Table captions

 Table 1 Sugar acceptors used in this study

" $\sqrt{}$ " means that the compound is able to react with OsUGT1; " \times " indicates no reaction

with OsUGT1

 Table S2 The primers used in this study

 Table S3 Plasmids and strains used in this research

	Table S	51	
No	Sugar acceptor	CAS Number	Reaction
	Fla	vonoids	
1	Sulfuretin	120-05-8	
2	Luteolin	491-70-3	\checkmark
3	7,8-Dihydroxyflavone	38183-03-8	
4	5,7-Dihydroxyflavone	480-40-0	
5	6-Hydroxyflavone	6665-83-4	
6	3,2'-Dihydroxyflavone	6068-76-4	
7	5-Hydroxyflavone	491-78-1	×
	Anthr	aquinones	·
8	Rhein	478-43-3	×
	St	teroids	·
9	Dehydroepiandrosterone	53-43-0	×
10	17β -Estradiol	50-28-2	×
11	17α-Estradiol	57-91-0	×
12	Methyltestosterone	58-18-4	×
13	Testosterone	58-22-0	×
14	15β -Hydroxytestosterone	39605-73-7	×
15	2β -Hydroxytestosterone	10390-14-4	×
16	16β -Hydroxytestosterone	17528-90-4	×
17	16α-Hydroxytestosterone	63-01-4	×
18	Cortisone	53-06-5	×
19	Hydrocortisone	50-23-7	×
20	β-Ecdysone	5289-74-7	×
21	Cholesterol	57-88-5	×
22	β -Sitosterol	83-46-5	×
23	Ergosterol	57-87-4	×
24	Diosgenin	512-04-9	×
25	Cholic acid	81-25-4	×
	Ter	penoids	
26	Protopanaxatriol	1453-93-6	×
27	Oleanolic acid	508-02-1	×
28	Ursolic acid	77-52-1	×
	Phen	olic acids	
29	Caffeic acid	331-39-5	×
30	Ferulic acid	1135-24-6	×
31	<i>p</i> -Coumaric acid	501-98-4	×
32	Sinapic acid	530-59-6	×
33	DL-4-Hydroxymandelic acid	1198-84-1	×
	Alkaloids		
34	2,6-Dihydroxyquinoline	19315-93-6	×
35	Higenamine	5843-65-2	×

36	5-Hydroxyindole acetic acid	54-16-0	×
37	Berberine	2086-83-1	×
38	Camptothecin	7689-03-4	×
39	Securinine	5610-40-2	×
40	Matrine	519-02-8	×
41	Peimisine	19773-24-1	×

Table	S2
-------	----

Primer	Sequence (5'to 3')	Description
		Forward primer used
		for OsUGT1
Fcomp28733-1	CAATCGTCTCCTCTTGGAC	amplification in the
		first round
		Reverse primer used
		for OsUGT1
Rcomp28733-1	CATCAACTGATTGCTATGTC	amplification in the
		first round
	ATGGAAGGGAAAAAACAACAT	Forward primer used
		for
Fcomp28733-2		OsUGT1 amplification
		in the second round
		Reverse primer used
		for OsUGT1
Rcomp28733-2	TTACACAAAAATCATGCAAAAG	amplification in the
		second round
		Forward primer used
F28a28733	CAAATGGGTCGCGGATCCGAATTCATGGAAGGGAAAAAAAA	for the construction of
		pET28aOsUGT1
		Reverse primer used
R28a28733	GTGCTCGAGTGCGGCCGCAAGCTTTCAGGTGACAACCCTTTT	for the construction of
		pET28aOsUGT1

Strains/plasmids	Description	Source/Reference				
Strain						
<i>T</i> 1 T1	$F_{2} \approx 90 (las 7) \text{ MM15 A las } \sqrt{74} \text{ had} (m - m +) A use A 1200 and A 1 tau A$	TransGen,				
170051-11	$\Gamma \psi 00 (iacZ) \Delta W 13 \Delta iacX / 4 hsaK (i_k, ii_k) \Delta recA1398 enaA110 hA$	Beijing, China				
<i>T</i>	E-ownThade-(TransGen,				
Transella (DES)	r omp i nsasB(rB mB)gal acm (DES)pKARE(arg0, argw, nex,giy i, ieuw, proL)Camr)	Beijing, China				
Plasmid						
nEASVTM Dlumt	Concept cloning vestor T7 promotor fl. ori Americand Kani	TransGen,				
<i>pLAST</i> Bluin	General cioning vector, 17 promoter, 11 ori, Amp' and Kan	Beijing, China				
ET 29 (1)	Converte T7 menutes flori Kont	Novagen,				
pE1-288 (+)	General expression vector, 17 promoter, 11 on, Kar	Madison, USA				
pEASY-OsUGT1	<i>pEASY</i> TM -Blunt derived vector containing <i>OsUGT1 gene</i>	This study				
pET28a-OsUGT1	pET-28a (+) derived vector containing OsUGT1 gene	This study				

Figure legend

Figure S1 PCR product visualized on the agrose gel

PCR product amplified by nested PCR with (1) or without cDNA template (2). M represents molecular marker indicated on the left margin with bp.

Figure S2 List of conserved domain hits, PLN02863 (A), COG1819 (B) and MGT (C), using OsUGT1 as the query sequence.

Figure S3 Detection of the recombinant OsUGT1 by SDS-PAGE (A) and Western-blotting (B).

Lane M; protein molecular weight marker; lane 1, the crude extract of *Transetta* (DE3)

[pET28aOsUGT1] induced with IPTG; lane 2, the crude extract of *Transetta* (DE3)

[pET-28a(+)] induced with IPTG; lane 3, the purified OsUGT1 protein; lane 4,

western-blotting analysis of the crude extract containing the recombinant OsUGT1;

lane 5, western-blotting analysis of the crude extract containing no OsUGT1

Figure S4 Mass spectra of metabolites 1a (A), 1b (B) and 1c (C).

Figure S5 ¹H NMR spectrum (600 MHz, DMSO- d_6) (A) and ¹³C NMR spectrum of **1a** (150 MHz, DMSO- d_6) (B)

Figure S6 HMBC spectrum of 1a

Figure S7 ¹H NMR spectrum (600 MHz, DMSO- d_6) (A) and ¹³C NMR spectrum of **1b** (150 MHz, DMSO- d_6) (B)

Figure S8 HMBC spectrum of 1b

Figure S9 ¹H NMR spectrum (600 MHz, DMSO- d_6) (A) and ¹³C NMR spectrum of 1c (150 MHz, DMSO- d_6) (B)

Figure S10 HMBC spectrum of 1c

Figure S11 HPLC chromatogram of glucosylation of luteolin (2) with OsUGT1 (a) or without OsUGT1 (b) (A). The UV absorption spectrum of glucosylated metabolites **2a-2c** is similar to that of **2**. All of them are marked in the upper panel.

Figure S12 The mass spectra of glucosylated metabolites 2a (A), 2b (B) and 2c(C).

Figure S13 HPLC chromatogram of glucosylation of 7,8-dihydroxyflavone (**3**) with OsUGT1 (a) or without OsUGT1 (b) (A). The UV absorption spectrum of glucosylated metabolite **3a** is similar to that of **3**. Both are marked in the upper panel. **Figure S14** The mass spectrum of glucosylated metabolite **3a**.

Figure S15 HPLC chromatogram of glucosylation of 5,7-dihydroxyflavone (4) with OsUGT1 (a) or without OsUGT1 (b) (A). The UV absorption spectrum of glucosylated metabolite **4a** is similar to that of **4**. Both are marked in the upper panel. **Figure S16** The mass spectrum of glucosylated metabolite **4a**.

Figure S17 HPLC chromatogram of glucosylation of 6-hydroxyflavone (5) with OsUGT1 (a) or without OsUGT1 (b) (A). The UV absorption spectrum of glucosylated metabolite **5a** is similar to that of **5**. Both are marked in the upper panel. **Figure S18** The mass spectrum of glucosylated metabolite **5a**.

Figure S19 HPLC chromatogram of glucosylation of 3,2'-dihydroxyflavone (6) with OsUGT1 (a) or without OsUGT1 (b) (A). The UV absorption spectrum of glucosylated metabolites **6a** and **6b** is similar to that of **6**. All of them are marked in the upper panel.

Figure S20 The mass spectra of glucosylated metabolites 6a (A) and 6b (B).

Figure S1

Pssm-ID: 215465 Cd Length: 477 Bit Score: 247.09 E-value: 1.78e-76 A 10 20 30 40 50 60 Query_52229 3 GKKQHVVLFPFMGQGHITPFLLLAE1iHEYYPDYTITLVNTPLNIRNLQSSLPPGSKINLKSLPFDASShCLPPDTENTK 82 Cdd:PLN02863 7 PACTHVLVFPFPAQGHMIPLLDLTH--RLALRGLTITVLVTPKNLPFLNPLLSKHPSIETLVLPFPSHP-SIPSGVENVK 83 90 100 110 120 130 140 150 160*...|...*...|...*...|...*...|...*...|...*...|...*...| 83 AIPFHLFINLFRAsetLEPAFERLIAGITEEDGIPPLCIIADNFFSWTLHIARKFGVFHSTFLTSCAYGSALLFSLWKYL 162 Query_52229 Cdd:FLN02863 84 DLPPSGFPLMIHA---LGELYAPLLSWFRSHPS-PPVAIISDMFLGWTQNLACQLGIRRFVFSPSGAMALSIMYSLWREM 159
 170
 180
 190
 200
 210
 220
 230
 240

 Query_52229
 163
 PHRNAYSDEFSLPDFPEI----RLHHTQLSNILVVADGCDAWSVLLRRLNELCTRSDAVLVNTVKEFEARGLSMLREQL 237

 Cdd:PLN02863
 160
 PTKINPDDQNEILSFSKIpncpKYPWWQISSLYRSYVEGDPAWEFIKDSFRANIASWGLVVNSFTELEGIYLEHLKKELg
 239
 250 290 310 260 270 280 300 320

 Query_52229
 238
 QCPIFPVGPLLCTSASHSMGM------DLSDWLDSQPSASVLYVSFGSQNTIRASQMLKLAMALEATSRPFIWVI
 306

 Cdd:PLN02863
 240
 HDRVWAVGPILPLSGEKSGLMerggpssvsvdDVMTWLDTCEDHKVVYVCFGSQVVLTKEQMEALASCLEKSGVHFIWCV
 319

 330 370 380 340 350 360 390 Query_52229 307 RPPVGFDVrvqfKSEWLPEGFEDRMRGtkQGFIVHQWAPQVEILSHPSTGAFLSHCGWNSVLESLVHGVPIIGWPLSAEQ 386 Cdd:PLN02863 320 KEPVNEES---DYSNIPSGFEDRVAG--RGLVIRGWAPQVAILSHRAVGAFLTHCGWNSVLEGLVAGVPMLAWPMAADQ 393 PSPG motif Cdd:FLN02863 394 FVNASLLVDELKVAVRVCEGADTVPD--SDELARVFmESVSENQVERERAKELRRAALDAIKER-----GSSVKDLDGF 465 Query_52229 466 FQ 467 Cdd:PLN02863 466 VK 467

Figure S2

Figure S3

Figure S4

Figure S5

Figure S7

Figure S11

Figure S12

Figure S13

Figure S14

Figure S16

Figure S17

Figure S20