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Abstract: Missing data in hourly and daily temperature data series is a common problem in
long-term data series and many observational networks. Agricultural and environmental models
and climate-related tools can be used only if weather data series are complete. To support user
communities, a technique for gap filling is developed based on the debiasing of ERA5 reanalysis
data, the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF)
atmospheric reanalyses of the global climate. The debiasing procedure includes in situ measured
temperature. The methodology is tested for different landscapes, latitudes, and altitudes, including
tropical and midlatitudes. An evaluation of results in terms of root mean square error (RMSE)
obtained using hourly and daily data is provided. The study shows very low average RMSE for all
gap lengths ranging from 1.1 ◦C (Montecristo, Italy) to 1.9 ◦C (Gumpenstein, Austria).
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1. Introduction

Gaps in measured meteorological data are a common problem in measurement networks and
experimental campaigns. If data are measured using an automated weather station (AWS), the most
frequent causes of data gaps are related to data transfer, data logging and/or sensor malfunctioning,
exceptional equipment maintenance, or the removal of erroneous or unreasonable recorded data.
If the purpose of a measurement network is not only to monitor microclimate but to provide input
data for assessment studies and models in, for example, agriculture, hydrology, or urban modelling,
then complete data series are necessary.

There are many methods for filling gaps in near-surface air temperature data (up to 2 m) based on
different statistical techniques that use historical data, in situ measurements, and objective analysis
for the spatial interpolation of data [1]. A comprehensive overview of such methods can be found in,
for example, Henn et al. [2] and Vuichard and Papale [3]. Thesegap-filling methods can be separated
into two groups: spatial [4–13] and temporal [3,14–20]. Spatial gap-filling for temperature data is often
based on interpolation techniques such as inverse-distance weighting (IDW) [4], kriging [6–8], multiple
regressions [9], and thin-plate splines [10]. Gap-filling techniques that rely on the correct representation
of the local observed lapse rate require a certain number of measuring stations to demonstrate
skill [5,11–13]. On the other hand, temporal gap-filling methods rely on the autocorrelation of
the meteorological time series. Claridge and Chen [14] used polynomial fitting and simple linear
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interpolation. In another study [15], missing data was reconstructed using a linear combination of
forecasts and hindcasts. Methods such as empirical orthogonal functions (EOF), which employ a
singular value decomposition algorithm, combine spatial and temporal interpolation [16,17], however
also strongly depend on the number of surrounding stations and the size of the data gap [2]. The latest
of these methods [3] also offers a comprehensive technique for filling weather data gaps in continuous
data measurements at FLUXNET sites with the ERA-Interim global atmospheric reanalysis of the
European Centre for Medium-Range Weather Forecasts (ECMWF).

This study tests a procedure for filling data gaps based on ERA5 reanalysis and bias correction
performed using in situ measurements. The method’s performance is evaluated by systematically
removing available temperature data, producing gaps of different lengths, and then evaluating the
technique’s ability to reconstruct the gaps. Additionally, the performance is measured in terms of the
root-mean-square error (RMSE) as a function of day of the year (DOY) and gap length.

The main objective of this paper is to present methods and tools used for gap filling and
estimate uncertainties in gap-filled data and offer a step-by-step procedure that can be applied by
professionals who are not necessarily meteorologists but have certain IT and data management
knowledge. After a presentation of the data sets used, the developed method for gap filling, and the
performance measurement results, the Supplementary Materials offer a more detailed presentation
and visualization of the debiasing technique.

2. Experiments

2.1. Data Set Description

2.1.1. ERA5 Reanalysis Data

Reanalysis is a scientific method that aims to provide weather and climate conditions at regular
intervals over long time periods. This method is based on a combination of data assimilation and
numerical models. The data assimilation method is a powerful mathematical technique that combines
millions of irregularly placed observations from different sources and the equations governing the
numerical model, to provide an estimate of the state of the atmosphere–surface system. Available
historical observations are assimilated providing the initial state for the forecast model run—an analysis
which is a best fit of the numerical model to the available data. Reanalysis outputs are meteorological
fields in a regular grid with reasonable temporal resolution during long time periods that can provide
insight into climate conditions. It should be stressed that a combination of possible errors and
approximations in observation and models can introduce variability and biases into reanalysis output.
Therefore, even if a given model ideally simulates atmospheric processes, the interpolation technique
produces deviations between calculated and real meteorological conditions. Therefore, while using
reanalysis data, it is important to keep in mind that the global observation network is sparser: (a) over
water than over land; and (b) over the tropics than over high- and midlatitudes. These features have
two important consequences: (1) less observational points are used to produce data for the NWP model
grid points, thus reducing the representativeness of NWP; and (2) due to the lack of data, inadequate
parameterization of physical processes in NWP leads to errors [21], which are more emphasized over
the sea and in the tropics than over land at high- and midlatitudes.

Atmospheric flow is strongly influenced by different features on the Earth’s surface
(e.g., mountains, vegetation, and buildings) which act as sources of friction and flow obstacles and affect
energy and water balances. In NWP models, the mean orography or vegetation type is representative
of orography/vegetation types with scales equal to or larger than the horizontal resolution of the
model; therefore, mean orography/vegetation is directly considered in the basic model equations.
Processes related to orography/vegetation with scales below the grid scales (sub-grid scale) are subject
to special sub-grid parameterization modules, which can be a source of uncertainties in NWP model
outputs, i.e., reanalysis climatology [22,23]. For example, Lim et al. [24] stressed that NCEP-NCAR
reanalysis surface data do not assimilate surface observations over land, and are therefore not sensitive
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to land properties [24]. Over more than three decades, sophisticated data sources (satellite observations
and atmospheric soundings) have been introduced in atmospheric reanalysis to improve the final
product. However, the tropics and seas are domains where a lower quality of data is expected, while
the sub-grid parameterization of orography and vegetation remains a possible source of uncertainties.

ERA5 is the fifth generation of the ECMWF’s atmospheric reanalyses of the global climate [25].
ERA5 was produced using 4D-Var data assimilation in CY41R2 of the ECMWF’s Integrated Forecast
System (IFS), with 137 hybrid sigma/pressure model levels in the vertical, with the top level at 0.01 hPa.
CY41R2 was launched in 2016 and allowed a substantial improvement in horizontal resolution to 9 km,
e.g., up to 904 million numerical points.

The assimilation of weather observations into the forecasting system was also improved in
CY41R2. The 4D-Var data assimilation uses 12-h assimilation windows from 0900 to 2100 UTC and
2100 to 0900 UTC (the following day) based on a 10-member ensemble at a horizontal resolution of
62 km. Observations are organized in half-hourly timeslots. Combining vast sources of historical
observations with numerical models and advanced data assimilation systems, ERA5 provides hourly
global atmospheric data estimates at a grid horizontal resolution of 30 km. Data produced in ERA5 are
most valuable as a substitute for observational data where such data is limited or unavailable.

2.1.2. Measured Weather Data

To test the proposed gap-filling method, we used time series of hourly temperature data for
five weather stations in different landscapes: lowland, mountain region, desert, and island (Table 1).
The origin of ERA5 data suggest that high uncertainties can be expected while dealing with:

• Canopy measurements due to the impact of plants on micrometeorological conditions that cannot
be identified by ERA5 due to the resolution of the land use map and the model itself;

• Mountain regions due to difficulties resulting from the distribution of orography over grid
elements and the representation of mountains in the model used to produce ERA5 data;

• Islands due to the coupling of sea surface processes and atmospheric processes and, in the case of
small islands, their “visibility” on a 30 km resolution grid, which is highly questionable; and

• Desert oases, due to the position of these oases in tropical and subtropical areas where the
meteorological measurement network is sparse.

Table 1. Locations used in the study (* see surface on ERA5).

Location Time Series Landscape Position ERA5

Latitude (◦) Longitude (◦) Altitude (m) Latitude (◦) Longitude (◦) Altitude (m)

Kikinda 2014–2017 Lowland 45.87 20.46 82 45.9 20.4 75
Gumpenstein 2014–2017 Mountains 47.49 14.09 700 47.4 14.1 1080

Bahariya 2017 Desert 28.41 28.93 99 28.4 28.9 97
Montecristo 2016 Island 42.34 10.31 645 42.3 10.2 *

Pianosa 2016 Island 42.58 10.08 29 42.6 10.2 *

Lowland datasets were measured within the AWS network of the System of the Forecasting and
Warning Service of Plant Protection of Serbia (PIS) (Novi Sad, Serbia). This AWS network was designed
and set up to provide information about micrometeorological conditions in plant canopies, orchards,
and vineyards to analyze the environmental conditions in which host plants and harmful organisms
develop. The AWSs were equipped with sensors for the measurement of air and soil temperature, air
relative humidity, soil moisture, precipitation amount, and leaf wetness duration. The temperature
sensors were installed in fruit orchards, commonly at the mid-crown level (a height of approximately
1.2 m). All selected locations were in orchards situated in the Vojvodina (Northern Serbia) region,
which is a part of the Pannonian lowlands (Figure 1). The data used in the study were measured
during the 2014–2017 growing season (1 March–31 October).
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Figure 1. Altitude (m a.s.l.) and position of the Kikinda (Serbia) automated weather station (AWS).

The mountain dataset was measured at the Gumpenstein synoptic weather station within the
network of the Zentralanstalt für Meteorologie und Geodynamik (ZAMG; Central Institute for
Meteorology and Geodynamics) (Vienna, Austria). The Gumpenstein weather station is located in the
Austrian province of Styria at an altitude of 700 m a.s.l. (Figure 2). The temperature measurements
were made at a height of 2m in a standard meteorological shelter. Selected data series were measured
during the 2014−2017 period. For the purpose of the study, the 01 May−30 November 2017 period
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The desert dataset was measured in the el-Bahariya oasis in Egypt in the framework of
the MosqDyn project AWS network. This AWS network was established and set up to monitor
micrometeorological conditions and their suitability for the abundance and activity of local mosquito
populations. The AWS was equipped with sensors for air temperature, precipitation, and relative
humidity measurements. El-Bahariya is a depression and oasis in the Western Desert of Egypt located
in the Giza Governorate. The oasis is situated 370 km southwest of Cairo. The valley hosts many guava,
mango, and date groves and has a roughly oval shape covering an area of 2000 km2. The sensors were
installed at a height of 2 m in the northern part of the oasis (Figure 3).
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Figure 3. Altitude (m a.s.l.) and position of the el-Bahariya oasis (Egypt) automated weather station (AWS).

Island datasets were measured at the islands of Montecristo and Pianosa, Italy (Figures 4
and 5) in the framework of the Environmental Modelling and Monitoring Laboratory for Sustainable
Development (LAMMA) consortium activities [26]. Weather stations were located on stony elevated
terrain that is highly exposed to atmospheric circulations and performed the following measurements:
air temperature, humidity, wind direction, wind speed, precipitation, and the intensity of incoming
solar radiation. Data used in this study were measured during the 1 May–15 November 2016 period.
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2.2. Gap Filling Method Description

The designed gap filling method is based on the following assumptions:
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• In the case of temperature data, due to the high autocorrelation of the time series, important
information is contained within the time series before and after the gap [27]. Therefore, a portion
of the time series that is not missing is used for the bias correction of ERA5 data;

• It is important to limit the amount of data used for the gap filling method (learning period) to
avoid seasonal changes in temperature data; however, it is also important to use enough data to
be able to exploit the high autocorrelation in the time series. The determination coefficient R2 was
used to validate that enough data was present in the fitting process;

• Diurnal temperature biases [23] are recognized as a possible problem and new technique for
filtering the learning data was applied to improve this methodology.

• To efficiently fill gaps in large datasets, a simple, fast, and reliable approach of linear regression
was selected.

To fill the gaps in the time series, it was necessary to find the beginning of the gap and the gap
length (shown in Figure 6a by the black left-to-right arrow). Gap filling was performed step by step
by applying the debiasing technique for each missing observation in the gap period. Older missing
observations were filled first. We proceeded step by step toward the gap end. During this process
already filled values in the gap also influence the gap-filling process for later missing observations in
the same gap.
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Figure 6. (a) Time series with a gap in temperature observations. The blue line represents observations,
the dashed blue line represents hidden observations, the red line represents ERA5 values for the nearest
grid point, and the green line represents the result of the debiasing process; (b) Linear regression of
learning data for one-time step in the gap following the standard equation: OBS = k × ERA5 + n.

To fill one missing observation in the gap, it was necessary to determine the relationship between
the existing observations and the reanalysis for a certain period of time before the missing observation
(learning period shown in Figure 6a by the orange left-to-right arrow). The learning period used in
this study was 30 days and observations were hourly. The length of the learning period was chosen
empirically so that it would be short enough not to be influenced by seasonal changes but long enough
to contain an appropriate amount of data for linear regression.

Due to uncertainties in radiation, surface, and Planetary Boundary Layer (PBL) physics schemes
in numerical models, diurnal variations in temperature biases can occur. To avoid this problem,
a ± 3-h filter was applied to the time series. This way, data from the same part of the day were
used. After reducingthe influence of the diurnal bias changes on the debiasing process with the filter,
we calculated the linear regression coefficients (Figure 6b) and applied them to the reanalysis values
for the missing observation time step.Thus, we reconstructed one-time step in the gap period. Linear
regression was chosen as it is a computationally efficient and fast process that satisfies the requirements
of this methodology.
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3. Results

The described methodology was applied to all data sets for different gap lengths and seasons. To
assess the effects of the bias correction, the bias score (B), expanded bias uncertainty (U(B)), and root
mean square error (RMSE) were calculated for both ERA5-only (RMSEERA5) and ERA5-debiased
(RMSEDEB)temperature gaps. Bias (B) is the systematic difference between a model predicted value (P)
and a measured reference (M): B = P−M. The expanded uncertainty U(B) is calculated as:

U(B) = kuc(B) (1)

where k is the coverage factor and uc(B) is the combined bias uncertainty which is calculated using the
first-order uncertainty propagation formula in the following form [28]:

u2
c (B) = u2(P) + u2(M)− 2u(P)u(M)PCC(P, M) (2)

where u(P) and u(M) are the standard uncertainties of the predicted and measured values and PCC(P,M)
is the Pearson’s correlation coefficient (PCC) which is calculated as the determination coefficient for all
gap filling steps and for all experiment locations. More details about the expanded bias uncertainty
(U(B)) calculation can be found in Appendix A, and plots of B and U(B), for all selected locations and
gaps can be found in Appendix B.

D’Agostino and Pearson’s normality test [29,30] were used to estimate whether the dataset obeys
a standard distribution, as the convergence factor of 1.96 is commonly used for normal Gaussian
distributions or near-Gaussian distributions for the 95% confidence interval(CI). Since the tests showed
that the data is not normally distributed, and for randomly selected parts of the dataset the skewness
was above 1/3 and the kurtosis parameter values were negative, we could not calculate a variable
coverage factor based on the distribution of each gap, and had to treat the distribution as non-normal
and unknown. Therefore, the coverage factor was calculated from Chebyshev’s inequality giving
k = 4.472 for the 95% CI [31].

Site-specific analysis was performed using RMSEDEB values, the differences between RMSEDEB

and RMSEERA5 and the standard deviation of the observed data used for bias correction (Figures 7–12
and 14–16) as well as the bias and bias uncertainties calculated for each location (Figures A1–A5).

3.1. Lowland Data Sets

The RMSEDEB values varied between 0.5 and 2 ◦C, with commonly high values for up to 5-day gap
lengths. Although the blue-dominated plot in the right panel of Figure 7 indicates that the debiased
dataset produced lower RMSE values than the ERA5-only dataset, some red areas associated with
gaps that were better filled by ERA5-only data are present in the figure. A possible source of this effect
is indicated by the standard deviation of the observed data (Figure 8), as periods with relatively high
standard deviations (more than 5 ◦C) can be identified beginning in March (DOY 50–65) and from
the end of May until the end of June (DOY 142–182). During both indicated periods, positive bias
(Figure A1) indicates that both data sets overestimate measurements; however, it is more pronounced
for ERA5-only data. During the growing season (DOY 92–275), the highest bias uncertainties are
obtained in the middle of the season when temperatures are highest as well as the exchange of energy
and water vapour fluxes between canopy and atmosphere. An air temperature sensor was installed at
a height corresponding to the middle of the crown, apple growth was an important factor affecting
the variation in the measured air temperature; specifically, when the first leaves appeared (in March),
they strongly affected the energy balance of the canopy by increasing the latent heat flux and energy
absorbed and emitted by the leaves. Consequently, this affected the canopy air temperature and
its variation over the period of intensive plant area development. When crowns formed (in May),
the weekly or monthly variation in air temperature caused synoptic-scale atmospheric processes.
In that period, intensive or sudden (“squall”) winds could instantaneously affect air temperature by
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increasing air canopy mixing, increasing the variation and standard deviation of the measured air
temperature at the hourly scale. Since wind speed measurements were not performed at this location,
we can suppose that this is the cause of the increase (albeit impermanent) in the standard deviation
during the DOY 142–182 period for gap filling.Atmosphere 2019, 10, x FOR PEER REVIEW  9 of 25 
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3.2. Mountain Data Sets

The superiority of the debiasing technique was expected in the case of Gumpenstein station.
Figure 2 and Table 1 clearly show that the ERA5 point for this location was 380 m higher in the Alps,
which is the result of the sub grid scales of the flat areas where the Gumpenstein AWS is located
and the applied parameterization of sub grid-scale processes. Therefore, significant temperature
differences between the observations and reanalysis were expected. The obtained bias for ERA5-only
data (Figure A2) is more than 6 ◦C higher than for ERA5-debias data, while bias uncertainties for
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the debiased data set are much lower for all gap lengths. An interesting increase of bias uncertainty
during the cold part of the year can be connected with late and early snowfall in mountains, which can
affect temperature measurements and the accuracy of model simulations. High RMSEDEB at DOY 150
(Figure 9, left panel) is partly result of high standard deviation of observed data (Figure 10) which
were used for bias correction. Differences in RMSE decreased towards winter (Figure 9), since the
vertical temperature gradient in the Alps decreases from April to December [32]. Exceptions to this
trend occurred in DOY 320–321 and DOY 327–329, when heavy snowing affected measurements and
increased the standard deviation of measured data over 2017.Atmosphere 2019, 10, x FOR PEER REVIEW  10 of 25 
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3.3. Desert Data Sets

During the prevailing part of the period of interest, the applied bias correction gap-filing technique
provided better results than the ERA5-only data (Figure 11) with significantly lower bias and bias
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uncertainty for all gap widths (Figure A3). However, there were some exceptions to this tendency,
which deserve our attention. The desert landscape surrounding the Bahariya oasis AWS is very uniform
(see Figure 3), with neither mountains nor significant vegetation to serve as a source of uncertainties
in the ERA5 reanalysis. However, the constant inflow of desert air can produce significant variation
in air temperature at an hourly time scale. Figure 12 clearly shows that a high standard deviation
of the bias correction data for gaps between DOY 120 and DOY 172 corresponded to a high daily
variation in air temperature (Figure 13). During September (DOY 250–275) and at the end of the year
(after DOY 300), the variability in the daily amplitude was significant, ranging from 7.4 ◦C to 22.6 ◦C.
This variability affected the bias correction procedure, particularly during the DOY 216–228 period
when ERA5 obviously better reproduced the observed air temperature. During this period and the
small time window in September, the bias uncertainty of ERA5-only data was lower than that of the
debiased data set.
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3.4. Island Data Sets

Due to the fact that the heat capacity of water is much higher than that of land, the air temperature
variation above the sea surface was always much lower than that above land in the study period.
Additionally, the daily and annual variation in air temperature above coastal areas and islands was
much lower than above far-inland territories. Therefore, it is not surprising that there was a low and
uniform (at the annual level) standard deviation in the observed data used for gap filling (Figure 14)
for both Montecristo (2.3–2.8 ◦C) and Pianosa (2.5–2.7 ◦C) islands. With respect to the ERA5 mean
orography, grid cells in which both islands were located were represented by water (Figures 4 and 5),
implying a low variation of reanalysis temperature. The last two circumstances demonstrate the
high efficacy of the debiasing technique (Figures 15 and 16, left panels) and low differences between
RMSEDEB and RMSEERA5 (Figures 15 and 16, right panels). According to the results presented in
Figures A4 and A5, the debiased data set slightly overestimates measurements in the spring and
underestimates them in autumn. In the case of ERA5-only data, the situation is exactly the opposite.
However, in both locations, bias uncertainty is lower, for all gaps, for debiased data sets than for
ERA5-only data sets.
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4. Discussion

The gap-filling methodology test results indicate that the presented ERA5-debiasing technique
has different efficacies that vary with respect to location, gap width, and the standard deviation of
the observed data used for bias correction. However, high values of the Pearson’s r coefficient and
p-values below 0.05 (Table A1) for all locations and gap lengths indicate a strong linear relationship
between ERA5 and the observed data used for gap filling and debiasing.

Overall, mean bias uncertainty and mean RMSE for all gap widths and all DOY are provided in
Table 2. It is evident that the new technique significantly decreases bias, bias uncertainty, and root
mean square error. The only exception is for Montecristo, for which ERA5 already had a small bias,
and therefore the new technique wasnot able to improve the results here.

Particularly important is the propagation of standard uncertainties of input data (predicted
and measured air temperature) (Table A2, Appendix A) towards gap bias. The comparison of the
standard uncertainty of input data (Table A2) and mean bias uncertainty (Table 2) indicates that U(B)
for debiased data is much closer to the uncertainty of input data than in the case of ERA5-only data.
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Table 2. Mean bias, mean bias uncertainty, and mean RMSE for all gap widths in selected locations.

Mean B Mean U(B) Mean RMSE

ERA5 DEB ERA5 DEB ERA5 DEB

Kikinda 0.387 −0.027 6.56 5.61 1.563 1.321
Bahariya −0.723 −0.033 8.39 6.67 2.046 1.536

Gumpenstein −4.385 0.556 10.18 7.37 4.969 1.877
Montecristo −0.009 0.284 5.58 4.27 1.367 1.079

Pianosa −0.769 0.222 8.69 5.32 2.158 1.260

The lowest average RMSEDEB was obtained for island locations (Montecristo = 1.06 ◦C,
Pianosa = 1.26 ◦C), and the highest average RMSEDEB was obtained for mountain regions
(Gumpenstein = 1.88 ◦C), as was expected according to the elaborated ERA5 reanalysis performances
and standard deviations of the observations.

However, the high RMSEDEB in the case of small gaps has drawn our attention. For all examined
locations, we identified strong correlations (r > 0.7) between the standard deviation of the observed
data used for linear regression and RMSEDEB (Figure 17). The Pearson’s product-moment correlation
coefficient is the test statistic that was used to measure this relationship together with the standardized
criteria suggested by Evans [33] for estimating the strength of association. More specifically,
we obtained high negative correlations for high RMSEDEB values and high positive correlations
for low RMSEDEB values. At a seasonal scale, the correlation among curves was between −0.61
(Montecristo) and−0.60 (Kikinda), indicating a medium-intensity but stable correlation for all locations
(Bahariya = −0.56, Gumpenstein = −0.37, Pianosa = −0.27).

We performed a detailed analysis of the measured data used for linear regression and the
calculated data for gap filling with respect to the scale of the gap to identify the cause of such systematic
behavior. The obtained results lead to the conclusion that RMSEDEB decreases when the standard
deviation of the observed data increases with the gap width since for larger standard deviations,
the interval of the observed values used for debiasing is broader. Accordingly, in further applications
of this technique, it will be important to consider that the standard deviations of measured air
temperatures are a result of meteorological and other environmental (the presence and development of
plants, high mountains, deserts, and large water bodies) conditions, however the variation in RMSEDEB

with standard deviation is the result of the applied calculation methodology.
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Figure 17. RMSEDEB for gap width = 1 and the correlation coefficient between the standard deviation
of the observed data used for linear regression and RMSEDEB for Kikinda (Serbia; top left), Bahariya
(Egypt; top right), Gumpenstein (Austria; middle), Montecristo (Italy; bottom left) and Pianosa (Italy;
bottom right).

In some exceptional situations, such as in Bahariya (DOY 216–228), the ERA5 deviation from
measurements was reduced on a daily basis, producing a much better gap filling performance with the
ERA5-only dataset. This could be linked to the observed seasonal shift in the variance and amplitude
of the diurnal temperature range. The amplitude was high throughout the year, which is typical of
a hot desert climate [34]. However, the variance in the diurnal range was much higher for autumn
and spring than for other seasons, leading to a significantly smaller bias for ERA5 during the JJA
June–August period. Similar behavior has been observed for ERA-Interim and ERA-40 reanalyses [35].

Finally, we discuss the merit of the presented gap-filling technique in performing daily data
series. Even though the goal of this study is to develop and test the technique for filling gaps in hourly
temperature data series, the analysis is fully justified since users demands are commonly related to
daily weather data. At all locations and for all gap scales, the maximum RMSEDEB calculated using
daily data (Table 3) is smaller in comparison to results obtained using hourly data. A lower RMSEDEB of
daily temperature time series for different gap lengths and locations can be noticed in Figures A6–A10
(left panels). However, differences between RMSEDEB and RMSEERA5 are less pronounced for daily
data except in the case of Gumpenstein (Table 3), where the maximum deviation for daily data is
the highest. Almost the same results for (RMSEDEB-RMSEERA5) are obtained using hourly and daily
gap-filling data (Figure A7, right panel), which clearly indicates that there is systematic deviation of
ERA5 data from measurements.
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Table 3. Maximum absolute values of (RMSEDEB-RMSEERA5) difference and RMSEDEB calculated
using hourly and daily data for gap filling.

Location Bahariya (◦C) Gumpenstein (◦C) Kikinda (◦C) Montecristo (◦C) Pianosa (◦C)

max(|RMSEDEB-RMSEERA5|) for hourly data 1.81 6.34 0.87 0.95 2.12
max(|RMSEDEB-RMSEERA5|) for daily average 1.31 7.32 1.03 1.08 1.63

max(|RMSEDEB|) for hourly data 2.54 4.19 2.21 2.18 2.31
max(|RMSEDEB|) for daily average 1.82 4.02 1.69 2.06 1.98

Average RMSEDEB values obtained using hourly temperatures (Kikinda = 1.3 ◦C;
Gumpenstein = 1.9 ◦C; Bahariya = 1.5 ◦C; Montecristo = 1.1 ◦C and Pianosa = 1.4 ◦C) are in the same
range (1.5–2.0 ◦C) as those obtained by Chen et al. [32] for missing data values for daily temperature for
the United States using a self-calibrating data quality control and which are described as “impressively
low average”.

There are many fully statistical self-calibrated estimation methods (for example, Chen et al. [36])
as well as spatial, temporal, and spatio-temporal methods [2] that work very well. However, extreme
weather events and high daily amplitudes of air temperature will become the new climate norm for
many places in the world in the future. It is difficult for statistical techniques to infer data far from
observations points. Therefore, we developed and tested gap-filling methods, that include dynamical
and statistical concepts.

5. Conclusions

The presented technique and testing results offer a new methodology for gap filling based on a
combined dynamical-statistical methodology that differs from the common statistical methods widely
reported in the literature. Results obtained indicate that in the case when measured data are not
available, ERA5 data can be used for temperature gap filling. However, in cases when the ERA5 grid
point significantly deviates from the observation point, particularly on high mountains, debiasing of
ERA5 data based on observations is necessary in order to obtain useful temperature data. Testing in
different landscapes (from desert to mountains) and world regions (from subtropical latitudes to
midlatitudes) addresses region-specific uncertainties that should be taken into account in further
applications of this technique. The next step will be testing the presented concept for soil temperature
and air humidity data gaps.

The goal of this study is to enhance climate change and weather data-related studies which rely on
long term data series. The complete procedure of technique application andprogram installation and
running will be posted on the H2020 SERBIA FOR EXCELL project web page (www.serbiaforexcell.com)
until the end of 2018.

Supplementary Materials: The following are available at: http://www.mdpi.com/2073-4433/10/1/13/s1.
Example Python code for gap filling and debiasing procedure and supplementary data.
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Appendix A

For calculating the expanded uncertainty U(B): First, we determined the input estimates
for each input quantity: PERA = 1

n ∑i=n
i=1 pERA

i (mean ERA5 predicted 2m temperature),
PDEB = 1

n ∑i=n
i=1 pDEB

i (mean DEBIAS predicted 2 m temperature), and M = 1
n ∑i=n

i=1 mi (mean measured
2 m temperature) (i = 1, 2, . . . n). Where the (n − 1) degrees of freedom depend on the size of the gap
(n is the number of observations in the gap). Second, we evaluated the standard uncertainty for each
input estimate using a Type A evaluation (Table A1). The standard uncertainty of the input estimates
is defined as the standard deviation:

u(M) =

√√√√ 1
n− 1

i=n

∑
i=1

(mi −M)2 (A1)

The same is done for PERA i PDEB. Third, we calculated the covariances for all pairs of input
estimates (significant correlations). We express the covariance as u(P, M) = PCC(P, M)·u(P)·u(M),
where PCC(P, M) is the Pearson correlation coefficient. Fourth, we calculated the output estimate for
ERA5 and DEBIAS as the difference between the predicted and measured value. Fifth, we determined
the combined standard uncertainty of the bias, uc(B) using the first order uncertainty propagation
formula [28]:

u2
c (ax± by) = a2u2(x) + b2u2(y)± 2ab·u(x, y)= a2u2(x) + b2u2(y)± 2ab·r(x, y)·u(x)·u(y) (A2)

In our case, the sensitivity coefficients a = b = 1. Sixth, we multiplied the combined uncertainty
with the coverage factor (k = 4.472) to obtain the expanded uncertainty U(B) and estimate the
uncertainty interval [B−U(B), B + U(B)].

Table A1. Pearson r coefficient and p-value for ERA5 and measured data used for gap filing for DOY
and gaps.

Pearson r p Value

Min Mean Median Max Min Mean Median Max

Kikinda 0.896 0.950 0.955 0.979 9.18 × 10−77 2.24 × 10−40 1.31 × 10−55 2.85 × 10−38

Bahariya 0.730 0.904 0.914 0.966 7.02 × 10−63 1.52 × 10−12 1.72 × 10−38 1.83 × 10−10

Gumpenstein 0.762 0.889 0.894 0.957 4.01 × 10−36 7.66 × 10−10 8.25 × 10−25 1.07 × 10−7

Montecristo 0.707 0.834 0.846 0.912 9.93 × 10−28 5.80 × 10−10 3.75 × 10−18 3.49 × 10−8

Pianosa 0.545 0.760 0.747 0.939 5.69 × 10−36 0.002 1.83 × 10−9 0.029

Table A2. Input estimates and standard uncertainties.

Input Quantity Description Location Input Estimate Standard Uncertainty Pearson r Measurement Unit Type of Evaluation

M
Measured
two-meter
temperature

Kikinda 17.2 5.2 ◦C A
Gumpenstein 12.8 4.4 ◦C A
Bahariya 27.2 5.5 ◦C A

Montecristo 21.3 1.9 ◦C A
Pianosa 22.0 2.4 ◦C A

PERA

Predicted
two-meter
temperature

(ERA5
reanalysis)

Kikinda 17.6 4.4 0.966 ◦C A
Gumpenstein 8.4 4.3 0.849 ◦C A
Bahariya 26.4 5.1 0.940 ◦C A

Montecristo 21.3 1.1 0.753 ◦C A
Pianosa 21.3 1.1 0.562 ◦C A

PDEB

Predicted
two-meter
temperature
(DEBIAS)

Kikinda 17.2 5.1 0.969 ◦C A
Gumpenstein 13.3 4.2 0.905 ◦C A
Bahariya 27.1 5.4 0.961 ◦C A

Montecristo 21.6 1.6 0.854 ◦C A
Pianosa 22.3 2.1 0.862 ◦C A
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