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Abstract: An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs)
play crucial roles in biological processes, complex disease diagnoses, prognoses, and treatments.
However, experimentally validated associations between lncRNAs and diseases are still very limited.
Recently, computational models have been developed to discover potential associations between
lncRNAs and diseases by integrating multiple heterogeneous biological data; this has become a hot
topic in biological research. In this article, we constructed a global tripartite network by integrating a
variety of biological information including miRNA–disease, miRNA–lncRNA, and lncRNA–disease
associations and interactions. Then, we constructed a global quadruple network by appending
gene–lncRNA interaction, gene–disease association, and gene–miRNA interaction networks to the
global tripartite network. Subsequently, based on these two global networks, a novel approach was
proposed based on the naïve Bayesian classifier to predict potential lncRNA–disease associations
(NBCLDA). Comparing with the state-of-the-art methods, our new method does not entirely rely
on known lncRNA–disease associations, and can achieve a reliable performance with effective area
under ROC curve (AUCs)in leave-one-out cross validation. Moreover, in order to further estimate
the performance of NBCLDA, case studies of colorectal cancer, prostate cancer, and glioma were
implemented in this paper, and the simulation results demonstrated that NBCLDA can be an excellent
tool for biomedical research in the future.

Keywords: lncRNA–disease associations; tripartite network; quadruple network; prediction model;
Naïve Bayesian Classifier

1. Introduction

Long non-coding RNAs (lncRNAs), those with over 200 nucleotides in length [1–3], are considered
a new class of non-protein-coding transcripts. Much research evidence has shown that lncRNAs
participate in almost the entire cell life cycle through various mechanisms and play significant roles
in multiple biological processes including transcription, translation, epigenetic regulation, splicing,
differentiation, immune response, cell cycle control, and so on [4–8]. In particular, the mutations
and dysregulations of lncRNAs have been proven to be closely related to various human complex
diseases [9–11], including AIDS [12], diabetes [13], Alzheimer’s Disease (AD) [14], and many types of
cancers such as breast [15], prostate [16], hepatocellular [17], and bladder cancer [18]. For instance,
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the expression of the lncRNA called HOTAIR was shown to be higher in primary breast tumors and
metastases, and the HOTAIR expression level was proven to be a powerful predictor of eventual
metastasis and death [19,20]. Additionally, the lncRNA MALAT1 was demonstrated as a prognostic
indicator as well as a therapeutic target and acts as a potential therapeutic method for preventing lung
cancer metastasis, which is targeted by antisense oligonucleotides (ASO) [21]. Moreover, recent studies
have shown that the human H19 gene is frequently overexpressed in the myometrium and stroma
during pathological endometrial proliferative events [22].

Obviously, predicting potential associations between lncRNAs and diseases would contribute to
systematically understanding the pathogenesis of complex diseases at the molecular level and facilitate
the identification of biomarkers for disease diagnosis, treatment, and prediction of response to therapy.
However, relatively few experiments have supported lncRNA–disease associations until now. Hence,
developing effective computational methods to uncover the potential associations between lncRNAs
and diseases has become a hot topic in recent years. In general, existing models for predicting potential
associations between lncRNAs and diseases can be divided into three categories. Among them, the first
kind of methods are based on known disease-related lncRNAs. For example, Sun et al. proposed a
model named RWRlncD [23], which carried out a random walk with the restart method on an lncRNA
functional similarity network. This method uncovered potential associations between lncRNAs and
diseases by integrating the disease similarity network, the lncRNAs functional network, and known
lncRNA–disease associations. Ping et al. developed a method based on a newly constructed bipartite
network, which relies on the known associations between lncRNAs and diseases [24]. Yang et al.
constructed a coding-non-coding gene–disease bipartite network based on known associations between
diseases and disease-causing genes (including lncRNAs). Then, they developed an iterative algorithm
to uncover the possible links in the newly constructed bipartite network [25]. Ding et al. proposed
a new model named TPGLDA to predict potential lncRNA–disease associations by integrating
gene–disease associations with lncRNA–disease associations [26].

Different from the first kind of methods based on known lncRNA–disease associations, the second
category of prediction models does not rely on known disease-related lncRNAs. For example,
Chen et al. proposed a new method called HGLDA by integrating micro-RNA (miRNA)–disease
associations and lncRNA–miRNA interactions. A hypergeometric distribution test is then applied
to identify potential lncRNA–disease associations [27]. Liu et al. developed a computational
framework by integrating human lncRNA expression profiles, gene expression profiles, and human
disease-associated gene data to predict potential human lncRNA–disease associations [28]. Li et al. put
forward a prediction method on account of the information of genome location to globally discover
potential human lncRNAs related to vascular disease [29]. Gu et al. proposed a random walk-based
model to identify potential associations between lncRNAs and diseases, which can be applied for
predicting a disease without known associated lncRNAs and for inferring an lncRNA without known
associated diseases [30].

In recent years, an increasing number of studies have been developed for understanding
the cellular process, molecular interactions, and the pathogenesis of complex diseases at the
molecular level by integrating different types of data and molecular interaction networks [31].
Such research includes the prediction of gene–disease associations [32], and the prediction of potential
disease-associated miRNAs [33,34]. An increasing number of researchers have also adopted various
data frameworks to increase the reliability of association prediction between diseases and lncRNAs.
Hence, a third kind of prediction models has been proposed, in which multiple data sources are
integrated to identify disease-related lncRNAs. For example, Lu et al. proposed a new prediction
of lncRNA–disease associations via inductive matrix completion (named SIMCLDA), by integrating
known lncRNA–disease interactions, disease–gene, gene–gene ontology associations [35]. Zhang et al.
developed a novel model named LncRDNetFlow, which utilized a flow propagation algorithm to
integrate a variety of information including the similarity of lncRNAs, the protein–protein interactions,
and the similarity of diseases to infer lncRNA–disease associations [36]. Fu et al. proposed a
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model called MFLDA to predict potential lncRNA–disease associations by considering the quality
and relevance of different heterogeneous data sources, which can select and integrate the data
sources by assigning different weights to them [37]. Chen developed a path-based approach named
KATZLDA for discovering potential lncRNA–disease associations by integrating information including
known lncRNA–disease associations, lncRNA expression profiles, lncRNA functional similarity,
disease semantic similarity, and Gaussian interaction profile kernel similarity [38]. All of these above
data fusion-based methods can achieve effective results.

In this paper, to effectively predict potential lncRNA–disease associations, we first constructed
a global tripartite network by integrating three kinds of heterogeneous networks including an
lncRNA–disease association network, an miRNA–disease association network, and an miRNA–lncRNA
interaction network. Then, considering that more heterogeneous networks can boost the
prediction performance, we constructed a quadruple global network by appending a gene–lncRNA
interaction network, a gene–disease association network, and a gene–miRNA interaction network to
the tripartite network. Thereafter, based on these two newly constructed global networks, a novel
probabilistic model named Naïve Bayesian Classifier used to predict potential LncRNA–Disease
Associations (NBCLDA), based on the naïve Bayesian classifier, is proposed to uncover potential
lncRNA–disease associations. Moreover, in order to evaluate the prediction performance of the
NBCLDA, the leave-one-out cross-validation (LOOCV) framework was implemented, and the
experimental results demonstrated the effective performance of the NBCLDA and illustrated that it
can achieve better predictive performance than state-of-the-art methods in the terms of LOOCV.

2. Data Collection and Preprocessing

Considering that more heterogeneous data sources can boost the performance of
prediction models, in this paper, to construct our novel prediction model NBCLDA—with the ultimate
goal being to infer potential associations between lncRNAs and diseases-seven heterogeneous data
sets were combined. These include the sets of miRNA–disease, miRNA–lncRNA, lncRNA–disease,
gene–disease, and gene–lncRNA associations, as well as the sets of gene–miRNA interactions, and of
diseases with disease tree numbers. The sets were collected from various databases.

2.1. Construction of miRNA–Disease and miRNA–lncRNA Association Sets

In this article, the miRNA–disease and miRNA–lncRNA association sets were downloaded from
the HMDD [39] and the starBase v2.0 [40] databases in January 2015. Once these two data sets
were collected, we removed any duplicate associations with conflicting evidence. Then, we further
unified the names of miRNAs, and, thereafter, manually selected the common miRNAs in both sets.
Finally, we retained only the associations related with those selected miRNAs in these two data
sets. As a result, we obtained a data set DS1 consisting of 4704 miRNA–disease interactions between
246 miRNAs and 373 diseases, and a data set DS2 consisting of 9086 miRNA–lncRNA interactions
between 246 miRNAs and 1089 lncRNAs (see Supplementary Materials Tables S1 and S2).

2.2. Construction of the lncRNA–Disease Association Set

In this paper, the set of lncRNA–disease associations was collected from the MNDR v2.0
database [41] in 2017. In a similar way, once the data set was collected, we removed the duplicate
associations with conflicting evidence. Then, we selected the lncRNA–disease associations with
diseases belonging to DS1 and lncRNAs belonging to DS2 simultaneously. As a result, we obtained
a data set DS3 consisting of 407 lncRNA–disease associations between 77 lncRNAs and 95 diseases
(see Supplementary Materials Table S3). The data set DS3 is utilized as the test sample in our following
simulation experiments.
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2.3. Construction of the Gene–Disease and Gene–lncRNA Association Sets

In this article, the set of gene–disease associations was gathered from the DisGeNET v5.0
database [42] in May 2017, and the set of gene–lncRNA associations was downloaded from the
LncACTdb v1.0 database [43]. Again, we removed the duplicate associations with conflicting evidence.
Then, we further unified the names of genes, and thereafter manually selected the common genes
in both sets. Finally, we retained only the associations related with those selected genes in these
two data sets. Additionally, we transformed some disease names included in the newly constructed
set of gene–disease associations into their aliases in the DS1, in order to keep the uniformity of
disease names. For example, the disease names “pulmonary Emphysema” and “Bladder Neoplasm”
in the newly collected set of gene–disease associations was converted into “pulmonary Embolism” and
“Bladder Neoplasms” in the DS1, respectively. Hence, we obtained a data set DS4 consisting of 3702
gene–disease associations between 171 genes and 227 diseases, and a data set DS5 consisting of 411
gene–lncRNA interactions between 171 genes and 66 lncRNAs (see Supplementary Materials Tables S4
and S5).

2.4. Construction of the Gene–miRNA Association Set

In this paper, the set of gene–miRNA interactions was obtained from the miRecords [44] database
that was last updated in April 2013. Once the data set was collected, we removed the duplicate
associations with conflicting evidence. Then, we selected the gene–miRNA interactions with genes
belonging to DS4 or DS5 and miRNAs belonging to DS1 or DS2, simultaneously. Finally, as a result,
we obtained a data set DS6 consisting of 565 gene–miRNA associations between 109 genes and
174 miRNAs (see Supplementary Materials Table S6).

2.5. Construction of the Set of Diseases with Disease Tree Numbers

In this article, the set of diseases with Disease tree numbers was gathered from the MeSH
database [45] . In the MeSH database, the disease terms, described as DAGs, were classified and
signified as disease tree numbers. We browsed the MeSH database and collected the disease tree
numbers of diseases in DS1. As a result, we obtained a data set DS7 consisting of 373 diseases with
their disease tree numbers (see Supplementary Materials Table S7).

2.6. Analysis of Multi Relational Data Sources

In our model, four object types such as lncRNA, diseases, miRNA, and genes are considered. Based
on these four object types, we collect six relational data sources from different databases. Figure 1 is
constructed to illustrate the relationship between these different data sources more directly. In Figure 1,
R#1Ω−#2Ω denotes the different associations between these four object types, where #1 represents one
object, #2 represents another object and Ω denotes the dataset DSΩ that the two objects belong to.
For example, Rm1−d1 denotes the associations between miRNAs and diseases, m represents miRNAs,
d represents diseases, and ‘1’ indicates all these miRNAs and diseases belong to the dataset DS1.
In addition, the numbers of the same objects in the different datasets and the relationships among them
are shown in Figure 1. For instance, the number of diseases is 373 in Rm1−d1, 95 (= 29 + 66) in Rl3−d3
and 227 (= 66 + 161) in Rg4−d4, and it is obvious that both the 95 diseases in Rl3−d3 and the 227 diseases
in Rg4−d4 are part of the 373 diseases in Rm1−d1; moreover, the intersect of disease in Rl3−d3 and Rg4−d4
includes 66 different diseases.
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Figure 1. The relationship between the different data sources and number of data points.

3. Method

As illustrated in Figure 2, our newly proposed model NBCLDA for predicting potential
associations between lncRNAs and diseases can be mainly divided into the following steps:

Step 1: As illustrated in Figure 2a, on the basis of data sets DS1, DS2, and DS3 we can construct
an miRNA–disease association network labeled MDN, an miRNA–lncRNA association network
labeled MLN, and an lncRNA–disease association network labeled LDN.

Step 2: As illustrated in Figure 2b, by integrating the three association networks constructed in
Step 1, we can easily obtain a global tripartite network GN1 of lncRNA–miRNA–disease relationships.

Step 3: As illustrated in Figure 2c, in order to utilize multiple data sources to improve the
prediction performance, on the basis of data sets DS4, DS5, and DS6 obtained above, we can also
construct a gene–disease association network labeled GDN, a gene–lncRNA association network
labeled GLN, and a gene–miRNA association network labeled GMN.

Step 4: As illustrated in Figure 2d, by appending the three association networks constructed
in Step 3 to GN1 constructed in Step 2, we can easily obtain a global quadruple network GN2 of
lncRNA–miRNA–gene–disease relations.

Step 5: As illustrated in Figure 2e,f, after applying the naïve Bayesian classifier theory to GN1

and GN2, we can obtain two kinds of prediction models: NBCLDA-GN1 and NBCLDA-GN2.
Step 6: As illustrated in Figure 2g,h, in order to further improve the prediction performance of

the NBCLDA, we implemented disease semantic similarity in NBCLDA-GN1 and NBCLDA-GN2.
Thus, we can obtain two new prediction models, NBCLDA-GN1-SD and NBCLDA-GN2-SD, to infer
potential lncRNA–disease associations.

3.1. Construction of the MDN, MLN, LDN, and GN1

Let L be the set of n lncRNAs in DS2, L
′

be the set of n′ lncRNAs in DS3,
D be the set of r diseases in DS1, D

′
be the set of r′ diseases in DS3. Additionally,

let M = {m1, m2, ..., mt} be the set of t miRNAs in DS1 or DS2. From Sections 2.1 and 2.2, it is
clear that L

′ ⊆ L and D
′ ⊆ D; hence, we can let L

′
= {l1, l2, ..., ln′}, L = {l1, l2, ..., ln′ , ln′+1, ..., ln},

D
′
= {d1, d2, ..., dr′}, and D = {d1, d2, ..., dr′ , dr′+1, ..., dr}. Thus, we can represent the miRNA–disease

association network, MDN, as MDN = (M, D, E1), where E1 = {emk−dj
|mk ∈ M, dj ∈ D} denotes

the set of known interactions between the miRNAs in M and the diseases in D. That is, the edge
emk−dj

∈ E1 ⇔ mk is associated with dj.
In the same way, we can further represent the miRNA–lncRNA interaction network, MLN,

and the lncRNA–disease association network, LDN, as MDN = (M, L, E2) and LDN = (L, D, E3),
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where E2 = {emk−li |mk ∈ M, li ∈ L} denotes the set of known interactions between the miRNAs in
M and the lncRNAs in L; E3 = {eli−dj

|li ∈ L
′
, dj ∈ D

′} represents the set of interactions between the

lncRNAs in L
′

and the diseases in D
′
. Thus, the edge emk−li ∈ E2 ⇔ mk is associated with li, and the

edge eli−dj
∈ E3 ⇔ li is associated with dj. Finally, the global tripartite network, GN1, is expressed as

GN1 = (L, D, M, E), where E = E1 ∪ E2 ∪ E3.

Construct global

 network GN1

(a)

(b)

(c)

(e) (f)

(g) (h)
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gene
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l1 l2 l3 l4
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l3

l4

m2
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d1

d2

d3

m3

l1 l2 l3 l4

d1 d2 d3

Construct global 

network GN2 by

 appending them to GN1 

 Disease Semantic 

similarity 

Figure 2. The flowchart of NBCLDA. In the diagram, the green circles, blue squares, orange triangles,
and purple diamonds represent lncRNAs, diseases, miRNAs, and genes, respectively. (a) construction
of the MDN, MLN, and LDN; (b) construction of global tripartite network GN1 by integrating the
MDN, MLN, and LDN; (c) construction of the GDN, GLN, and GMN; (d) construction of the global
quadruple network GN2 by appending the GDN, GLN, and GMN into GN1; (e,f) construction of
the potential lncRNA–disease association network by using the NBCLDA-GN1, and NBCLDA-GN2;
(g,h) inference of potential lncRNA–disease associations by using disease semantic similarity. Here, in
(e–h), the known lncRNA–disease associations are represented as the solid edges, and the candidate
lncRNA–disease associations are represented as dashed edges.

3.2. Construction of GDN, GLN, GMN, and GN2

Let D
′′

be the set of r′′ diseases in DS4, L
′′

be the set of n′′ lncRNAs in DS5, G be the set of
p genes in DS4 or DS5, G

′
be the set of p′ genes in DS6, and M

′
be the set of t′ miRNAs in DS6.

Additionally, from Sections 2.3 and 2.4, it is clear that D
′′ ⊆ D, L

′′ ⊆ L, and G
′ ⊆ G; hence, we can

let D
′
= {d1, d2, ..., dr′′}, L

′
= {l1, l2, ..., ln′′}, G

′
= {g1, g2, ..., gp′}, G = {g1, g2, ..., gp′ , gp′+1, ..., gp},

and M
′
= {m1, m2, ..., mt′}. We can thus represent the gene–disease association network, GDN,

as GDN = (G, D, E4), where E4 = {eg f−dj
|g f ∈ G, dj ∈ D

′′} denotes the set of known interactions

between the genes in G and the diseases in D
′′
. That is, the edge eg f−dj

∈ E4 ⇔ g f is associated with dj.
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In the same way, we can further represent the gene–lncRNA interaction network, GLN,
and gene–miRNA interaction network, GMN, as GLN = (G, L, E5) and GMN = (G, M, E6),
where E5 = {eg f−li |g f ∈ G, li ∈ L

′′} and E6 = {eg f−mk |g f ∈ G
′
, mk ∈ M

′} denote the set of known
gene–lncRNA interactions and the set of known gene–miRNA interactions, respectively. In other words,
the edge eg f−li ∈ E5 ⇔ g f is associated with li and the edge eg f−mk ∈ E6 ⇔ g f is associated with mk.

Finally, it is evident that the global tripartite network GN2 can be expressed as GN2 = (L, D, M, G, E
′
),

where E
′
= E ∪ E4 ∪ E5 ∪ E6.

3.3. Construction of NBCLDA

The naïve Bayesian classifier is a simple probabilistic classifier with a naïve independence
assumption that any feature of a class is independent of the other features of the class. Abstractly,
based on the Bayesian classifier probability model p(C|F1, F2, ..., Fn), where C is a dependent class
variable and F1, F2, ..., Fn are the feature variables of class C, the posterior probability can be described
as follows:

p(C|F1, F2, ..., Fn) =
p(F1, F2, ..., Fn|C)p(C)

p(F1, F2, ..., Fn)
. (1)

Furthermore, according to the above assumption, since each feature Fi is conditionally
independent of every other feature Fj (i 6= j), Equation (1) can be expressed as:

p(C|F1, F2, ..., Fn) =
p(C)∏n

i=1 p(Fi|C)
p(F1, F2, ..., Fn)

. (2)

Inspired by existing probabilistic models based on Bayesian theory to predict missing links in
complex networks [46], we designed a prediction model NBCLDA to infer potential disease-related
lncRNAs; we applied the naïve Bayesian theory to GN1 and GN2, constructed in Sections 3.1 and 3.2,
respectively. In the context of Equation (1), in NBCLDA, the associations between lncRNAs and
diseases in GN1 and GN2 are considered as the class of variables, while the common neighboring nodes
of every lncRNA–disease pair in GN1 and GN2 are considered as the feature variables. In particular,
when applying the naïve Bayesian theory to GN1, for any given pair of lncRNA and disease
nodes in GN1, we will consider that their common neighboring miRNA nodes are all conditionally
independent of each other, since all of the miRNAs are different, and, therefore, we assume that each
of the miRNAs will not affect the others. To illustrate this assumption more intuitively, we provide an
example in Figure 3a, in which the common neighboring nodes m1 and m3 between l2 and d3 will be
assumed to be conditionally independent.

However, when applying the naïve Bayesian theory to GN2, as there are two types of common
neighboring nodes, miRNAs and genes, between a pair of lncRNA and disease nodes. In this case,
it is unreasonable to consider that all of these common neighbors are conditionally independent
of each other, since there may exist interactions between genes and miRNAs. Therefore, for any
given pair of lncRNA and disease nodes in GN2, let φ be the set that consists of all their common
neighboring nodes. Then, for any miRNA node m∗, if there is a gene node g∗ that is associated with
m∗, we will consider the miRNA m∗ and its related gene g∗ as a whole, and denote them as m∗-g∗ and
label this an miRNA–gene pair. By this means, it is obvious that there will be three kinds of features in
φ—miRNAs, genes, and miRNA–gene pairs. Hence, we assume that these three kinds of elements in φ

are conditionally independent of each other. To illustrate this assumption more intuitively, we present
an example in Figure 3b, in which, m1, m3, g1, and g4 are the common neighboring nodes between l2
and d3, and we will assume that m3-g4, m1, and g1 are conditionally independent of each other.
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(a)

l2 d3

m1 m4g1 m3
g4

(b)

l2 d3

m3m1
m4

Figure 3. (a) a subnetwork of Figure 2b, in which, the common neighboring nodes m1 and m3 between
l2 and d3, are assumed to be conditionally independent; (b) a subnetwork of Figure 2d, in which, m1,
m3, g1, and g4 are the common neighboring nodes between l2 and d3. Here, m3-g4, m1, and g1 are
assumed to be conditionally independent.

3.3.1. Method for Applying the Naïve Bayesian Theory into GN1

For any given lncRNA node li and disease node dj in GN1, let N(li) and N(dj) be the sets of
neighboring nodes that are directly connected to li and dj, respectively. From this, we construct
CN(li, dj) = {m1, m2, ..., mh}, which denotes the set consisting of all common neighboring nodes
between li and dj in GN1. Then, the prior probabilities for the existence of an relationship edge eli−dj

are calculated via:

p(eli−dj
= 1) =

|Mc|
|M| , (3)

p(eli−dj
= 0) = 1− p(eli−dj

= 1), (4)

where |Mc| denotes the number of known associations between lncRNAs and diseases in LDN,
and |M| = n× r, where n denotes the number of lncRNAs in L and r denotes the number of diseases
in D.

Based on the naïve Bayesian classifier, the posterior probabilities for an edge eli−dj
,

representing whether the node li is connected to dj in GN1, are defined as follows:

p(eli−dj
= 1|CN(li, dj)) =

p(eli−dj
= 1)

p(CN(li, dj))
∏

mδ∈CN(li ,dj)

p(mδ|eli−dj
= 1), (5)

p(eli−dj
= 0|CN(li, dj)) =

p(eli−dj
= 0)

p(CN(li, dj))
∏

mδ∈CN(li ,dj)

p(mδ|eli−dj
= 0). (6)

From Equations (5) and (6), we can directly identify whether an lncRNA node is connected with
a disease node or not in GN1. However, since it is often too complicated to calculate the value of
p(CN(li, dj)), we first define the probability of a potential association existing between li and dj in
GN1 as follows:

S1(li, dj) =
p(eli−dj

= 1)

p(eli−dj
= 0) ∏

mδ∈CN(li ,dj)

p(mδ|eli−dj
= 1)

p(mδ|eli−dj
= 0)

, (7)

where p(mδ|eli−dj
=1) and p(mδ|eli−dj

=0) are the conditional probabilities of a node mδ belonging to
CN(li, dj); they represent the possibilities of whether the node is a common neighboring node between
li and dj in GN1 or not, respectively. Moreover, according to Bayesian theory, these two conditional
probabilities can be expressed as:

p(mδ|eli−dj
= 1) =

p(eli−dj
= 1|mδ)p(mδ)

p(eli−dj
= 1)

, (8)
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p(mδ|eli−dj
= 0) =

p(eli−dj
= 0|mδ)p(mδ)

p(eli−dj
= 0)

, (9)

where p(eli−dj
=1|mδ) and p(eli−dj

=0|mδ) represent the conditional probability of whether the lncRNA
node li is connected to the disease node dj or not, respectively, and mδ is one of the common neighboring
nodes between li and dj in GN1. Thus, p(eli−dj

=1|mδ) and p(eli−dj
=0|mδ) are calculated via the

following formulas:

p(eli−dj
= 1|mδ) =

N+
mδ

N+
mδ

+ N−mδ

, (10)

p(eli−dj
= 0|mδ) =

N−mδ

N+
mδ

+ N−mδ

, (11)

where N+
mδ

and N−mδ
denote the number of known and unknown associations between lncRNAs and

diseases whose common neighbors include mδ, respectively.
Hence, from Equations (8) and (9), Equation (7) can be modified as follows:

S1(li, dj) =
p(eli−dj

= 1)

p(eli−dj
= 0) ∏

mδ∈CN(li ,dj)

p(eli−dj
= 0)p(eli−dj

= 1|mδ)

p(eli−dj
= 1)p(eli−dj

= 0|mδ)
. (12)

Moreover, given any two nodes li and dj in GN1, the value of
p(eli−dj

=1)

p(eli−dj
=0) is a constant, which we

denote as φm for convenience. Additionally, for each common neighboring node between li and dj
in GN1, let Nl denote the number of lncRNAs directly related to mδ, and Nd denote the number of
diseases directly related to mδ. Then, N+

mδ
+ N−mδ

= Nl × Nd, and hence, Equation (7) can further be
modified as follows:

S1(li, dj) = φm ∏
mδ∈CN(li ,dj)

φm
−1 N+

mδ

N−mδ

. (13)

Considering that N+
mδ

may equal zero, we will introduce the Laplace calibration to guarantee that
the value of S1(li, dj) will not be zero:

S1(li, dj) = φm ∏
mδ∈CN(li ,dj)

φm
−1 N+

mδ
+ 1

N−mδ
+ 1

. (14)

Furthermore, by introducing the logarithmic function for standardization, for any given lncRNA
node li and disease node dj in GN1, we can finally define the probability of a potential association
existing between them as:

S1
′
(li, dj) =

log(S1(li, dj))

λ
, (15)

where λ is a constant utilized for normalization.

3.3.2. Method for Applying the Naïve Bayesian Theory to GN2

In the same manner as described in Section 3.3.1, for any given lncRNA node li and
disease node dj in GN2, we construct the set consisting of all common neighboring nodes,
CN′(li, dj) = {m1, m2, ..., mh, g1, g2, ..., gu}. Then, the posterior probabilities of p′(eli−dj

=1|CN′(li, dj))

and p′(eli−dj
=0|CN′(li, dj)), representing whether the node li is connected to dj in GN2 or not,

respectively. Then, similarly as described in Section 3.3.1, we can define the probability of a potential
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association existing between li and dj in GN2 as follows (the deep representation of scheme are
described in Supplementary Material):

S2(li, dj) = φm ∏
mα∈CN′(li ,dj)

∏
gβ∈CN′(li ,dj)

∏
mᾱ ,gβ̄∈CN′(li ,dj)

φm
−3

(N+
mα

+ 1)(N+
gβ

+ 1)(N+
mᾱ ,gβ̄

+ 1)

(N−mα + 1)(N−gβ
+ 1)(N−mᾱ ,gβ̄

+ 1)
, (16)

where N+
mᾱ ,gβ̄

and N−mᾱ ,gβ̄
denote the number of known and unknown associations between li and dj

in GN2, respectively, conditional on mᾱ and gβ̄ being common neighboring nodes between li and dj
in GN2 and mᾱ-gβ̄ is an miRNA–gene pair. In addition, N+

mα
and N−mα

denote the number of known
and unknown associations between li and dj in GN2, respectively, conditional on mα being a common
neighboring node between li and dj. In addition, N+

gβ
and N−gβ

represent the number of known and
unknown associations between li and dj in GN2, respectively, conditional on gβ being a common
neighboring node between li and dj. Finally, following the example of Equation (15), we can finally
define the probability of a potential association existing between li and dj in GN2 as follows:

S2
′
(li, dj) =

log(S2(li, dj))

λ
. (17)

3.3.3. Method of Appending the Disease Semantic Similarity into NBCLDA

The disease semantic similarity has been widely utilized as a valuable data source for discovering
potential disease-related lncRNAs in many previous studies [30,38]. In this paper, we append the
disease semantic similarity into our newly constructed prediction model NBCLDA to further uncover
the potential relationships between lncRNAs and diseases.

From the description given in Section 2.5, we know that each disease term in the MeSH database
can be described as a directed acyclic graph (DAG), in which the nodes represent the disease MeSH
descriptors and all MeSH descriptors in the DAG are linked from more general terms (parent nodes) to
more specific terms (child nodes) by a direct edge. Hence, in this paper, we first obtain the disease tree
numbers according to the disease terms collected from the MeSH database. Thereafter, adopting the
method proposed by Wang et al. [47], while supposing that disease dj is represented as the graph
DAGdj

= (dj, Tdj
, Edj

), where Tdj
is the set of all ancestor nodes of dj including node dj, Edj

is the set of
corresponding links, and the contribution of a disease t in DAGdj

to the semantic of disease dj can be
calculated as follows:

Ddj
(t) =

{
1, if t = dj,
max{∆× Ddj

(ct)|ct ∈ children of t}, if t 6= dj,
(18)

where ∆ is the semantic contribution factor for edges Edj
linking disease dj with child disease t and the

disease dj is the most specific disease and its own semantic score is defined as 1. Since nodes located
farther from dj will be more general diseases that contribute less to dj, then, based on Equation (24),
we can define the semantic value of the disease dj as follows:

DV(dj) = ∑
t∈Tdj

Ddj
(t). (19)

Therefore, based on the assumption that the diseases share the nodes of their DAGs, the semantic
similarity between disease dj and di can be defined as:

SD(dj, di) =
∑t∈Tdj

∩Tdi
(Ddj

(t) + Ddi
(t))

DV(dj) + DV(di)
. (20)
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Finally, based on the disease semantic similarity and the similarities between lncRNAs
and diseases, we can reconstruct a new recommended measurement for inferring potential associations
between lncRNAs and diseases as follows:

S = S
′ × SD, (21)

where S
′

denotes either S1
′
(li, dj) or S2

′
(li, dj) and SD, which is computed via Equation (20) denotes

the disease semantic similarity.

4. Results

4.1. Performance Evaluation

The performance of the NBCLDA, for inferring potential associations between lncRNAs
and diseases, is evaluated by implementing LOOCV and is based on experimentally verified
lncRNA–disease associations. At each round, a known lncRNA–disease association is used as a
test sample, whereas all the remaining associations are taken as training cases for model learning.
This step continues until each sample is treated as a verification sample. Moreover, the value of area
under the receiver operating characteristic (ROC) curve (AUC) can be applied for measuring the
overall performance of the method. The closer the AUC value is to 1, the better the performance
is, and an AUC value of 0.5 refers to a random guess. We calculate a series of true positive rates
(TPR or sensitivity) and false positive rates (FPR or 1−specificity) by setting different classification
thresholds, and the ROC curve is plotted with the functional relationship between them. Specifically,
TPR corresponds to the ratio of the successfully predicted lncRNA–disease associations to the total
experimentally verified lncRNA–disease associations, and FPR refers to the percentage of candidate
lncRNAs ranked below the threshold.

First, in order to estimate the influence of the addition of new types of nodes and the introduction
of the disease semantic similarity on the predictions of potential associations between lncRNAs
and diseases, we implemented the NBCLDA on the two constructed global networks GN1 and GN2

in the framework of LOOCV. The simulation results are shown in Figures 4 and 5. From Figure 4,
the NBCLDA achieved an AUC of 0.8240 on GN1 and an AUC of 0.8604 on GN2 when the disease
semantic similarity was not utilized. On the other hand, from Figure 5, an AUC of 0.8519 on GN1

and an AUC of 0.8819 on GN2 were achieved when the disease semantic similarity was included.
This demonstrates that the prediction performance of our method not only benefits from the addition
of the new types of nodes for predicting potential associations between lncRNAs and diseases, but also
is significantly improved by the introduction of disease semantic similarity.

In order to further assess the performance of the NBCLDA, we compared it with other
state-of-the-art models including HGLDA [27], SIMCLDA [35], MFLDA [37], Yang et al. method [26],
KATZLDA [38] and TPGLDA [26] in the framework of LOOCV. For comparing with the HGLDA,
a data set consisting of 183 experimentally validated lncRNA–disease associations was previously
constructed and taken as the test set to evaluate its performance. Hence, for convenience, we compared
our model, the NBCLDA, with the HGLDA on that data set using the framework of LOOCV.
The simulation results are illustrated in Table 1 and Figure 6, from which it is evident that our
approach outperformed the HGLDA. For comparing with SIMCLDA, a data set consisting of 101
known lncRNA–disease associations between 30 lncRNAs and 79 diseases was collected from
the data set containing of 293 experimentally validated lncRNA–disease associations which was
used in method SIMCLDA. These selected lncRNAs and diseases all belong to DS3 in our paper.
The simulation results are illustrated in Table 1, from which it is evident that our approach
outperformed the SIMCLDA. While comparing with MFLDA, six relational data sources including
lncRNA–miRNA associations, lncRNA–gene function associations, lncRNA–disease associations,
miRNA–gene interactions, miRNA–disease associations and gene–disease associations, which were
used in the method MFLDA, were collected to implement NBCLDA. The data set of experimentally
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validated lncRNA–disease associations was taken as the test set to evaluate its performance.
The simulation results are illustrated in Table 1, from which it is evident that our approach
outperformed the MFLDA.
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NBCLDA-GN1 (AUC=0.8240)

NBCLDA-GN2 (AUC=0.8604)

Figure 4. Performance evaluation for the NBCLDA in terms of ROC curves and AUCs based on the
experimentally known associations (data set DS3), in the framework of LOOCV. Here, NBCLDA-GN1

and NBCLDA-GN2 represent the simulation results while implementing our algorithm on the global
networks GN1 and GN2, respectively.
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Figure 5. Same as Figure 4, but additionally including disease semantic similarity. Here,
NBCLDA-GN1-SD and NBCLDA-GN2-SD represent the simulation results when appending the disease
semantic similarity to the NBCLDA on networks GN1 and GN2, respectively.

Table 1. Performance comparisons between the NBCLDA and other state-of-the-art models in terms
of AUCs based on the different data sets of known lncRNA–disease associations in the framework of
the LOOCV.

Methods AUCs Methods AUCs

NBCLDA-GN2-SD 0.8982 NBCLDA-GN2-SD 0.9169
HGLDA 0.7621 Yang et al. method 0.8568

NBCLDA-GN2-SD 0.8897 NBCLDA-GN2-SD 0.8829
SIMCLDA 0.8526 KATZLDA 0.8283

NBCLDA-GN2-SD 0.8704 NBCLDA-GN2-SD 0.8897
MFLDA 0.7945 TPGLDA 0.92
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Figure 6. The performance of the NBCLDA in terms of ROC curves and AUCs based on 183 known
lncRNA–disease associations, in the framework of the LOOCV.

Furthermore, we compared the NBCLDA with Yang et al.’s method based on the data set DS3

consisting of 407 lncRNA–disease associations between 77 lncRNAs and 95 diseases. In order to
make a comparison with Yang et al.’s method, according to their description, we first deleted the
nodes with a degree equal to 1. As a result, we obtained a data set consisting of 319 lncRNA–disease
associations between 37 lncRNAs and 52 diseases. Then, we took this data set as the test set to
compare the two methods in the framework of the LOOCV. The simulation results are shown in
Figure 7, from which it is seen that the NBCLDA achieved an AUC of 0.9169 while being implemented
on GN2, which is much better than the AUC of 0.8568 achieved by Yang et al.’s method. We also
compared the NBCLDA with the KATZLDA, which is a path-based method designed to predict
potential lncRNA–disease associations by integrating multiple pieces of information including
known lncRNA–disease associations, lncRNA expression profiles, lncRNA functional similarity,
disease semantic similarity, and the Gaussian interaction profile kernel similarity. Executing the
simulation, we could not obtain information on the expression profiles of corresponding lncRNAs;
thus, we compared the two methods without this information. The simulation results are shown in
Figure 8, which indicate that the NBCLDA achieves higher AUCs (of 0.8519 and 0.8829) than the
KATZLDA with a corresponding AUC of 0.8323. This also demonstrates the superiority of our newly
constructed prediction model, the NBCLDA. Finally, comparing with TPGLDA, a data set consisting
of 312 experimentally validated lncRNA–disease associations including 68 lncRNAs and 67 diseases
and a data set consisting of 1941 gene–disease associations between 165 genes and 67 diseases were
constructed, respectively. The data set of known lncRNA–disease associations was taken as the test set
to evaluate its performance. The simulation results are illustrated in Table 1, from which it is obvious
that TPGLDA can achieve a better performance with an AUC of 0.92, which is higher than that of ours
with the AUC value of 0.8982. The main reason that TPGLDA can achieve a better performance is
probably that the contribution of resource moved in both directions are taken into consideration by a
consistence-based resource allocation algorithm. However, NBCLDA does not entirely rely on known
lncRNA–disease associations and can integrate multiple data sources to predict potential associations.
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Figure 7. Comparison of the performance of the NBCLDA and Yang et al.’s method in terms of ROC
curves and AUCs based on a data set of 319 lncRNA–disease associations between 37 lncRNAs and
52 diseases in the framework of the LOOCV.
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Figure 8. Comparison of the performance of the NBCLDA and KATZLDA approaches in terms of ROC
curves and AUCs based on data set DS3, in the framework of the LOOCV.

In order to further evaluate the performance of NBCLDA, 20 percent of the known
lncRNA–disease associations are randomly chosen as training set, while the remaining known and
all the unknown associations are taken as testing set. We then compare with the six methods on the
predicted top-k associations by using F1-score measure, which is a measure of a test’s accuracy [48].
Since the sparse known lncRNA–disease associations, we set different threshold k based on the
different set of known associations when comparing with other methods and the comparison results
are illustrated in Table 2. From Table 2, we could see that NBCLDA outperforms several other
methods in terms of F1-score. However, TPGLDA could achieve higher values than that of our
approach, this is likely due to that resource moved in both directions are taken into consideration
by consistence-based resource allocation algorithm. However, comparing with TPGLDA, our new
method does not entirely rely on known lncRNA–disease associations and can integrate multiple data
sources to predict potential associations. These advantages may be an excellent addition for biomedical
research in the future.
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Table 2. F1-scores of NBCLDA, SIMCLDA, MFLDA, Yang et al.’s method, KATZLDA, TPGLDA at
different top-k cutoffs

Methods F1-Score

NBCLDA 0.1536 (k = 20) 0.1582 (k = 40) null (k = 60)
SIMCLDA 0.0635 (k = 20) 0.0482 (k = 40) null (k = 60)

NBCLDA 0.1773 (k = 20) 0.2415 (k = 40) null (k = 60)
MFLDA 0.2012 (k = 20) 0.1139 (k = 40) null (k = 60)

NBCLDA 0.2575 (k = 20) 0.2855 (k = 34) null (k = 60)
Yang et al.’s method 0.2707 (k = 20) 0.2769 (k = 34) null (k = 60)

NBCLDA 0.1183 (k = 20) 0.1088 (k = 40) 0.1139 (k = 60)
KATZLDA 0.1274 (k = 20) 0.0869 (k = 40) 0.0779 (k = 60)

NBCLDA 0.1295 (k = 20) 0.1510 (k = 40) 0.1320 (k = 60)
TPGLDA 0.2070 (k = 20) 0.1644 (k = 40) 0.1301 (k = 60)

4.2. Case Studies

To further estimate the performance of the NBCLDA, case studies of three types of lncRNA-related
diseases—colorectal cancer, prostate cancer, and glioma—are analyzed in this section. During the
simulation experiment, the known lncRNA–disease associations in the data set DS3 were considered
as the training samples, while the experimentally validated lncRNA–disease associations beyond DS3

were used for testing. As for the simulation results, the top 20 disease-related lncRNAs, predicted
by the NBCLDA, were verified via relevant literature, and the corresponding evidence is listed in
Table 3. In addition, the predicted results of the top 20 disease-related lncRNAs were presented in the
Supplementary Table S8.

Colorectal cancer (CRC) is one of the most common cancer types in western countries and its
morbidity increases with age [49]. Accumulating studies have shown that lncRNAs play important
roles in several steps of carcinogenesis and cancer metastasis and additionally interact with various
cancers including CRC [50,51]. Therefore, we implemented the NBCLDA to discover possible
CRC-associated lncRNAs. As illustrated in Table 3, seven of the top 20 lncRNAs have been validated
to be related to colorectal cancer by recent biological literature, and five of them are ranked in the
top 10 of the prioritized prediction results. The other two are lncRNAs SNHG16 (ranked 12th) and
TUG1 (ranked 18th). For example, Chen et al. indicated that the lncRNA XIST can regulate the
process of CRC development by competing for miR-200b-3p and thus it may be considered as a
biomarker for prognosis [52]. Additionally, it has been demonstrated that the lncRNA MALAT1 may
be considered as a potential prognostic and therapeutic target of colorectal cancer patients as it can
fulfill a chemoresistant function in colorectal cancer [53]. Nakano et al. found that the epigenetic
destruction and loss of imprinting of the lncRNA KCNQ1OT1 play a significant role in the occurrence
of colorectal cancer [54]. Han et al. suggested that H19 can be considered as a candidate therapeutic
biomarker and a new target for human CRC therapy when it is used as a growth regulator [55].

Prostate cancer is the second most common cause of cancer-related mortality in males
worldwide [56]. Increasing studies show that lncRNA have become a promising target for the treatment
of cancers including prostate cancer [57,58]. Hence, we carried out the NBCLDA to uncover possible
prostate cancer-associated lncRNAs, and five of the top 20 predicted lncRNAs were verified and are
listed in Table 3 according to the relevant literature. For example, Ren et al. evaluated the expression
of MALAT1 in prostate cancer and showed that it may be considered as a perspective therapeutic
target for refractory prostate cancer [59]. Zhu et al. found that the lncRNA H19 and its derived miRNA
H19-miR-675 were significantly downregulated in advanced prostate cancer and they may be used
for diagnostic and therapeutic treatment in advanced prostate cancer because H19-miR-675 could act
as a suppressor of prostate cancer metastasis [60]. Additionally, Tian et al. showed that targeting the
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lncRNA NEAT1 axis could be used as a potential application in improving chemotherapy of prostate
cancer [61].

Table 3. The lncRNAs in the top 20 for the three case studies.

Disease lncRNA Evidence (PMID) Rank

Colorectal cancer XIST 17143621 1
Colorectal cancer MALAT1 25446987,25031737,21503572,25025966,24244343,26887056 3
Colorectal cancer KCNQ1OT1 16965397 6
Colorectal cancer H19 11120891,19926638,22427002,26068968,26989025 8
Colorectal cancer NEAT1 26314847 9
Colorectal cancer SNHG16 24519959 12
Colorectal cancer TUG1 26856330 18

Prostate cancer MALAT1 23845456,23726266,26516927,22349460 3
Prostate cancer KCNQ1OT1 23728290 6
Prostate cancer H19 24063685,24988946 8
Prostate cancer NEAT1 23728290,25415230 10
Prostate cancer TUG1 26975529 19

Glioma MALAT1 26649278,25613066,26619802,27134488,26938295 4
Glioma H19 24466011,26983719 6
Glioma TUG1 25645334,27363339 10
Glioma NEAT1 26582084 12

Glioma is one of the most common malignant forms of brain tumors, and 6 out of 100,000 people
may have gliomas [62]. Accumulating research has shown that lncRNAs play a significant role in the
process of glioma development [63]. Therefore, we applied the NBCLDA to predict potential lncRNAs
associated with glioma. Four of the top 20 glioma-related lncRNAs were validated by recent literature
on biological experiments, and the results are illustrated in Table 3. For example, the lncRNA MALAT1
plays an important role in the progression and therapy of glioma and it may be considered an effective
prognostic biomarker for the treatment of glioma [64]. Zhang et al. demonstrated that the lncRNA H19
was overexpressed in glioma tissue and cell lines, and also promotes cell proliferation of glioma [65].
Furthermore, Li et al. suggested that the lncRNA TUG1 can promote cell apoptosis of glioma cells and
may act as a tumor suppressor in human glioma [66].

5. Discussion

Accumulating studies have indicated that lncRNAs play crucial roles in biological processes,
complex disease diagnoses, prognoses, and treatments. Furthermore, computational models for
predicting novel lncRNA–disease associations by integrating varieties of biological data are among
the most noticeable topics. This is helpful to explore the understanding of disease mechanisms at the
lncRNA level. In this paper, we construct a global tripartite network and a quadruple network
by integrating various biological information and propose a novel approach, the NBCLDA, to
predict potential lncRNA–disease associations by applying the naïve Bayesian classifier into the
two constructed networks. Compared with current models, the NBCLDA does not entirely rely on
known lncRNA–disease associations, and can achieve a reliable performance with effective AUCs in
the LOOCV framework. This means that our method can not only predict the possible associations
between lncRNAs and diseases included in the known associations set, but can also predict the
potential associations whose elements are not in the known data set.

To evaluate the predictive performance of our method, the LOOCV is implemented based
on the experimentally verified lncRNA–disease associations obtained from the MNDR database.
Simulation experiment results of the NBCLDA show a strong performance and its predictive accuracy
has been significantly improved by the addition of new types of nodes and the disease semantic
similarity for predicting potential associations between lncRNAs and diseases. It also shows that
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the NBCLDA can achieve better performance than the other three state-of-the-art models with more
effective AUCs in the framework of the LOOCV. Moreover, in order to further estimate the performance
of the NBCLDA, case studies of colorectal cancer, prostate cancer, and glioma were implemented in
this paper. These simulation results demonstrated that the NBCLDAs can be an excellent tool for
future biomedical research.

Despite the reliable experimental results of the NBCLDA, there are also some biases in our method.
For example, the known experimentally validated lncRNA–disease associations are still limited.
Therefore, the prediction performance of the NBCLDA would be improved by a more comprehensive
data set. Furthermore, the data sources in this paper need to be strictly preprocessed according to the
proposed method, which restricts the richness of the data sources to a certain extent.

6. Conclusions

In this paper, we mainly summed up the following contributions: (1) we constructed a global
tripartite network by integrating a variety of biological information including miRNA-disease,
miRNA-lncRNA and lncRNA-diseases associations and interactions; (2) we constructed a global
quadruple network by appending gene–lncRNA interaction, gene–disease association, and
gene–miRNA interaction networks to the global tripartite network; (3) we developed a novel approach
NBCLDA based on the naïve Bayesian classifier and applied it into the two global networks to predict
potential lncRNA–disease associations; (4) we appended the disease semantic similarity into our
newly constructed prediction model NBCLDA to further uncover the potential relationships between
lncRNAs and diseases; (5) NBCLDA can not only predict the possible associations between lncRNAs
and diseases included in the known associations set, but can also predict the potential associations
whose elements are not in the known data set; (6) NBCLDA can integrate multiple heterogeneous
biological data for discovering potential relationships between lncRNAs and diseases; (7) in the future
work, more biological data can be collected and pre-processed to be utilized in the newly proposed
method for predicting potential lncRNA-disease associations.

Supplementary Materials: The following are available at www.mdpi.com/xxx/s1, Supplementary Table S1:
The known miRNA–disease associations of the data set DS1 consisting of 4704 miRNA–disease interactions which
were collected from the HMDD database; Supplementary Table S2: The known miRNA–lncRNA associations
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v2.0 database; Supplementary Table S3: The known lncRNA–disease associations of the data set DS3 consisting
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