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Abstract: Blastocystis is a common intestinal protistan parasite with global distribution. Blastocystis
is a species complex composed of several isolates with biological and morphological differences.
The surface coats of Blastocystis from three different isolates representing three subtypes were analyzed
using scanning electron microscopy. This structure contains carbohydrate components that are also
present in surface glycoconjugates in other parasitic protozoa. Electron micrographs show variations
in the surface coats from the three Blastocystis isolates. These differences could be associated with the
differences in the pathogenic potential of Blastocystis subtypes. Apart from the surface coat, a plasma
membrane-associated surface antigen has been described for Blastocystis ST7 and is associated with
programmed cell death features of the parasite.
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1. Introduction

Blastocystis is a eukaryotic unicellular organism commonly detected in the intestinal tract of
humans and many animals [1,2]. There are one billion individuals estimated to be infected by
Blastocystis worldwide [3]. The parasite is classified under stramenopiles, although it is an atypical
member of this group. Stramenopiles usually possess flagella and surface tubular hairs, but Blastocystis
have neither [4,5]. The life cycle of Blastocystis is initiated upon ingestion of cysts by the host.
The parasite then subsequently excyst, develop into vacuolar forms, and colonize the large intestines.
Some of the vacuolar forms undergo encystation, and the cysts that develop from this process are
passed in the feces. These can then be transmitted to other human and animal hosts [5,6]. Blastocystis
reproduce by binary fission, as observed from microscopic analyses of clinical and laboratory samples.
Alternative modes of reproduction have been suggested [7], but have yet to be validated [2,5]. Infection
with Blastocystis has been associated with several gastrointestinal symptoms, although most cases
are asymptomatic. The pathogenic potential of Blastocystis thus still needs to be evaluated [2,3,5].
The parasite is composed of different subtypes (STs), based primarily on the organism’s small-sub unit
ribosomal RNA (SSU-rRNA) gene sequences [8]. There are currently 17 STs in mammalian and avian
hosts and STs 1-9 have been found in humans. These STs exhibit differences in morphology and host
ranges, as well as drug susceptibility and induction of host immune responses [5,9,10]. Blastocystis ST1
and ST3 are detected in most surveys in human populations, while ST4 are found to also be common in
Europe [11]. Blastocystis ST2, along with ST1 and ST3, are also detected frequently in South American
surveys [12]. Blastocystis ST7 rarely occurs, but in vitro and drug susceptibility studies indicate that
this subtype could possess a greater pathogenic potential [13-15].
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2. Blastocystis Surface Features

2.1. Surface Coat Structure

Different Blastocystis isolate exhibit variations of a layer outside the cell membrane called the
surface coat. We have hypothesized that this coat could protect the organism from innate host immune
response as well as contribute to greater adhesion during colonization [13,16]. One of the earliest
studies on the ultrastructure of Blastocystis describing a surface coat structure was made by Tan and
Zierdt [17]. Using cultured cells, they have identified ameba, granular, and vacuolated forms of the
organism. The ameba form featured a filamentous layer as the outermost structure without a distinct
cell or membrane. On the other hand, both granular and vacuolated forms had distinct membranes
and their filamentous layers appeared more compact and thinner compared with the ameba form.
They have observed that it did not have a distinct way of attachment to the cell’s cytoplasm. They have
also observed pockets along the layer of the surface coat. Matsumuto et al., using isolates from stool
samples and cultures, did not report differences in this filamentous layer. Using a transmission electron
microscope, however, they identified a capsule that is composed of a filamentous layer outside the cell
membrane [18]. Dunn et al. used Blastocystis stocks in cultures and found variations in surface coat
structure. There was no apparent association between thickness of the surface coat and median size of
the cell [19]. Two cells featured thin surface coats and one of them has the amebic form. Stenzel et al.
found that in isolates obtained from colonoscopy samples, there was no distinguishable surface coat.
Stocks from cultures, however, showed cells with thick surface coats [20]. Cassidy et al. further
confirmed the variation in surface coat structure among several isolates found in different animal
hosts [21]. In some cells from cultures, this structure was even completely absent. Although in general,
they appeared to be composed of loose fibrils. These studies were done before genotyping isolates
became the norm. It is thus difficult to assign morphological characteristics to specific Blastocystis STs.

One of the few and earliest studies on the biochemical properties of Blastocystis surface
coat used periodic acid-based treatment to detect carbohydrates [22]. This study then positively
detected carbohydrates on the Blastocystis’ filamentous layer, as well as organelles such as the
central vacuole, vesicles, and Golgi apparatus. Lanuza et al. then used lectin probes to identify
specific carbohydrates on the surface coat of Blastocystis [23]. They detected «-D-mannose,
a-D-glucose, N-acetyl-o-D-glucosamine (GlcNAc), «-L-fucose, chitin, and sialic acid contained in
this structure. Interestingly, some of these are also found on the surfaces of parasitic protozoa as
glycoconjugates [24,25]. These components function more than just an additional barrier to the cell
membrane. They also play roles in host adhesion and invasion, as well as evasion of host immune
response [26,27]. For example, GIcNAc polymers of chitin found in trichomonads are believed to be
essential for adherence of the parasite to host cell lectins. In Leishmania, mannose and fucose residues
found in the parasite’s surface enable the promastigotes to gain entry into the host’s phagocytes [24].

2.2. Surface Coat Variations

Our own studies support the notion of variation of morphological forms of Blastocystis, including
the properties of their surface coats. As we used axenic cultures of identified subtype, we were
able assign description to various isolates with accuracy. We used imaging flow cytometry to
validate reported morphological forms of Blastocystis [9]. We showed that, for example, majority
of irregularly-shaped cells, including so-called amoebic forms, are dying cells as indicated by positive
propidium-iodide (PI) staining. This was always the case in an ST1 isolate, but less so in ST4 and
ST7 isolates.

In a study on the susceptibility of Blastocystis to a colonic antimicrobial peptide (AMP) LL-37,
we also hypothesized that the parasite’s surface coat could act as a barrier preventing this AMP
from reaching the membrane. The AMP then will not be able to exert its pore-forming effect on the
organism [16]. Indeed, using fluorescent-labeled antibodies against LL-37, we found that Blastocystis
ST7-B isolate could soak this AMP into its surface, affecting its viability to a lesser degree compared
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with an ST4-WR1 isolate. Using light microscopy and a negative stain (India ink), we observed that
the most susceptible among Blastocystis isolates (ST1) have an imperceptible surface coat, while ST7-B
isolate’s coat had the thickest and was most dense (Figure 1).

Figure 1. Brightfield microscopy images of India ink-stained Blastocystis cells. Blastocystis subtype
(ST)1 cells (A) do not have discernible surface coats, while ST4 (B) and ST7 (C) isolates have surface
coats (arrows) with varied thickness. Cells were prepared from axenic Blastocystis cultures in Iscove’s
Modified Dulbecco Medium (IMDM) (Life Technologies, Auckland, New Zealand) supplemented
with 10% horse serum (Gibco, Auckland, New Zealand)) and stained with India Ink (VWR, Singapore,
Singapore). Photomicrographs were taken using BX43 microscope with DP27 camera attachment

(Olympus, Tokyo, Japan). Scale bar: 10 pm.

We also obtained scanning electron micrographs (SEM’s) to analyze the surface coats of the three
axenized Blastocystis isolates. The method and preparation were done as described previously [16].
Blastocystis ST1 surface appears more uniform compared with the other isolates (Figure 2A,B), while the
surface of ST4 cells were uneven in some areas of the cells (Figure 2C,D). In addition, some cells in
ST4 cultures exhibited a mesh-like surface (Figure 2D). Blastocystis ST7 cells (Figure 2E,F) appear to
have a continuous surface layer connected to adjacent cells (Figure 2E). This is possibly the same
material that makes the ST7 cells adhere to each other and contributes to its survival. In an earlier study
by Tan et al. [28], SEM’s of ST7 grown as colonies on agar revealed extensive mesh-like connections
between the surface coats of cells, supporting the notion that this structure has cytoadherent properties.
This is also a plausible explanation for why the cells form a dense mass in cultures and are more
difficult to homogenize when in suspension.

2.3. Role of Surface Coat

An early study characterizing monoclonal antibodies (MAbs) against Blastocystis ST7 identified,
by immunogold labelling and biochemical assays, MAbs specific for surface coat carbohydrates and the
plasma membrane [29]. Interestingly, the plasma membrane specific MAb (MADb 1D5) was cytotoxic
to the parasite, while MAbs against surface carbohydrates were not. MAb 1D5 was subsequently
cloned, expressed, and identified as a legumain orthologue [30]. Specific inhibition of Blastocystis
legumain resulted in programmed cell death features, suggesting a pro-survival role of the enzyme in
Blastocystis. The data suggested that the surface coat serves to protect essential surface antigens from
the host immune system. This helps the parasite survive by not allowing antibodies to be mounted
against its vital membrane protein structures [29]. A recent study also indicated that Blastocystis’
laterally-acquired genes may have roles in host immune evasion. These genes are associated with host
carbohydrates recycling and make it possible for the parasite to express glycosylated molecules on
their surface. By covering their surface with host molecules, Blastocystis could then escape detection
from the host immune system. The authors specifically mentioned, for example, that a gene encoding
a -1,3-galactosyltransferase was laterally acquired by Blastocystis from animals. This enzyme functions
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in the biosynthesis of blood antigens in humans. As mentioned, this could serve to conceal Blastocystis
from host immune cells by recycling and expressing host molecules on the parasite’s surface [31].
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Figure 2. Scanning electron micrographs (SEM) showing Blastocystis cells: (A,B) ST1, (C,D) ST4,
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and (EF) ST7 isolates. Some cells of Blastocystis ST4 (D) exhibit a mesh-like appearance in its

surface (arrow) and ST7 cells (E) appear to have a layer that is continuous with adjacent cells (arrow).

Cells were fixed overnight with 4% glutaraldehyde in phosphate-buffered saline solution and attached
to 0.1% poly-L-lysine-treated coverslips. After drying and gold-coating, the cells were observed under
JSM-6701F scanning electron microscope (JEOL, Tokyo, Japan). Scale bar: 1 pm.

3. Conclusions

Compared with other intestinal protistan parasites, knowledge on Blastocystis biology is still
limited. One reason may be that the organism has not been established to be truly pathogenic.
This may be a result of the lack of subtype identity in many past studies. It may be that there are
truly pathogenic Blastocystis STs, while the others can be considered commensals. There is thus a need
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to expand our knowledge on the specific differences between Blastocystis STs. One such difference
could lie in the structure of surface coats of the organism. In other protistan parasites, specific surface
molecules have already been identified that aid these parasites’ survival [24]. Blastocystis may have
similar structures in its surface and demonstrating these could help elucidate the pathogenic potential
of the parasite. It could also be interesting to determine the role of the surface coat on Blastocystis’
nutrition. A few SEM studies on Blastocystis have indicated the surface coat to be associated with
bacteria [21,32]. It is interesting to know if the parasite could source bacteria for its nutrition by the
use of the surface coat, and if so, determine the impact of this process on gut microbiota. Lastly,
it may also be worth studying if the surface coat provides additional protection against environmental
pressures. It could be that Blastocystis STs with thicker surface coats have more resilience against
osmotic pressure, extreme pH, and oxygen exposure. Overall, the surface coat is intriguing but poorly
studied in Blastocystis. Additional knowledge on this structure would contribute significantly to
Blastocystis biology.

Author Contributions: Conceptualization, K.5.W.T. and J.A.Y.; Methodology, J.A.Y.; Writing—Original Draft
Preparation, J.A.Y.; Writing—Review & Editing, K.S.W.T. and J.A.Y.; Supervision, Project Administration,
and Funding Acquisition, K.S.W.T.

Funding: This research was funded by Ministry of Education—Singapore, grant number R-571-000-037-114.
Acknowledgments: The authors are grateful to Josephine Howe and Geok Choo Ng for technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Clark, C.G.; van der Giezen, M.; Alfellani, M.A; Stensvold, C.R. Chapter One—Recent Developments in
Blastocystis Research. In Advances in Parasitology, 1st ed.; Rollinson, D., Ed.; Academic Press: Cambridge,
MA, USA, 2013; Volume 82, pp. 1-32.

2. Stensvold, C.R.; Clark, C.G. Current status of Blastocystis: A personal view. Parasitol. Int. 2016, 65, 763-771.
[CrossRef] [PubMed]

3.  Andersen, L.O.; Stensvold, C.R. Blastocystis in health and disease: Are we moving from a clinical to a public
health perspective? J. Clin. Microbiol. 2016, 54, 524-528. [CrossRef] [PubMed]

4.  Gentekaki, E.; Curtis, B.A.; Stairs, C.W.; Klime$, V.; Elids, M.; Salas-Leiva, D.E.; Herman, E.K.; Eme, L.;
Arias, M.C.; Henrissat, B.; et al. Extreme genome diversity in the hyper-prevalent parasitic eukaryote
Blastocystis. PLoS Biol. 2017, 15, €2003769. [CrossRef] [PubMed]

5. Tan, KS.W. New insights on classification, identification, and clinical relevance of Blastocystis spp.
Clin. Microbiol. Rev. 2008, 21, 639-665. [CrossRef] [PubMed]

6. Roberts, T.; Stark, D.; Harkness, J.; Ellis, J. Update on the pathogenic potential and treatment options for
Blastocystis sp. Gut Pathog. 2014, 6, 17. [CrossRef] [PubMed]

7. Govind, SK.; Khairul, A.A.; Smith, H.V. Multiple reproductive processes in Blastocystis. Trends Parasitol.
2002, 18, 528. [CrossRef]

8.  Stensvold, C.R;; Suresh, G.K,; Tan, K.S.W.; Thompson, R.C.A.; Traub, R.]J.; Viscogliosi, E.; Yoshikawa, H.;
Clark, C.G. Terminology for Blastocystis subtypes—A consensus. Trends Parasitol. 2007, 23, 93-96. [CrossRef]
[PubMed]

9. Yason, J.A.; Tan, K.S.W. Seeing the Whole Elephant: Imaging Flow Cytometry Reveals Extensive
Morphological Diversity within Blastocystis Isolates. PLoS ONE 2015, 10, e0143974. [CrossRef] [PubMed]

10. Mirza, H.; Wu, Z,; Kidwali, F; Tan, K.5.W. A metronidazole-resistant isolate of Blastocystis spp. is susceptible
to nitric oxide and downregulates intestinal epithelial inducible nitric oxide synthase by a novel parasite
survival mechanism. Infect. Immun. 2011, 79, 5019-5026. [CrossRef] [PubMed]

11.  Alfellani, M.A; Stensvold, C.R.; Vidal-Lapiedra, A.; Onuoha, E.S.U.; Fagbenro-Beyioku, A.F,; Clark, C.G.
Variable geographic distribution of Blastocystis subtypes and its potential implications. Acta Trop. 2013,
126, 11-18. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.parint.2016.05.015
http://www.ncbi.nlm.nih.gov/pubmed/27247124
http://dx.doi.org/10.1128/JCM.02520-15
http://www.ncbi.nlm.nih.gov/pubmed/26677249
http://dx.doi.org/10.1371/journal.pbio.2003769
http://www.ncbi.nlm.nih.gov/pubmed/28892507
http://dx.doi.org/10.1128/CMR.00022-08
http://www.ncbi.nlm.nih.gov/pubmed/18854485
http://dx.doi.org/10.1186/1757-4749-6-17
http://www.ncbi.nlm.nih.gov/pubmed/24883113
http://dx.doi.org/10.1016/S1471-4922(02)02402-9
http://dx.doi.org/10.1016/j.pt.2007.01.004
http://www.ncbi.nlm.nih.gov/pubmed/17241816
http://dx.doi.org/10.1371/journal.pone.0143974
http://www.ncbi.nlm.nih.gov/pubmed/26618361
http://dx.doi.org/10.1128/IAI.05632-11
http://www.ncbi.nlm.nih.gov/pubmed/21930763
http://dx.doi.org/10.1016/j.actatropica.2012.12.011
http://www.ncbi.nlm.nih.gov/pubmed/23290980

Genes 2018, 9, 417 60f6

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Ramirez, ].D.; Sanchez, A.; Hernandez, C.; Flérez, C.; Bernal, M.C.; Giraldo, J.C.; Reyes, P.; Lépez, M.C.;
Garcia, L.; Cooper, PJ.; et al. Geographic distribution of human Blastocystis subtypes in South America.
Infect. Genet. Evol. 2016, 41, 32-35. [CrossRef] [PubMed]

Wu, Z.; Mirza, H.; Tan, K.5.W. Intra-subtype variation in enteroadhesion accounts for differences in epithelial
barrier disruption and is associated with metronidazole resistance in Blastocystis subtype-7. PLoS Negl.
Trop. Dis. 2014, 8, 2885. [CrossRef] [PubMed]

Wu, Z; Mirza, H.; Teo, ].D.W.; Tan, K.S.W. Strain-dependent induction of human enterocyte apoptosis
by Blastocystis disrupts epithelial barrier and ZO-1 organization in a caspase 3- and 9-dependent manner.
Biomed. Res. Int. 2014, 2014. [CrossRef]

Mirza, H.; Teo, ].D.W.; Upcroft, J.; Tan, K.5.W. A Rapid, High-throughput viability assay for Blastocystis
spp. reveals metronidazole resistance and extensive subtype-dependent variations in drug susceptibilities.
Antimicrob. Agents Chemother. 2011, 55, 637-648. [CrossRef] [PubMed]

Yason, J.A.; Ajjampur, S.S.R.; Tan, K.S.W. Blastocystis isolate B exhibits multiple modes of resistance against
antimicrobial peptide LL-37. Infect. Immun. 2016, 84, 2220-2232. [CrossRef] [PubMed]

Tan, HK,; Zierdt, C.H. Ultrastructure of Blastocystis hominis. Z. Parasitenkd. 1973, 42, 315-324. [CrossRef]
[PubMed]

Matsumoto, Y.; Yamada, M.; Yoshida, Y. Light-microscopical appearance and ultrastructure of Blastocystis hominis,
an intestinal parasite of man. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1987, 264, 379-385. [CrossRef]

Dunn, L.A.; Boreham, PFL.; Stenzel, D.]J. Ultrastructural variation of Blastocystis hominis stocks in culture.
Int. |. Parasitol. 1989, 19, 43-56. [CrossRef]

Stenzel, D.J.; Boreham, PEL.; McDougall, R. Ultrastructure of Blastocystis hominis in human stool samples.
Int. ]. Parasitol. 1991, 21, 807-812. [CrossRef]

Cassidy, M.F,; Stenzel, D.]J.; Boreham, PEL. Electron microscopy of surface structures of Blastocystis sp. from
different hosts. Parasitol. Res. 1994, 80, 505-511. [CrossRef] [PubMed]

Yoshikawa, H.; Kuwayama, N.; Enose, Y. Histochemical detection of carbohydrates of Blastocystis hominis.
J. Eukaryot. Microbiol. 1995, 42, 70-74. [CrossRef] [PubMed]

Lanuza, M.D.; Carbajal, J.A.; Borras, R. Identification of surface coat carbohydrates in Blastocystis hominis by
lectin probes. Int. |. Parasitol. 1996, 26, 527-532. [CrossRef]

Guha-Niyogi, A.; Sullivan, D.R.; Turco, S.J. Glycoconjugate structures of parasitic protozoa. Glycobiology
2001, 11, 45R-59R. [CrossRef] [PubMed]

McConville, M.]. The surface glycoconjugates of parasitic protozoa: Potential targets for new drugs. Aust. N.
Z.]. Med. 1995, 25, 768-776. [CrossRef] [PubMed]

Inge, PM.; Edson, C.M.; Farthing, M.J. Attachment of Giardia lamblia to rat intestinal epithelial cells. Gut
1988, 29, 795-801. [CrossRef] [PubMed]

Sacks, D.; Sher, A. Evasion of innate immunity by parasitic protozoa. Nat. Immunol. 2002, 3, 1041-1047.
[CrossRef] [PubMed]

Tan, K.S.W.; Ng, G.C.; Quek, E.; Howe, J.; Ramachandran, N.P,; Yap, E.H.; Singh, M. Blastocystis hominis:
A simplified, high-efficiency method for clonal growth on solid agar. Exp. Parasitol. 2000, 96, 9-15. [CrossRef]
[PubMed]

Tan, SW.; Singh, M.; Ho, L.C.; Howe, J.; Moe, K.T.; Chen, X.Q.; Ng, G.C.; Yap, E.H. Survival of
Blastocystis hominis clones after exposure to a cytotoxic monoclonal antibody. Int. J. Parasitol. 1997, 27,947-954.
[CrossRef]

Wu, B,; Yin, J.; Texier, C.; Roussel, M.; Tan, K.S.W. Blastocystis legumain is localized on the cell surface,
and specific inhibition of its activity implicates a pro-survival role for the enzyme. |. Biol. Chem. 2010,
285,1790-1798. [CrossRef] [PubMed]

Eme, L.; Gentekaki, E.; Curtis, B.; Archibald, ].M.; Roger, A.]. Lateral gene transfer in the adaptation of the
anaerobic parasite Blastocystis to the Gut. Curr. Biol. 2017, 27, 807-820. [CrossRef] [PubMed]

Zaman, V.; Howe, ].; Ng, M.; Goh, T.K. Scanning electron microscopy of the surface coat of Blastocystis hominis.
Parasitol. Res. 1999, 85, 974-976. [CrossRef] [PubMed]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.meegid.2016.03.017
http://www.ncbi.nlm.nih.gov/pubmed/27034056
http://dx.doi.org/10.1371/journal.pntd.0002885
http://www.ncbi.nlm.nih.gov/pubmed/24851944
http://dx.doi.org/10.1155/2014/209163
http://dx.doi.org/10.1128/AAC.00900-10
http://www.ncbi.nlm.nih.gov/pubmed/21098237
http://dx.doi.org/10.1128/IAI.00339-16
http://www.ncbi.nlm.nih.gov/pubmed/27217421
http://dx.doi.org/10.1007/BF00328892
http://www.ncbi.nlm.nih.gov/pubmed/4360331
http://dx.doi.org/10.1016/S0176-6724(87)80059-7
http://dx.doi.org/10.1016/0020-7519(89)90020-9
http://dx.doi.org/10.1016/0020-7519(91)90149-2
http://dx.doi.org/10.1007/BF00932698
http://www.ncbi.nlm.nih.gov/pubmed/7809001
http://dx.doi.org/10.1111/j.1550-7408.1995.tb01542.x
http://www.ncbi.nlm.nih.gov/pubmed/7537145
http://dx.doi.org/10.1016/0020-7519(96)00010-0
http://dx.doi.org/10.1093/glycob/11.4.45R
http://www.ncbi.nlm.nih.gov/pubmed/11358874
http://dx.doi.org/10.1111/j.1445-5994.1995.tb02880.x
http://www.ncbi.nlm.nih.gov/pubmed/8770352
http://dx.doi.org/10.1136/gut.29.6.795
http://www.ncbi.nlm.nih.gov/pubmed/3384364
http://dx.doi.org/10.1038/ni1102-1041
http://www.ncbi.nlm.nih.gov/pubmed/12407413
http://dx.doi.org/10.1006/expr.2000.4544
http://www.ncbi.nlm.nih.gov/pubmed/11038315
http://dx.doi.org/10.1016/S0020-7519(97)00066-0
http://dx.doi.org/10.1074/jbc.M109.049064
http://www.ncbi.nlm.nih.gov/pubmed/19915007
http://dx.doi.org/10.1016/j.cub.2017.02.003
http://www.ncbi.nlm.nih.gov/pubmed/28262486
http://dx.doi.org/10.1007/s004360050668
http://www.ncbi.nlm.nih.gov/pubmed/10599919
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Blastocystis Surface Features 
	Surface Coat Structure 
	Surface Coat Variations 
	Role of Surface Coat 

	Conclusions 
	References

