most patients with AVSD compared with those without AVSD, validating
our prediction. The Rule 2 of our quantitative screening involves two functional genes, PDE9A
(A_16_P03593084) and A_16_P41408273 we mentioned above. The gene PDE9A, encoding a component
of cGMP phosphodiesterase which further contributes to signal transduction by regulating the
intracellular cyclic nucleotides’ concentration, has increased copy number in most patients with AVSD,
consistent with our predicted rule (≥ −0.0164 and ≤ 0.075) [66,67]. As for transcript A_16_P41408273,
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we found that most patients with AVSD have a reduced copy number. However, a group of DS patients
with AVSD who have an increasing copy number in A_16_P41408273 according to our reference
dataset remains [65]. Combined with PDE9A, to speculate that all such samples screened out by
Rule 2 are definitely DS patients with AVSD is quite reasonable and is consistent with our prediction.
The successive application of Rule 1 and Rule 2 may identify patients with AVSD more accurately than
either rule alone. Furthermore, according to our optimal rules, patients with DS with different copy
number variant patterns compared with our previous two rules turn out to be patients without AVSD,
corresponding with our original dataset.

4. Discussion

4.1. Why Use Self-Normalizing Neural Network as the Classifier

In this study, we integrated a SNN into feature selection method IFS, and achieved good prediction
performance for classifying DS patients with or without AVSD. In addition, we also found some
important genes and quantitative rules aligning with recent literature. However, there still exists some
limitations: (i) the number of samples is much smaller than the number of input features, which easily
leads to model overfitting; (ii) deep learning in general requires many more training samples, and
currently we only trains SNN on a small dataset. Thus, if we can collect more samples, our method
is expected to achieve better performance; (iii) SNN is still a black-box classifier, and currently we
combine it with feature selection method to identify the important genes based on the discriminate
performance; and (iv) training a deep learning model is still time-consuming.

As shown in Table 1, SNN performed much better than conventional machine learning classifier
RF, which in general outperforms other conventional classifiers on many datasets. Meanwhile, we can
train multiple classifiers to combine as a super learner, which is expected to perform better than any
single classifier. However, it is time-consuming to train multiple classifiers. In particular, the classifier
is integrated in IFS, which will run multiple times on feature subsets to select the optimum features.
On the other hand, SNN itself outperforms other classifiers with a large margin. Thus, we just used
SNN instead of a super learner.

4.2. Optimal Genes Associated with Atrioventricular Septal Defect in Patients with Down Syndrome

Findings from our analysis suggest that patients with AVSD have specific copy number
characteristics in DS populations compared with other patients with DS. Based on the copy number
statistics provided in the GEO database, we apply our newly SNN-based method. Using our newly
presented computational method, a group of functional genes (Table 3) with specific CNVs that may
distinguish patients with AVSD in DS population were identified. The detailed analysis of screened
important genes is listed below.

Table 3. Detailed analyzed optimal features in Section 4.2.

No. Feature Name Gene Name

1 A_16_P03593084 PDE9A
2 A_16_P03583086 DOPEY2
3 A_16_P03587947 LCA5L
4 A_16_P21251330 DSCR4
5 A_16_P41466725 ITGB2
6 A_16_P41430034 U16296

PDE9A (A_16_P03593084) has been predicted to have different copy number status in DS patients
with or without AVSD. According to recent publications, PDE9A has been reported to contribute
to the signaling transduction processes by specifically hydrolyzing the second messenger cyclic
guanosine monophosphate (cGMP) [68,69]. In 2000 and 2011, two publications confirmed that in
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some patients with DS and in mouse models, PDE9A, predicted as an important gene in our model,
has specific pathological CNV, validating the specific distribution of CNVs in such genes among DS
populations [66,67]. PDE9A as a specific component of the cGMP signaling pathway has also been
reported to participate in atrioventricular septal-associated diseases [70–72]. To identify patients with
AVSD in DS populations by its specific atrioventricular septal associated functions is quite reasonable,
further validating our prediction.

The gene DOPEY2 (A_16_P03583086) is a known pathological gene of DS involved in the protein
traffic between lately Golgi and early endosomes [73,74]. Recently, a comprehensive review [75] on
the genome dosage imbalance in DS confirmed that the copy number alteration of this gene may be
involved in the complications of disease, such as AVSD, aligning with our prediction. Considering
that the CNVs of DOPEY2 may participate in the pathogenesis of AVSD, to speculate that DS patients
with or without AVSD may have different copy number status of gene DOPEY2 is quite reasonable,
validating the efficacy and accuracy of our prediction.

LCA5L (A_16_P03587947) encoding the ligand of LCA5 has been widely reported to participate in
centrosomal or ciliary functions according to recent publications [76,77]. Additionally, the interaction
between LCA5L and NDK1 has been confirmed to contribute to the pathogenesis of DS with specific
CNVs [78–80]. Although no direct evidence revealed the specific contribution of LCA5L in patients with
DS, a study [81] on the congenital heart defects confirmed that copy number variation of LCA5L also
participated in the pathogenesis of congenital heart defects. In general, AVSD is a subtype of congenital
heart defects. Therefore, considering that LCA5L simultaneously participate in the pathogenesis of
both AVSD and DS, to conclude the potential relationship between LCA5L and DS patients with AVSD
is quite reasonable.

DSCR4 (A_16_P21251330) as a specific non-coding RNA gene that has been linked to the
pathogenesis of DS is also predicted to contribute to distinguishing DS patients with or without
AVSD [82]. The copy number alteration of this gene has also been reported to participate in
AVSD-associated biological processes. In 2013, a specific study on children with DS implied that copy
number alteration of DSCR4 participate in the pathogenesis of DS patients with AVSD, functionally
interacting with CRELD1 [83]. In 2017, another study [84] also confirmed that in partial trisomy
21 cases, a specific gene region of DSCR4 and its neighbor gene KCNJ6 have been duplicated in patients
with AVSD, compared with other patients without AVSD, validating our prediction.

ITGB2 (A_16_P41466725) has also been predicted to contribute to AVSD in patients with DS. CNVs
have been widely reported in ITGB2 contributing to various subtypes of diseases, including DS [85],
systemic lupus erythematosus [86], and lupus nephritis [86]. As a DS-associated gene, the CNV of
ITGB2 has also been reported to contribute to the specific complication of DS and CHD, indicating
its complicated biological functions during such pathogenesis [87]. To consider ITGB2 as a potential
marker for the distinction of the two subgroups of DS is quite reasonable because the CNV of ITGB2
has different distribution patterns in patients with and without AVSD [87], validating our prediction.

The last annotated gene in the top 10 predicted gene list is U16296 (A_16_P41430034). As a specific
annotated RNA isoform of gene TIAM1, the relationship between U16296 and AVSD actually refers
to the relationship between TIAM1 and AVSD. Early in 2011, based on mouse embryo sequencing
data, the CNVs of our predicted gene TIAM1 has been reported to participate in the pathogenesis
of DS-associated heart defects including AVSD, validating our prediction [88]. Furthermore, in 2004,
a clinical study on a male infant with DS further confirmed the specific role of TIAM1 translocation
in the pathogenesis of CHD, aligning with our prediction [89]. Therefore, based on such literature
supports, our predicted RNA isoform named U16296 derived from TIAM1 may contribute to the
identification of DS patients with AVSD.

Limited by the length of our manuscript, not all predicted genes/transcripts are discussed in
detail. Filtering out the un-annotated RNA transcripts, many of the top predicted genes/transcripts
have been reported to contribute to the distinction of DS patients with or without AVSD, providing a
group of solid candidate biomarkers for further experimental confirmation and clinical detection.
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5. Conclusions

Although lacking detailed copy number statistics for further validation, all screened rules have
been confirmed to align with recent literature. Combined with the qualitative analysis of optimal
distinctive genes we analyzed, our computational method successfully identified a group of functional
biomarkers for the identification of patients with AVSD in patients with DS, which can help to
understand why some DS patients develop AVSD. Although the model was still too complex to be
applied in clinical practice, it included the candidate genes for further experimental validation, and
the complex mechanism of AVSD and DS will be revealed one day.
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